Exemplo n.º 1
0
    def flag(self, vis, vis_mask, li, gi, tf, ts, **kwargs):
        """Function that does the actual flag."""

        # if all have been masked, no need to flag again
        if vis_mask.all():
            return

        first_threshold = self.params['first_threshold']
        exp_factor = self.params['exp_factor']
        distribution = self.params['distribution']
        max_threshold_len = self.params['max_threshold_len']
        sensitivity = self.params['sensitivity']
        min_connected = self.params['min_connected']
        flag_direction = self.params['flag_direction']
        tk_size = self.params['tk_size']
        fk_size = self.params['fk_size']
        threshold_num = max(0, int(self.params['threshold_num']))

        vis_abs = np.abs(vis) # operate only on the amplitude

        # first round
        # first complete masked vals due to ns by interpolate
        itp = interpolate.Interpolate(vis_abs, vis_mask)
        background = itp.fit()
        # Gaussian fileter
        gf = gaussian_filter.GaussianFilter(background, time_kernal_size=tk_size, freq_kernal_size=fk_size)
        background = gf.fit()
        # sum-threshold
        vis_diff = vis_abs - background
        # an initial run of N = 1 only to remove extremely high amplitude RFI
        st = sum_threshold.SumThreshold(vis_diff, vis_mask, first_threshold, exp_factor, distribution, 1, min_connected)
        st.execute(sensitivity, flag_direction)

        # if all have been masked, no need to flag again
        if st.vis_mask.all():
            vis_mask[:] = st.vis_mask
            return

        # next rounds
        for i in xrange(threshold_num):
            # Gaussian fileter
            gf = gaussian_filter.GaussianFilter(vis_diff, st.vis_mask, time_kernal_size=tk_size, freq_kernal_size=fk_size)
            background = gf.fit()
            # sum-threshold
            vis_diff = vis_diff - background
            st = sum_threshold.SumThreshold(vis_diff, st.vis_mask, first_threshold, exp_factor, distribution, max_threshold_len, min_connected)
            st.execute(sensitivity, flag_direction)

            # if all have been masked, no need to flag again
            if st.vis_mask.all():
                break

        # replace vis_mask with the flagged mask
        vis_mask[:] = st.vis_mask
Exemplo n.º 2
0
    def flag(self, vis, vis_mask, li, gi, fb, ts, **kwargs):
        """Function that does the actual flag."""

        # if all have been masked, no need to flag again
        if vis_mask.all():
            return

        first_threshold = self.params['first_threshold']
        exp_factor = self.params['exp_factor']
        distribution = self.params['distribution']
        max_threshold_len = self.params['max_threshold_len']
        sensitivity = self.params['sensitivity']
        min_connected = self.params['min_connected']
        flag_direction = self.params['flag_direction']

        vis_abs = np.abs(vis)  # operate only on the amplitude

        # first complete masked vals due to ns by interpolate
        itp = interpolate.Interpolate(vis_abs, vis_mask)
        background = itp.fit()
        background1 = background.copy()

        # nt, nf = background.shape
        # for fi in range(nf):
        #     background[:, fi] = multiscale.median_wavelet_smooth(background[:, fi], level=4)
        # for ti in range(nt):
        #     if fb[0] == fb[1]:
        #         background[ti, :] = multiscale.median_wavelet_smooth(background[ti, :], level=2)
        #     else:
        #         background[ti, :] = multiscale.median_wavelet_smooth(background[ti, :], level=3)
        background[:] = multiscale.median_wavelet_smooth(background, level=2)

        # sum-threshold
        # vis_diff = vis_abs - background
        vis_diff = background1 - background
        # an initial run of N = 1 only to remove extremely high amplitude RFI
        st = sum_threshold.SumThreshold(vis_diff, vis_mask, first_threshold,
                                        exp_factor, distribution, 1,
                                        min_connected)
        st.execute(sensitivity, flag_direction)

        # if all have been masked, no need to flag again
        if st.vis_mask.all():
            vis_mask[:] = st.vis_mask
            return

        vis_diff = np.where(st.vis_mask, 0, vis_diff)

        st = sum_threshold.SumThreshold(vis_diff, st.vis_mask, first_threshold,
                                        exp_factor, distribution,
                                        max_threshold_len, min_connected)
        st.execute(sensitivity, flag_direction)

        vis_mask[:] = st.vis_mask
Exemplo n.º 3
0
    def init_vis(self, vis, vis_mask, li, gi, bl, ts, **kwargs):

        time = ts['sec1970'][:]
        n_time = time.shape[0]
        tblock_len = self.params['tblock_len']
        if tblock_len is None:
            tblock_len = n_time

        if self.params['deweight_time_slope']:
            n_poly = 2
        else:
            n_poly = 1

        vis_var = ts['vis_var'].local_data


        logger.debug('est. var %d %d'%(n_time, tblock_len))
        _vis = np.ma.array(vis.copy())
        _vis.mask = vis_mask
        median = np.ma.median(_vis, axis=0)
        vis -= median[None, ...]
        #vis_fit = sub_ortho_poly(vis, time, ~vis_mask.astype('bool') , n_poly)
        #for i in range(vis_fit.shape[-1]):
        #    good = vis_fit[:, 0, i] != 0
        #    plt.plot(np.arange(vis_fit.shape[0])[good], vis_fit[good, 0, i], '.')
        #    plt.show()
        if self.params['noise_weight']:
            for st in range(0, n_time, tblock_len):
                et = st + tblock_len
                _time = time[st:et] #ts['sec1970'][st:et]

                _vis_mask = (vis_mask[st:et,...]).astype('bool')
                _vis = vis[st:et,...]
                _vis[_vis_mask] = 0.

                # rm bright sources for var est.
                _vis.shape = _time.shape + (-1, )
                _vis_mask.shape = _vis.shape
                bg  = gaussian_filter.GaussianFilter(
                        interpolate.Interpolate(_vis, _vis_mask).fit(), 
                        time_kernal_size=0.5, freq_kernal_size=1, 
                        filter_direction = ('time', )).fit()
                _vis = _vis - bg
                _vis.shape = (-1, ) + vis.shape[1:]
                _vis_mask.shape = _vis.shape
                _vis[_vis_mask] = 0.

                #for i in range(5):
                _vars = sp.sum(_vis ** 2., axis=0)
                _cont = sp.sum(~_vis_mask, axis=0) * 1.
                _bad = _cont == 0
                _cont[_bad] = np.inf
                _vars /= _cont
                #_vis_mask += (_vis - 3 * np.sqrt(_vars[None, ...])) > 0.
                #_vis[_vis_mask] = 0.
                msg = 'min vars = %f, max vars = %f'%(_vars.min(), _vars.max())
                #logger.debug(msg)
                logger.info(msg)
                #_vars[_bad] = T_infinity ** 2.
                #_bad = _vars < T_small ** 2
                #_vars[_bad] = T_small ** 2
                #vis_var[st:et, li, ...] += _vars[None, :] * vis_fit[st:et, ...]
                vis_var[st:et, li, ...] += _vars[None, :] * median[None, ...]
                #vis_var[st:et, li, ...][_vis_mask, ...] = T_infinity ** 2.
        else:
            vis_var[:] = 1.
Exemplo n.º 4
0
    def _plot(self, vis1, x_axis, xmin, xmax, gi, bl, ts):

        axhh = self.axhh
        axvv = self.axvv

        label = 'M%03d'%(bl[0] - 1)
        #axhh.plot(x_axis, np.ma.mean(vis1[:,:,0], axis=1), '.', label = label)
        #axvv.plot(x_axis, np.ma.mean(vis1[:,:,1], axis=1), '.')
        if len(vis1.shape) == 3:
            vis1 = np.ma.mean(vis1, axis=1)

        time = np.arange(x_axis.shape[0])
        _n = 0
        t_block = self.params['t_block']
        if   self.params['rm_slop']: _n = 2
        elif self.params['rm_mean']: _n = 1
        if t_block is None: t_block = len(time)
        for ii in range(0, len(time), t_block):
            st = ii
            ed = ii + t_block
            _vis1 = vis1[st:ed, ...]
            _time = time[st:ed]
            bg  = gaussian_filter.GaussianFilter(
                        interpolate.Interpolate(_vis1, _vis1.mask).fit(), 
                        time_kernal_size=0.5, freq_kernal_size=1, 
                        filter_direction = ('time', )).fit()
            if _n != 0:
                _vis1 -= sub_ortho_poly(bg, _time, ~_vis1.mask, _n)
            if self.params['rm_point_sources']:
                bg  = gaussian_filter.GaussianFilter(
                        interpolate.Interpolate(_vis1, _vis1.mask).fit(), 
                        time_kernal_size=0.5, freq_kernal_size=1, 
                        filter_direction = ('time', )).fit()
                _vis1 -= bg
            vis1[st:ed, ...] = _vis1
        

        _l = axhh.plot(x_axis, vis1[:,0], '-', drawstyle='steps-mid',
                label = label)
        #_l = axhh.plot(x_axis, vis1[:,0], '.', c=_l[0].get_color())

        _l = axvv.plot(x_axis, vis1[:,1], '-', drawstyle='steps-mid')
        #_l = axvv.plot(x_axis, vis1[:,1], '.', c=_l[0].get_color())


        if xmin is None: xmin = x_axis[0]
        if xmax is None: xmax = x_axis[-1]
        self.xmin = min([xmin, self.xmin])
        self.xmax = max([xmax, self.xmax])

        if self.params['nvss_cat'] is not None:
            dec_min = np.min(ts['dec'][:, gi])
            dec_max = np.max(ts['dec'][:, gi])
            #dec_min = 25.65294 #15.15294
            #dec_max = 25.65294 #15.15294
            #if dec_min == dec_max:
            dec_min -= 2./60.
            dec_max += 2./60.
            #dec_min = 25.541339365641274
            #dec_max = 25.61497357686361
            #dec_min = 25.458541361490884
            #dec_max = 25.532173665364585
            #dec_min = 25.789624659220376
            #dec_max = 25.863256963094077
            self.nvss_range.append([xmin, xmax, dec_min, dec_max])