Exemplo n.º 1
0
def _area_interpolate(
    source_df,
    target_df,
    extensive_variables=None,
    intensive_variables=None,
    tables=None,
    allocate_total=True,
):
    """
    Area interpolation for extensive and intensive variables.

    Parameters
    ----------
    source_df : geopandas.GeoDataFrame (required)
        geodataframe with polygon geometries
    target_df : geopandas.GeoDataFrame (required)
        geodataframe with polygon geometries
    extensive_variables : list, (optional)
        columns in dataframes for extensive variables
    intensive_variables : list, (optional)
        columns in dataframes for intensive variables
    tables : tuple (optional)
        two 2-D numpy arrays
        SU: area of intersection of source geometry i with union geometry j
        UT: binary mapping of union geometry j to target geometry t
    allocate_total : boolean
        True if total value of source area should be allocated.
        False if denominator is area of i. Note that the two cases
        would be identical when the area of the source polygon is
        exhausted by intersections. See Notes for more details.

    Returns
    -------
    estimates : geopandas.GeoDataFrame
        new geodaraframe with interpolated variables as columns and target_df geometry
        as output geometry

    Notes
    -----
    The assumption is both dataframes have the same coordinate reference system.


    For an extensive variable, the estimate at target polygon j (default case) is:

    v_j = \sum_i v_i w_{i,j}

    w_{i,j} = a_{i,j} / \sum_k a_{i,k}


    If the area of the source polygon is not exhausted by intersections with
    target polygons and there is reason to not allocate the complete value of
    an extensive attribute, then setting allocate_total=False will use the
    following weights:


    v_j = \sum_i v_i w_{i,j}

    w_{i,j} = a_{i,j} / a_i

    where a_i is the total area of source polygon i.


    For an intensive variable, the estimate at target polygon j is:

    v_j = \sum_i v_i w_{i,j}

    w_{i,j} = a_{i,j} / \sum_k a_{k,j}

    """
    source_df = source_df.copy()
    target_df = target_df.copy()

    if _check_crs(source_df, target_df):
        pass
    else:
        return None

    if tables is None:
        SU, UT = _area_tables(source_df, target_df)
    else:
        SU, UT = tables
    den = source_df["geometry"].area.values
    if allocate_total:
        den = SU.sum(axis=1)
    den = den + (den == 0)
    weights = np.dot(np.diag(1 / den), SU)

    dfs = []
    extensive = []
    if extensive_variables:
        for variable in extensive_variables:
            vals = _nan_check(source_df, variable)
            vals = _inf_check(source_df, variable)
            estimates = np.dot(np.diag(vals), weights)
            estimates = np.dot(estimates, UT)
            estimates = estimates.sum(axis=0)
            extensive.append(estimates)
    extensive = np.array(extensive)
    extensive = pd.DataFrame(extensive.T, columns=extensive_variables)

    ST = np.dot(SU, UT)
    area = ST.sum(axis=0)
    den = np.diag(1.0 / (area + (area == 0)))
    weights = np.dot(ST, den)
    intensive = []
    if intensive_variables:
        for variable in intensive_variables:
            vals = _nan_check(source_df, variable)
            vals = _inf_check(source_df, variable)
            vals.shape = (len(vals), 1)
            est = (vals * weights).sum(axis=0)
            intensive.append(est)
    intensive = np.array(intensive)
    intensive = pd.DataFrame(intensive.T, columns=intensive_variables)

    if extensive_variables:
        dfs.append(extensive)
    if intensive_variables:
        dfs.append(intensive)

    df = pd.concat(dfs, axis=1)
    df["geometry"] = target_df["geometry"].reset_index(drop=True)
    df = gpd.GeoDataFrame(df.replace(np.inf, np.nan))
    return df
Exemplo n.º 2
0
def _area_interpolate_binning(
    source_df,
    target_df,
    extensive_variables=None,
    intensive_variables=None,
    table=None,
    allocate_total=True,
    spatial_index="auto",
    n_jobs=1,
    categorical_variables=None,
):
    """
    Area interpolation for extensive, intensive and categorical variables.

    Parameters
    ----------
    source_df : geopandas.GeoDataFrame
    target_df : geopandas.GeoDataFrame
    extensive_variables : list
        [Optional. Default=None] Columns in dataframes for extensive variables
    intensive_variables : list
        [Optional. Default=None] Columns in dataframes for intensive variables
    table : scipy.sparse.dok_matrix
        [Optional. Default=None] Area allocation source-target correspondence
        table. If not provided, it will be built from `source_df` and
        `target_df` using `tobler.area_interpolate._area_tables_binning`
    allocate_total : boolean
        [Optional. Default=True] True if total value of source area should be
        allocated. False if denominator is area of i. Note that the two cases
        would be identical when the area of the source polygon is exhausted by
        intersections. See Notes for more details.
    spatial_index : str
        [Optional. Default="auto"] Spatial index to use to build the
        allocation of area from source to target tables. It currently support
        the following values:
            - "source": build the spatial index on `source_df`
            - "target": build the spatial index on `target_df`
            - "auto": attempts to guess the most efficient alternative.
              Currently, this option uses the largest table to build the
              index, and performs a `bulk_query` on the shorter table.
        This argument is ignored if n_jobs>1 (or n_jobs=-1).
    n_jobs : int
        [Optional. Default=1] Number of processes to run in parallel to
        generate the area allocation. If -1, this is set to the number of CPUs
        available. If `table` is passed, this is ignored.
        NOTE: as of Jan'21 multi-core functionality requires master versions
        of `pygeos` and `geopandas`.
    categorical_variables : list
        [Optional. Default=None] Columns in dataframes for categorical variables

    Returns
    -------
    estimates : geopandas.GeoDataFrame
         new geodaraframe with interpolated variables as columns and target_df geometry
         as output geometry

    Notes
    -----
    The assumption is both dataframes have the same coordinate reference system.
    For an extensive variable, the estimate at target polygon j (default case) is:

    .. math::
     v_j = \\sum_i v_i w_{i,j}

     w_{i,j} = a_{i,j} / \\sum_k a_{i,k}

    If the area of the source polygon is not exhausted by intersections with
    target polygons and there is reason to not allocate the complete value of
    an extensive attribute, then setting allocate_total=False will use the
    following weights:

    .. math::
     v_j = \\sum_i v_i w_{i,j}

     w_{i,j} = a_{i,j} / a_i

    where a_i is the total area of source polygon i.
    For an intensive variable, the estimate at target polygon j is:

    .. math::
     v_j = \\sum_i v_i w_{i,j}

     w_{i,j} = a_{i,j} / \\sum_k a_{k,j}

    For categorical variables, the estimate returns ratio of presence of each
    unique category.
    """
    source_df = source_df.copy()
    target_df = target_df.copy()

    if _check_crs(source_df, target_df):
        pass
    else:
        return None

    if table is None:
        if n_jobs == 1:
            table = _area_tables_binning(source_df, target_df, spatial_index)
        else:
            table = _area_tables_binning_parallel(source_df,
                                                  target_df,
                                                  n_jobs=n_jobs)

    den = source_df.area.values
    if allocate_total:
        den = np.asarray(table.sum(axis=1))
    den = den + (den == 0)
    den = 1.0 / den
    n = den.shape[0]
    den = den.reshape((n, ))
    den = diags([den], [0])
    weights = den.dot(table)  # row standardize table

    dfs = []
    extensive = []
    if extensive_variables:
        for variable in extensive_variables:
            vals = _nan_check(source_df, variable)
            vals = _inf_check(source_df, variable)
            estimates = diags([vals], [0]).dot(weights)
            estimates = estimates.sum(axis=0)
            extensive.append(estimates.tolist()[0])

        extensive = np.asarray(extensive)
        extensive = np.array(extensive)
        extensive = pd.DataFrame(extensive.T, columns=extensive_variables)

    area = np.asarray(table.sum(axis=0))
    den = 1.0 / (area + (area == 0))
    n, k = den.shape
    den = den.reshape((k, ))
    den = diags([den], [0])
    weights = table.dot(den)

    intensive = []
    if intensive_variables:
        for variable in intensive_variables:
            vals = _nan_check(source_df, variable)
            vals = _inf_check(source_df, variable)
            n = vals.shape[0]
            vals = vals.reshape((n, ))
            estimates = diags([vals], [0])
            estimates = estimates.dot(weights).sum(axis=0)
            intensive.append(estimates.tolist()[0])

        intensive = np.asarray(intensive)
        intensive = pd.DataFrame(intensive.T, columns=intensive_variables)

    if categorical_variables:
        categorical = {}
        for variable in categorical_variables:
            unique = source_df[variable].unique()
            for value in unique:
                mask = source_df[variable] == value
                categorical[f"{variable}_{value}"] = np.asarray(
                    table[mask].sum(axis=0))[0]

        categorical = pd.DataFrame(categorical)
        categorical = categorical.div(target_df.area.values, axis="rows")

    if extensive_variables:
        dfs.append(extensive)
    if intensive_variables:
        dfs.append(intensive)
    if categorical_variables:
        dfs.append(categorical)

    df = pd.concat(dfs, axis=1)
    df["geometry"] = target_df[target_df.geometry.name].reset_index(drop=True)
    df = gpd.GeoDataFrame(df.replace(np.inf, np.nan))
    return df
Exemplo n.º 3
0
def _area_interpolate_binning(
    source_df,
    target_df,
    extensive_variables=None,
    intensive_variables=None,
    table=None,
    allocate_total=True,
):
    """
    Area interpolation for extensive and intensive variables.

    Parameters
    ----------
    source_df : geopandas.GeoDataFrame
    target_df : geopandas.GeoDataFrame
    extensive_variables : list
        columns in dataframes for extensive variables
    intensive_variables : list
        columns in dataframes for intensive variables
    table : scipy.sparse.dok_matrix
    allocate_total : boolean
        True if total value of source area should be allocated.
        False if denominator is area of i. Note that the two cases
        would be identical when the area of the source polygon is
        exhausted by intersections. See Notes for more details.

    Returns
    -------
    estimates : geopandas.GeoDataFrame
         new geodaraframe with interpolated variables as columns and target_df geometry
         as output geometry

    Notes
    -----
    The assumption is both dataframes have the same coordinate reference system.
    For an extensive variable, the estimate at target polygon j (default case) is:

    .. math::
     v_j = \\sum_i v_i w_{i,j}

     w_{i,j} = a_{i,j} / \\sum_k a_{i,k}

    If the area of the source polygon is not exhausted by intersections with
    target polygons and there is reason to not allocate the complete value of
    an extensive attribute, then setting allocate_total=False will use the
    following weights:

    .. math::
     v_j = \\sum_i v_i w_{i,j}

     w_{i,j} = a_{i,j} / a_i

    where a_i is the total area of source polygon i.
    For an intensive variable, the estimate at target polygon j is:

    .. math::
     v_j = \\sum_i v_i w_{i,j}

     w_{i,j} = a_{i,j} / \\sum_k a_{k,j}
    """
    source_df = source_df.copy()
    target_df = target_df.copy()

    if _check_crs(source_df, target_df):
        pass
    else:
        return None

    if table is None:
        table = _area_tables_binning(source_df, target_df)

    den = source_df["geometry"].area.values
    if allocate_total:
        den = np.asarray(table.sum(axis=1))
    den = den + (den == 0)
    den = 1.0 / den
    n = den.shape[0]
    den = den.reshape((n, ))
    den = diags([den], [0])
    weights = den.dot(table)  # row standardize table

    dfs = []
    extensive = []
    if extensive_variables:
        for variable in extensive_variables:
            vals = _nan_check(source_df, variable)
            vals = _inf_check(source_df, variable)
            estimates = diags([vals], [0]).dot(weights)
            estimates = estimates.sum(axis=0)
            extensive.append(estimates.tolist()[0])

        extensive = np.asarray(extensive)
        extensive = np.array(extensive)
        extensive = pd.DataFrame(extensive.T, columns=extensive_variables)

    area = np.asarray(table.sum(axis=0))
    den = 1.0 / (area + (area == 0))
    n, k = den.shape
    den = den.reshape((k, ))
    den = diags([den], [0])
    weights = table.dot(den)

    intensive = []
    if intensive_variables:
        for variable in intensive_variables:
            vals = _nan_check(source_df, variable)
            vals = _inf_check(source_df, variable)
            n = vals.shape[0]
            vals = vals.reshape((n, ))
            estimates = diags([vals], [0])
            estimates = estimates.dot(weights).sum(axis=0)
            intensive.append(estimates.tolist()[0])

        intensive = np.asarray(intensive)
        intensive = pd.DataFrame(intensive.T, columns=intensive_variables)

    if extensive_variables:
        dfs.append(extensive)
    if intensive_variables:
        dfs.append(intensive)

    df = pd.concat(dfs, axis=1)
    df["geometry"] = target_df["geometry"].reset_index(drop=True)
    df = gpd.GeoDataFrame(df.replace(np.inf, np.nan))
    return df