Exemplo n.º 1
0
    def test_elev_gradient(self):
        elevs0 = [0] * 9 + [-153.8]
        points0 = titanlib.Points(lats, lons, elevs0)
        flags = titanlib.buddy_check(points0, values, radius, num_min,
                                     threshold, max_elev_diff, 0, min_std,
                                     num_iterations)
        np.testing.assert_array_equal(flags, [0] * 8 + [1, 1])

        flags = titanlib.buddy_check(points0, values, radius, num_min,
                                     threshold, max_elev_diff, elev_gradient,
                                     min_std, num_iterations)
        np.testing.assert_array_equal(flags, [0] * 8 + [1, 0])
Exemplo n.º 2
0
 def test_missing(self):
     values0 = np.copy(values)
     values0[0] = np.nan
     # Check that NaNs are still flagged, eventhough they are not checked
     flags = titanlib.buddy_check(points, values0, radius, num_min, 0.0001,
                                  1, elev_gradient, min_std, num_iterations)
     np.testing.assert_array_equal(flags, [1] * 10)
Exemplo n.º 3
0
 def test_max_elev_diff(self):
     """Check that test is not run on a point which has no other points within the elevation range"""
     elevs0 = [0]*9 + [100]
     points0 = titanlib.Points(lats, lons, elevs0)
     flags = titanlib.buddy_check(points0, values, radius, num_min, threshold,
             1, elev_gradient, min_std, num_iterations)
     np.testing.assert_array_equal(flags, [0]*8 + [1, 0])
Exemplo n.º 4
0
 def test_1(self):
     """Check that the test doesn't fail"""
     lats, lons, elevs, values = util.summer_temperature_example()
     I = slice(0, len(lats))
     lats = lats[I]
     lons = lons[I]
     elevs = elevs[I]
     values = values[I]
     s_time = time.time()
     flags = titanlib.buddy_check(lats, lons, elevs, values, [10000], [5], [2], 5, 0.0065, 1, 1)
     e_time = time.time()
     print(e_time - s_time)
     print("Fraction of stations removed: %.1f %%" % (np.mean(flags) * 100))
Exemplo n.º 5
0
    def test(self, dataset, mask, code=104):

        if tit is None:
            raise ModuleNotFoundError("titanlib was not loaded properly")

        global_flags = dataset.flags
        # Buddy does not work properly for dataset. Also without data set the values must be set without subscripts

        # status = dataset.buddy_check(self.distance_lim, self.priorities, self.buddies_min, self.thresholds,
        #                             self.diff_elev_max, self.adjust_for_elev_diff, self.obs_to_check, mask)

        lons = []
        lats = []
        elevs = []
        values = []
        for i in range(0, len(mask)):
            lons.append(dataset.lons[i])
            lats.append(dataset.lats[i])
            elevs.append(dataset.elevs[i])
            values.append(dataset.values[i])

        status, flags = tit.buddy_check(lats, lons, elevs, values,
                                        self.distance_lim, self.priorities,
                                        self.buddies_min, self.thresholds, self.diff_elev_max,
                                        self.adjust_for_elev_diff, self.obs_to_check)
        if not status:
            raise Exception("Buddy check failed!")

        for i in range(0, len(mask)):
            if global_flags[mask[i]] == 0 and flags[i] == 1:
                global_flags[mask[i]] = code

        if self.debug:
            for i in range(0, len(mask)):
                print(self.name, i, dataset.values[i], dataset.flags[i], global_flags[i])

        return global_flags
Exemplo n.º 6
0
 def test_num_iterations(self):
     """Check that num_iterations affects the flags"""
     flags = titanlib.buddy_check(points, values, radius, num_min,
                                  threshold, max_elev_diff, elev_gradient,
                                  min_std, 1)
     np.testing.assert_array_equal(flags, [0] * 9 + [1])
Exemplo n.º 7
0
 def test_min_num(self):
     """Check that when min_num is high enough, nothing is flagged"""
     flags = titanlib.buddy_check(points, values, radius, [20], threshold,
                                  max_elev_diff, elev_gradient, min_std,
                                  num_iterations)
     np.testing.assert_array_equal(flags, [0] * N)
Exemplo n.º 8
0
 def test_1(self):
     flags = titanlib.buddy_check(points, values, radius, num_min,
                                  threshold, max_elev_diff, elev_gradient,
                                  min_std, num_iterations)
     np.testing.assert_array_equal(flags, [0] * 8 + [1] * 2)