Exemplo n.º 1
0
    def _process_photometry_from_plaintext(self, data_product):
        """
        Processes the photometric data from a plaintext file into a dict, which can then be  stored as a ReducedDatum
        for further processing or display. File is read using astropy as specified in the below documentation. The file
        is expected to be a multi-column delimited file, with headers for time, magnitude, filter, and error.
        # http://docs.astropy.org/en/stable/io/ascii/read.html

        :param data_product: Photometric DataProduct which will be processed into a dict
        :type data_product: DataProduct

        :returns: python dict containing the data from the DataProduct
        :rtype: dict
        """
        photometry = {}

        data = ascii.read(data_product.data.name, format='fixed_width')
        if len(data) < 1:
            raise InvalidFileFormatException(
                'Empty table or invalid file type')

        utc = TimezoneInfo(tzname='UTC')
        for datum in data:
            time = Time(datum['MJD'], format='mjd')
            value = {
                'magnitude': datum['mag'],
                'filter': datum['filt'],
                'error': datum['dmag']
            }
            photometry.setdefault(time.to_datetime(timezone=utc),
                                  []).append(value)
        return photometry
Exemplo n.º 2
0
    def _process_photometry_from_plaintext(self, data_product, extras):

        photometry = []

        data_aws = default_storage.open(data_product.data.name, 'r')
        data = ascii.read(data_aws.read(),
                          names=['time', 'filter', 'magnitude', 'error'])

        if len(data) < 1:
            raise InvalidFileFormatException('Empty table or invalid file type')

        for datum in data:
            time = Time(float(datum['time']), format='mjd')
            utc = TimezoneInfo(utc_offset=0*units.hour)
            time.format = 'datetime'
            value = {
                'timestamp': time.to_datetime(timezone=utc),
                'magnitude': datum['magnitude'],
                'filter': datum['filter'],
                'error': datum['error']
            }
            value.update(extras)

            photometry.append(value)

        return photometry
Exemplo n.º 3
0
    def _process_photometry_from_plaintext(self, data_product):
        """
        Processes the photometric data from a plaintext file into a list of dicts. File is read using astropy as
        specified in the below documentation. The file is expected to be a multi-column delimited file, with headers for
        time, magnitude, filter, and error.
        # http://docs.astropy.org/en/stable/io/ascii/read.html

        :param data_product: Photometric DataProduct which will be processed into a list of dicts
        :type data_product: DataProduct

        :returns: python list containing the photometric data from the DataProduct
        :rtype: list
        """

        photometry = []

        data = ascii.read(data_product.data.path)
        if len(data) < 1:
            raise InvalidFileFormatException('Empty table or invalid file type')

        for datum in data:
            time = Time(float(datum['time']), format='mjd')
            utc = TimezoneInfo(utc_offset=0*units.hour)
            time.format = 'datetime'
            value = {
                'timestamp': time.to_datetime(timezone=utc),
                'magnitude': datum['magnitude'],
                'filter': datum['filter'],
                'error': datum['error']
            }
            photometry.append(value)

        return photometry
Exemplo n.º 4
0
    def process_data(self, data_product, extras):

        mimetype = mimetypes.guess_type(data_product.data.name)[0]
        if mimetype in self.PLAINTEXT_MIMETYPES:
            photometry = self._process_photometry_from_plaintext(data_product, extras)
            return [(datum.pop('timestamp'), json.dumps(datum)) for datum in photometry]
        else:
            raise InvalidFileFormatException('Unsupported file type')
Exemplo n.º 5
0
    def process_data(self, data_product, extras):
        mimetype = mimetypes.guess_type(data_product.data.name)[0]
        if mimetype in self.FITS_MIMETYPES:
            spectrum, obs_date = self._process_spectrum_from_fits(data_product)
        elif mimetype in self.PLAINTEXT_MIMETYPES:
            spectrum, obs_date = self._process_spectrum_from_plaintext(
                data_product)
        else:
            raise InvalidFileFormatException('Unsupported file type')
        serialized_spectrum = SpectrumSerializer().serialize(spectrum)

        return [(obs_date, serialized_spectrum)]
Exemplo n.º 6
0
    def _process_spectrum_from_plaintext(self, data_product):
        """
        Processes the data from a spectrum from a plaintext file into a Spectrum1D object, which can then be serialized
        and stored as a ReducedDatum for further processing or display. File is read using astropy as specified in
        the below documentation. The file is expected to be a multi-column delimited file, with headers for wavelength
        and flux. The file also requires comments containing, at minimum, 'DATE-OBS: [value]', where value is an
        Astropy Time module-readable date. It can optionally contain 'FACILITY: [value]', where the facility is a string
        matching the name of a valid facility in the TOM.
        # http://docs.astropy.org/en/stable/io/ascii/read.html
        Parameters
        ----------
        :param data_product: Spectroscopic DataProduct which will be processed into a Spectrum1D
        :type data_product: tom_dataproducts.models.DataProduct
        :returns: Spectrum1D object containing the data from the DataProduct
        :rtype: specutils.Spectrum1D
        :returns: Datetime of observation, if it is in the comments and the file is from a supported facility, current
            datetime otherwise
        :rtype: AstroPy.Time
        """

        from django.core.files.storage import default_storage

        data_aws = default_storage.open(data_product.data.name, 'r')

        data = ascii.read(data_aws.read(), names=['wavelength', 'flux'])

        if len(data) < 1:
            raise InvalidFileFormatException(
                'Empty table or invalid file type')
        facility_name = None
        date_obs = datetime.now()
        comments = data.meta.get('comments', [])

        for comment in comments:
            if 'date-obs' in comment.lower():
                date_obs = comment.split(':')[1].strip()
            if 'facility' in comment.lower():
                facility_name = comment.split(':')[1].strip()

        facility = get_service_class(
            facility_name)() if facility_name else None
        wavelength_units = facility.get_wavelength_units(
        ) if facility else self.DEFAULT_WAVELENGTH_UNITS
        flux_constant = facility.get_flux_constant(
        ) if facility else self.DEFAULT_FLUX_CONSTANT

        spectral_axis = np.array(data['wavelength']) * wavelength_units
        flux = np.array(data['flux']) * flux_constant
        spectrum = Spectrum1D(flux=flux, spectral_axis=spectral_axis)

        return spectrum, Time(date_obs).to_datetime()
Exemplo n.º 7
0
    def process_data(self, data_product):
        """
        Routes a photometry processing call to a method specific to a file-format.

        :param data_product: Photometric DataProduct which will be processed into the specified format for database
        ingestion
        :type data_product: DataProduct

        :returns: python list of 2-tuples, each with a timestamp and corresponding data
        :rtype: list
        """

        mimetype = mimetypes.guess_type(data_product.data.path)[0]
        if mimetype in self.PLAINTEXT_MIMETYPES:
            photometry = self._process_photometry_from_plaintext(data_product)
            return [(datum.pop('timestamp'), datum) for datum in photometry]
        else:
            raise InvalidFileFormatException('Unsupported file type')
Exemplo n.º 8
0
    def process_data(self, data_product):
        """
        Routes a spectroscopy processing call to a method specific to a file-format, then serializes the returned data.
        :param data_product: Spectroscopic DataProduct which will be processed into the specified format for database
        ingestion
        :type data_product: DataProduct
        :returns: python list of 2-tuples, each with a timestamp and corresponding data
        :rtype: list
        """

        mimetype = mimetypes.guess_type(data_product.data.name)[0]
        if mimetype in self.FITS_MIMETYPES:
            spectrum, obs_date = self._process_spectrum_from_fits(data_product)
        elif mimetype in self.PLAINTEXT_MIMETYPES:
            spectrum, obs_date = self._process_spectrum_from_plaintext(
                data_product)
        else:
            raise InvalidFileFormatException('Unsupported file type')

        serialized_spectrum = SpectrumSerializer().serialize(spectrum)

        return [(obs_date, serialized_spectrum)]