Exemplo n.º 1
0
    def __init__(self, kernel_size, strides, expand_ratio, input_filters,
                 output_filters, se_ratio):
        oup = expand_ratio * input_filters
        if expand_ratio != 1:
            self._expand_conv = Tensor.zeros(oup, input_filters, 1, 1)
            self._bn0 = BatchNorm2D(oup)
        else:
            self._expand_conv = None

        self.strides = strides
        if strides == (2, 2):
            self.pad = [(kernel_size - 1) // 2 - 1, (kernel_size - 1) // 2] * 2
        else:
            self.pad = [(kernel_size - 1) // 2] * 4

        self._depthwise_conv = Tensor.zeros(oup, 1, kernel_size, kernel_size)
        self._bn1 = BatchNorm2D(oup)

        num_squeezed_channels = max(1, int(input_filters * se_ratio))
        self._se_reduce = Tensor.zeros(num_squeezed_channels, oup, 1, 1)
        self._se_reduce_bias = Tensor.zeros(num_squeezed_channels)
        self._se_expand = Tensor.zeros(oup, num_squeezed_channels, 1, 1)
        self._se_expand_bias = Tensor.zeros(oup)

        self._project_conv = Tensor.zeros(output_filters, oup, 1, 1)
        self._bn2 = BatchNorm2D(output_filters)
Exemplo n.º 2
0
    def __init__(self, number=0):
        self.number = number
        global_params = [
            # width, depth
            (1.0, 1.0),  # b0
            (1.0, 1.1),  # b1
            (1.1, 1.2),  # b2
            (1.2, 1.4),  # b3
            (1.4, 1.8),  # b4
            (1.6, 2.2),  # b5
            (1.8, 2.6),  # b6
            (2.0, 3.1),  # b7
            (2.2, 3.6),  # b8
            (4.3, 5.3),  # l2
        ][number]

        def round_filters(filters):
            multiplier = global_params[0]
            divisor = 8
            filters *= multiplier
            new_filters = max(divisor,
                              int(filters + divisor / 2) // divisor * divisor)
            if new_filters < 0.9 * filters:  # prevent rounding by more than 10%
                new_filters += divisor
            return int(new_filters)

        def round_repeats(repeats):
            return int(math.ceil(global_params[1] * repeats))

        out_channels = round_filters(32)
        self._conv_stem = Tensor.zeros(out_channels, 3, 3, 3)
        self._bn0 = BatchNorm2D(out_channels)
        blocks_args = [
            [1, 3, (1, 1), 1, 32, 16, 0.25],
            [2, 3, (2, 2), 6, 16, 24, 0.25],
            [2, 5, (2, 2), 6, 24, 40, 0.25],
            [3, 3, (2, 2), 6, 40, 80, 0.25],
            [3, 5, (1, 1), 6, 80, 112, 0.25],
            [4, 5, (2, 2), 6, 112, 192, 0.25],
            [1, 3, (1, 1), 6, 192, 320, 0.25],
        ]
        self._blocks = []
        # num_repeats, kernel_size, strides, expand_ratio, input_filters, output_filters, se_ratio
        for b in blocks_args:
            args = b[1:]
            args[3] = round_filters(args[3])
            args[4] = round_filters(args[4])
            for n in range(round_repeats(b[0])):
                self._blocks.append(MBConvBlock(*args))
                args[3] = args[4]
                args[1] = (1, 1)

        in_channels = round_filters(320)
        out_channels = round_filters(1280)
        self._conv_head = Tensor.zeros(out_channels, in_channels, 1, 1)
        self._bn1 = BatchNorm2D(out_channels)
        self._fc = Tensor.zeros(out_channels, 1000)
        self._fc_bias = Tensor.zeros(1000)
Exemplo n.º 3
0
 def __init__(self, h, w, inp, filters=128, conv=3):
   self.h, self.w = h, w
   self.inp = inp
   #init weights
   self.cweights = [Tensor.uniform(filters, inp if i==0 else filters, conv, conv) for i in range(3)]
   self.cbiases = [Tensor.uniform(1, filters, 1, 1) for i in range(3)]
   #init layers
   self._bn = BatchNorm2D(128, training=True)
   self._seb = SqueezeExciteBlock2D(filters)
Exemplo n.º 4
0
    def __init__(self):
        self.blocks = 3
        self.block_convs = 3

        # TODO: raise back to 128 when it's fast
        self.chans = 32

        self.convs = [
            Tensor.uniform(self.chans, self.chans if i > 0 else 1, 3, 3)
            for i in range(self.blocks * self.block_convs)
        ]
        self.cbias = [
            Tensor.uniform(1, self.chans, 1, 1)
            for i in range(self.blocks * self.block_convs)
        ]
        self.bn = [BatchNorm2D(self.chans, training=True) for i in range(3)]
        self.fc1 = Tensor.uniform(self.chans, 10)
        self.fc2 = Tensor.uniform(self.chans, 10)
Exemplo n.º 5
0
  def create_modules(self, blocks):
    net_info = blocks[0] # Info about model hyperparameters
    prev_filters = 3
    filters = None
    output_filters = []
    module_list = []
    ## module
    for index, x in enumerate(blocks[1:]):
      module_type = x["type"]
      module = []
      if module_type == "convolutional":
        try:
          batch_normalize = int(x["batch_normalize"])
          bias = False
        except:
          batch_normalize = 0
          bias = True

        # layer
        activation = x["activation"]
        filters = int(x["filters"])
        padding = int(x["pad"])
        if padding:
          pad = (int(x["size"]) - 1) // 2
        else:
          pad = 0
        
        conv = Conv2d(prev_filters, filters, int(x["size"]), int(x["stride"]), pad, bias = bias)
        module.append(conv)

        # BatchNorm2d
        if batch_normalize:
          bn = BatchNorm2D(filters, eps=1e-05, training=True, track_running_stats=True)
          module.append(bn)

        # LeakyReLU activation
        if activation == "leaky":
          module.append(LeakyReLU(0.1))
      
      # TODO: Add tiny model
      elif module_type == "maxpool":
        size = int(x["size"])
        stride = int(x["stride"])
        maxpool = MaxPool2d(size, stride)
        module.append(maxpool)

      elif module_type == "upsample":
        upsample = Upsample(scale_factor = 2, mode = "nearest")
        module.append(upsample)
      
      elif module_type == "route":
        x["layers"] = x["layers"].split(",")
        # Start of route
        start = int(x["layers"][0])
        # End if it exists
        try:
          end = int(x["layers"][1])
        except:
          end = 0
        if start > 0: start = start - index
        if end > 0: end = end - index
        route = EmptyLayer()
        module.append(route)
        if end < 0:
          filters = output_filters[index + start] + output_filters[index + end]
        else:
          filters = output_filters[index + start]
        
      # Shortcut corresponds to skip connection
      elif module_type == "shortcut":
        module.append(EmptyLayer())
      
      elif module_type == "yolo":
        mask = x["mask"].split(",")
        mask = [int(x) for x in mask]

        anchors = x["anchors"].split(",")
        anchors = [int(a) for a in anchors]
        anchors = [(anchors[i], anchors[i+1]) for i in range(0, len(anchors), 2)]
        anchors = [anchors[i] for i in mask]

        detection = DetectionLayer(anchors)
        module.append(detection)
      
      # Append to module_list
      module_list.append(module)
      if filters is not None:
        prev_filters = filters
      output_filters.append(filters)
    
    return (net_info, module_list)