Exemplo n.º 1
0
def generate_3d_phantom_data(model_number,
                             L,
                             H,
                             n,
                             m,
                             geometry,
                             from_volume_accuracy=256):
    N_size = from_volume_accuracy
    M_size = int(np.ceil(N_size / n * m))

    assert M_size <= N_size

    phantom_3Dt = TomoP3D.ModelTemporal(model_number, N_size,
                                        '../resources/phantoms_3D.dat')

    timesteps = phantom_3Dt.shape[0]

    # make an upscaled xray transform (we need accurate sinograms)
    reco_space_copy = odl.uniform_discr(min_pt=[-L, -L, -H],
                                        max_pt=[L, L, H],
                                        shape=[N_size, N_size, M_size])
    xray_transform = odl.tomo.RayTransform(reco_space_copy, geometry)

    p_lst = list()
    for t in range(timesteps):
        x = xray_transform.domain.element(phantom_3Dt[t, ..., :M_size])
        p = xray_transform(x).data
        p_lst.append(p)
        # plot_3d(phantom_3Dt[t, ..., :M_size])
        # plot_sino(p)

    return np.array(p_lst)
Exemplo n.º 2
0
    print("MAE" , mae(res1, res2))
    np.testing.assert_array_almost_equal(res1.as_array(), res2.as_array(), decimal=3)    
    
    ###################################################################
    ###################################################################
    ###################################################################
    ###################################################################
    print("Compare CIL_FGP_TV vs CCPiReg_FGP_TV no tolerance (3D)") 
        
    print ("Building 3D phantom using TomoPhantom software")
    model = 13 # select a model number from the library
    N_size = 64 # Define phantom dimensions using a scalar value (cubic phantom)
    path = os.path.dirname(tomophantom.__file__)
    path_library3D = os.path.join(path, "Phantom3DLibrary.dat")
    #This will generate a N_size x N_size x N_size phantom (3D)
    phantom_tm = TomoP3D.Model(model, N_size, path_library3D)    
    
    ig = ImageGeometry(N_size, N_size, N_size)
    data = ig.allocate()
    data.fill(phantom_tm)
        
    n1 = TestData.random_noise(data.as_array(), mode = 'gaussian', seed = 10)

    noisy_data = ig.allocate()
    noisy_data.fill(n1)    
    
    # Show Ground Truth and Noisy Data
    plt.figure(figsize=(10,5))
    plt.subplot(1,2,1)
    plt.imshow(data.as_array()[32])
    plt.title('Ground Truth')
Exemplo n.º 3
0
obj3D_2 = {
    'Obj': Objects3D.CUBOID,
    'C0': 1.00,
    'x0': 0.1,
    'y0': 0.2,
    'z0': 0.0,
    'a': 0.15,
    'b': 0.35,
    'c': 0.6,
    'phi1': -60.0
}

print("Building 3D object using TomoPhantom software")
myObjects = [obj3D_1, obj3D_2]  # dictionary of objects
Object3D = TomoP3D.Object(N3D_size, myObjects)

sliceSel = int(0.5 * N3D_size)
#plt.gray()
plt.figure()
plt.subplot(131)
plt.imshow(Object3D[sliceSel, :, :], vmin=0, vmax=1)
plt.title('3D Object, axial view')

plt.subplot(132)
plt.imshow(Object3D[:, sliceSel, :], vmin=0, vmax=1)
plt.title('3D Object, coronal view')

plt.subplot(133)
plt.imshow(Object3D[:, :, sliceSel], vmin=0, vmax=1)
plt.title('3D Object, sagittal view')
Exemplo n.º 4
0
import timeit
import os
import matplotlib.pyplot as plt
import numpy as np
import tomophantom
from tomophantom import TomoP3D
from tomophantom.supp.qualitymetrics import QualityTools

print("Building 3D phantom using TomoPhantom software")
tic = timeit.default_timer()
model = 13  # select a model number from the library
N_size = 256  # Define phantom dimensions using a scalar value (cubic phantom)
path = os.path.dirname(tomophantom.__file__)
path_library3D = os.path.join(path, "Phantom3DLibrary.dat")
#This will generate a N_size x N_size x N_size phantom (3D)
phantom_tm = TomoP3D.Model(model, N_size, path_library3D)
toc = timeit.default_timer()
Run_time = toc - tic
print("Phantom has been built in {} seconds".format(Run_time))

sliceSel = int(0.5 * N_size)
#plt.gray()
plt.figure()
plt.subplot(131)
plt.imshow(phantom_tm[sliceSel, :, :], vmin=0, vmax=1)
plt.title('3D Phantom, axial view')

plt.subplot(132)
plt.imshow(phantom_tm[:, sliceSel, :], vmin=0, vmax=1)
plt.title('3D Phantom, coronal view')
Exemplo n.º 5
0
N3D_size = 256

obj3D = {
    'Obj': Objects3D.GAUSSIAN,
    'C0': 1.00,
    'x0': -0.25,
    'y0': 0.1,
    'z0': 0.0,
    'a': 0.2,
    'b': 0.35,
    'c': 0.7,
    'phi1': 30.0,
    'phi2': 60.0,
    'phi3': -25.0
}

Object3D = TomoP3D.Object(N3D_size, [obj3D])

sliceSel = int(0.5 * N3D_size)
#plt.gray()
plt.figure(7)
plt.subplot(121)
plt.imshow(Object3D[sliceSel, :, :], vmin=0, vmax=1)
plt.title('3D Phantom, axial view')

plt.subplot(122)
plt.imshow(Object3D[:, sliceSel, :], vmin=0, vmax=1)
plt.title('3D Phantom, coronal view')
plt.show()
#%%
Exemplo n.º 6
0
def get_ImageData(num_model, geometry):
    '''Returns an ImageData relative to geometry with the model num_model from tomophantom
    
    :param num_model: model number
    :type num_model: int
    :param geometry: geometrical info that describes the phantom
    :type geometry: ImageGeometry
    Example usage:
    
    .. code-block:: python
      
      ndim = 2
      N=128
      angles = np.linspace(0, 360, 50, True, dtype=np.float32)
      offset = 0.4
      channels = 3
        
      if ndim == 2:
          ag = AcquisitionGeometry.create_Cone2D((offset,-100), (offset,100))
          ag.set_panel(N)
            
      else:
          ag = AcquisitionGeometry.create_Cone3D((offset,-100, 0), (offset,100,0))
          ag.set_panel((N,N-2))
        
      ag.set_channels(channels)
      ag.set_angles(angles, angle_unit=AcquisitionGeometry.DEGREE)
        
        
      ig = ag.get_ImageGeometry()
      num_model = 1
      phantom = TomoPhantom.get_ImageData(num_model=num_model, geometry=ig)

    
    '''
    ig = geometry.copy()
    ig.set_labels(DataOrder.TOMOPHANTOM_IG_LABELS)
    num_dims = len(ig.dimension_labels)
    
    if ImageGeometry.CHANNEL in ig.dimension_labels:
        if not is_model_temporal(num_model):
            raise ValueError('Selected model {} is not a temporal model, please change your selection'.format(num_model))
        if num_dims == 4:
            # 3D+time for tomophantom
            # output dimensions channel and then spatial, 
            # e.g. [ 'channel', 'vertical', 'horizontal_y', 'horizontal_x' ]
            num_model = num_model
            shape = tuple(ig.shape[1:])
            phantom_arr = TomoP3D.ModelTemporal(num_model, shape, path_library3D)
        elif num_dims == 3:
            # 2D+time for tomophantom
            # output dimensions channel and then spatial, 
            # e.g. [ 'channel', 'horizontal_y', 'horizontal_x' ]
            N = ig.shape[1]
            num_model = num_model
            phantom_arr = TomoP2D.ModelTemporal(num_model, ig.shape[1], path_library2D)
        else:
            raise ValueError('Wrong ImageGeometry')
        if ig.channels != phantom_arr.shape[0]:
            raise ValueError('The required model {} has {} channels. The ImageGeometry you passed has {}. Please update your ImageGeometry.'\
                .format(num_model, ig.channels, phantom_arr.shape[0]))
    else:
        if num_dims == 3:
            # 3D
            num_model = num_model
            phantom_arr = TomoP3D.Model(num_model, ig.shape, path_library3D)
        elif num_dims == 2:
            # 2D
            if ig.shape[0] != ig.shape[1]:
                raise ValueError('Can only handle square ImageData, got shape'.format(ig.shape))
            N = ig.shape[0]
            num_model = num_model
            phantom_arr = TomoP2D.Model(num_model, N, path_library2D)
        else:
            raise ValueError('Wrong ImageGeometry')

    
    im_data = ImageData(phantom_arr, geometry=ig, suppress_warning=True)
    im_data.reorder(list(geometry.dimension_labels))
    return im_data
Exemplo n.º 7
0
        'Obj': Objects3D.ELLIPSOID,
        'C0': 1.00,
        'x0': -0.5,
        'y0': -0.5,
        'z0': z_coord_steps[i],
        'a': 0.18,
        'b': 0.07,
        'c': 0.13,
        'phi1': 0.0,
        'phi2': 0.0,
        'phi3': 0.0
    }

    myObjects = [obj3D1, obj3D2, obj3D3, obj3D4]  # dictionary of objects

    object3D = TomoP3D.Object(ObjSize, myObjects)
    """
    sliceSel = 200
    #plt.gray()
    plt.figure() 
    plt.subplot(121)
    plt.imshow(Object3D[sliceSel,:,:],vmin=0, vmax=1)
    plt.title('3D Phantom, axial view')
    
    plt.subplot(122)
    plt.imshow(Object3D[:,sliceSel,:],vmin=0, vmax=1)
    plt.title('3D Phantom, coronal view')
    plt.show()
    """
    # obtain projections using ASTRA-toolbox
    Atools = AstraTools3D(DetRows, DetColumns, angles_rad,
Exemplo n.º 8
0
    def test_compare_regularisation_toolkit_tomophantom(self):

        print("Compare CIL_FGP_TV vs CCPiReg_FGP_TV no tolerance (3D)")

        print("Building 3D phantom using TomoPhantom software")
        model = 13  # select a model number from the library
        N_size = 64  # Define phantom dimensions using a scalar value (cubic phantom)
        path = os.path.dirname(tomophantom.__file__)
        path_library3D = os.path.join(path, "Phantom3DLibrary.dat")
        #This will generate a N_size x N_size x N_size phantom (3D)
        phantom_tm = TomoP3D.Model(model, N_size, path_library3D)

        ig = ImageGeometry(N_size, N_size, N_size)
        data = ig.allocate()
        data.fill(phantom_tm)

        noisy_data = noise.gaussian(data, seed=10)

        alpha = 0.1
        iters = 1000

        print("Use tau as an array of ones")
        # CIL_TotalVariation no tolerance
        g_CIL = alpha * TotalVariation(iters, tolerance=None, info=True)
        res1 = g_CIL.proximal(noisy_data, ig.allocate(1.))
        t0 = timer()
        res1 = g_CIL.proximal(noisy_data, ig.allocate(1.))
        t1 = timer()
        print(t1 - t0)

        # CCPi Regularisation toolkit high tolerance
        r_alpha = alpha
        r_iterations = iters
        r_tolerance = 1e-9
        r_iso = 0
        r_nonneg = 0
        r_printing = 0
        g_CCPI_reg_toolkit = CCPiReg_FGP_TV(r_alpha, r_iterations, r_tolerance,
                                            r_iso, r_nonneg, r_printing, 'cpu')

        t2 = timer()
        res2 = g_CCPI_reg_toolkit.proximal(noisy_data, 1.)
        t3 = timer()
        print(t3 - t2)
        np.testing.assert_array_almost_equal(res1.as_array(),
                                             res2.as_array(),
                                             decimal=3)

        # CIL_FGP_TV no tolerance
        #g_CIL = FGP_TV(ig, alpha, iters, tolerance=None, info=True)
        g_CIL.tolerance = None
        t0 = timer()
        res1 = g_CIL.proximal(noisy_data, 1.)
        t1 = timer()
        print(t1 - t0)

        ###################################################################
        ###################################################################
        ###################################################################
        ###################################################################

        data = dataexample.PEPPERS.get(size=(256, 256))
        ig = data.geometry
        ag = ig

        noisy_data = noise.gaussian(data, seed=10)

        alpha = 0.1
        iters = 1000

        # CIL_FGP_TV no tolerance
        g_CIL = alpha * TotalVariation(iters, tolerance=None)
        t0 = timer()
        res1 = g_CIL.proximal(noisy_data, 1.)
        t1 = timer()
        print(t1 - t0)

        # CCPi Regularisation toolkit high tolerance
        r_alpha = alpha
        r_iterations = iters
        r_tolerance = 1e-8
        r_iso = 0
        r_nonneg = 0
        r_printing = 0
        g_CCPI_reg_toolkit = CCPiReg_FGP_TV(r_alpha, r_iterations, r_tolerance,
                                            r_iso, r_nonneg, r_printing, 'cpu')

        t2 = timer()
        res2 = g_CCPI_reg_toolkit.proximal(noisy_data, 1.)
        t3 = timer()
        print(t3 - t2)
print("append", end1 - start)
while (nop.append_for(np.random.uniform(low=-1, high=1, size=3)) < M):
    pass
end2 = time.time()
print("append_for", end2 - end1)

#%%
gaussians = [{
    'Obj': tp3.Objects3D.PARABOLOID,
    'C0': 1.,
    'x0': float(nop.apoints[loc][0]),
    'y0': float(nop.apoints[loc][1]),
    'z0': float(nop.apoints[loc][2]),
    'a': .2,
    'b': .1,
    'c': .15,
    'phi1': np.random.uniform(low=0, high=360),
    'phi2': np.random.uniform(low=0, high=360),
    'phi3': np.random.uniform(low=0, high=360)
} for loc in range(len(nop.apoints))]

vol = tp3.Object(128, gaussians)
plt.imshow(vol[0])
plt.show()

writer = vtk.vtkMetaImageWriter()
conv = Converter.numpy2vtkImporter(vol)
conv.Update()
writer.SetInputData(conv.GetOutput())
writer.SetFileName("dvc_phantom0.mha")
writer.Write()
Exemplo n.º 10
0
# > **NOTE**: NVIDIA GPU is must for 3D reconstruction to work. Since, all  ASTRA 3D reconstruction algorithms are implemented using CUDA.

# In[2]:

astra.test()

# ## Creating a __3D Phantom__ \& visualizing it.

# In[3]:

model = 13  ##Shepp-logan Phantom in the "Phantom3DLibrary.dat" file
path_library3D = "Phantom3DLibrary.dat"

N_size = 400

phantom = TomoP3D.Model(model, N_size, path_library3D)

slice_ = int(0.5 * N_size)

plt.figure(figsize=[20, 30])
plt.subplot(131)
plt.imshow(phantom[slice_, :, :], vmin=0, vmax=1, interpolation="gaussian")
plt.title('Axial view')

plt.subplot(132)
plt.imshow(phantom[:, slice_, :], vmin=0, vmax=1)
plt.title('Coronal view')

plt.show()

# ## Analytical Projection Data at different angles
Exemplo n.º 11
0
import os
from tomophantom import TomoP3D
import matplotlib.pyplot as plt
import tomophantom

print("Building 3D phantom using TomoPhantom software")
tic = timeit.default_timer()
model = 2  # select a model number from the library
# Define phantom dimensions using a scalar (cubic) or a tuple [N1, N2, N3]
N_size = 256  # or as a tuple of a custom size (256,256,256)
# one can specify an exact path to the parameters file
# path_library2D = '../../../PhantomLibrary/models/Phantom3DLibrary.dat'
path = os.path.dirname(tomophantom.__file__)
path_library3D = os.path.join(path, "Phantom3DLibrary.dat")
#This will generate a N_size x N_size x N_size phantom (3D) or non-cubic phantom
phantom_tm = TomoP3D.Model(model, N_size, path_library3D)
toc = timeit.default_timer()
Run_time = toc - tic
print("Phantom has been built in {} seconds".format(Run_time))
sliceSel = int(0.5 * N_size)
#plt.gray()
plt.figure(1)
plt.subplot(131)
plt.imshow(phantom_tm[sliceSel, :, :], vmin=0, vmax=1)
plt.title('3D Phantom, axial view')

plt.subplot(132)
plt.imshow(phantom_tm[:, sliceSel, :], vmin=0, vmax=1)
plt.title('3D Phantom, coronal view')

plt.subplot(133)
Exemplo n.º 12
0
    def process_frames(self, data):
        # print "The input data shape is", data[0].shape
        if (self.out_shape_sino[1] == 1):
            # create a 2D phantom
            model = TomoP2D.Model(self.model, self.dims, self.path_library2D)
            # create a 2D sinogram
            projdata_clean = TomoP2D.ModelSino(self.model, self.dims,
                                               self.detectors_num, self.angles,
                                               self.path_library2D)
            # Adding artifacts and noise
            # forming dictionaries with artifact types
            _noise_ = {
                'type': self.parameters['artifacts_noise_type'],
                'sigma': self.parameters['artifacts_noise_sigma'],
                'seed': 0,
                'prelog': False
            }

            # misalignment dictionary
            _sinoshifts_ = {}
            if self.parameters[
                    'artifacts_misalignment_maxamplitude'] is not None:
                _sinoshifts_ = {
                    'maxamplitude':
                    self.parameters['artifacts_misalignment_maxamplitude']
                }

            # adding zingers and stripes
            _zingers_ = {}
            if self.parameters['artifacts_zingers_percentage'] is not None:
                _zingers_ = {
                    'percentage':
                    self.parameters['artifacts_zingers_percentage'],
                    'modulus': 10
                }

            _stripes_ = {}
            if self.parameters['artifacts_stripes_percentage'] is not None:
                _stripes_ = {
                    'percentage':
                    self.parameters['artifacts_stripes_percentage'],
                    'maxthickness':
                    self.parameters['artifacts_stripes_maxthickness'],
                    'intensity':
                    self.parameters['artifacts_stripes_intensity'],
                    'type':
                    self.parameters['artifacts_stripes_type'],
                    'variability':
                    self.parameters['artifacts_stripes_variability']
                }

            if self.parameters[
                    'artifacts_misalignment_maxamplitude'] is not None:
                [projdata,
                 shifts] = _Artifacts_(projdata_clean, _noise_, _zingers_,
                                       _stripes_, _sinoshifts_)
            else:
                projdata = _Artifacts_(projdata_clean, _noise_, _zingers_,
                                       _stripes_, _sinoshifts_)
        else:
            # create a 3D phantom
            frame_idx = self.out_pData[0].get_current_frame_idx()[0]
            model = TomoP3D.ModelSub(self.model, self.dims,
                                     (frame_idx, frame_idx + 1),
                                     self.path_library3D)
            model = np.swapaxes(model, 0, 1)
            model = np.flipud(model[:, 0, :])
            # create a 3D projection data
            projdata_clean = TomoP3D.ModelSinoSub(
                self.model, self.dims, self.detectors_num, self.dims,
                (frame_idx, frame_idx + 1), self.angles, self.path_library3D)
            # Adding artifacts and noise
            # forming dictionaries with artifact types
            _noise_ = {
                'type': self.parameters['artifacts_noise_type'],
                'sigma': self.parameters['artifacts_noise_sigma'],
                'seed': 0,
                'prelog': False
            }

            # misalignment dictionary
            _sinoshifts_ = {}
            if self.parameters[
                    'artifacts_misalignment_maxamplitude'] is not None:
                _sinoshifts_ = {
                    'maxamplitude':
                    self.parameters['artifacts_misalignment_maxamplitude']
                }

            # adding zingers and stripes
            _zingers_ = {}
            if self.parameters['artifacts_zingers_percentage'] is not None:
                _zingers_ = {
                    'percentage':
                    self.parameters['artifacts_zingers_percentage'],
                    'modulus': 10
                }

            _stripes_ = {}
            if self.parameters['artifacts_stripes_percentage'] is not None:
                _stripes_ = {
                    'percentage':
                    self.parameters['artifacts_stripes_percentage'],
                    'maxthickness':
                    self.parameters['artifacts_stripes_maxthickness'],
                    'intensity':
                    self.parameters['artifacts_stripes_intensity'],
                    'type':
                    self.parameters['artifacts_stripes_type'],
                    'variability':
                    self.parameters['artifacts_stripes_variability']
                }

            if self.parameters[
                    'artifacts_misalignment_maxamplitude'] is not None:
                [projdata,
                 shifts] = _Artifacts_(projdata_clean, _noise_, _zingers_,
                                       _stripes_, _sinoshifts_)
            else:
                projdata = _Artifacts_(projdata_clean, _noise_, _zingers_,
                                       _stripes_, _sinoshifts_)
            projdata = np.swapaxes(projdata, 0, 1)
        return [projdata, model]
Exemplo n.º 13
0
import matplotlib.pyplot as plt
import numpy as np
import tomophantom
from tomophantom import TomoP3D

print("Building 4D phantom using TomoPhantom software")
tic = timeit.default_timer()
model = 100  # note that the selected model is temporal (3D + time)
# Define phantom dimensions using a scalar (cubic) or a tuple [N1, N2, N3]
N_size = 256  # or as a tuple of a custom size (256,256,256)
# one can specify an exact path to the parameters file
# path_library2D = '../../../PhantomLibrary/models/Phantom3DLibrary.dat'
path = os.path.dirname(tomophantom.__file__)
path_library3D = os.path.join(path, "Phantom3DLibrary.dat")
#This will generate a Time x N_size x N_size x N_size phantom (4D)
phantom_tm = TomoP3D.ModelTemporal(model, N_size, path_library3D)
toc = timeit.default_timer()
Run_time = toc - tic
print("Phantom has been built in {} seconds".format(Run_time))

for i in range(0, np.size(phantom_tm, 0)):
    sliceSel = int(0.5 * N_size)
    #plt.gray()
    plt.figure(1)
    plt.subplot(131)
    plt.imshow(phantom_tm[i, sliceSel, :, :], vmin=0, vmax=1)
    plt.title('3D Phantom, axial view')

    plt.subplot(132)
    plt.imshow(phantom_tm[i, :, sliceSel, :], vmin=0, vmax=1)
    plt.title('3D Phantom, coronal view')
Exemplo n.º 14
0
phi_max = 180.0
phi1 = random.uniform(phi_min, phi_max)

el3 = {
    'Obj': Objects3D.CUBOID,
    'C0': C_0,
    'x0': x0_rand,
    'y0': y0_rand,
    'z0': z0_rand,
    'a': a_el3,
    'b': b_el3,
    'c': c_el3,
    'phi1': phi1
}

GROUND_TRUTH = TomoP3D.Object(N_size, [el1, el2, el3])

GROUND_TRUTH[GROUND_TRUTH > 0.7] = 0.43336788
GROUND_TRUTH[(GROUND_TRUTH > 0.0) & (GROUND_TRUTH < 0.29999998)] = 0.43336788

sliceSel = (int)(N_size / 2)
plt.figure()
plt.subplot(131)
plt.imshow(GROUND_TRUTH[sliceSel, :, :])
plt.title('Ideal Phantom1')
plt.subplot(132)
plt.imshow(GROUND_TRUTH[:, sliceSel, :])
plt.title('Ideal Phantom2')
plt.subplot(133)
plt.imshow(GROUND_TRUTH[:, :, sliceSel])
plt.title('Ideal Phantom3')
Exemplo n.º 15
0
def foam3D(x0min, x0max, y0min, y0max, z0min, z0max, c0min, c0max, ab_min,
           ab_max, N_size, tot_objects, object_type):
    import numpy as np
    import math
    import random
    #3D functions
    from tomophantom import TomoP3D
    from tomophantom.TomoP3D import Objects3D
    attemptsNo = 2000
    # objects accepted: 'ellipsoid', 'paraboloid', 'gaussian', 'mix'
    mix_objects = False
    if (object_type == 'ellipsoid'):
        object_type = Objects3D.ELLIPSOID
    elif (object_type == 'paraboloid'):
        object_type = Objects3D.PARABOLOID
    elif (object_type == 'gaussian'):
        object_type = Objects3D.GAUSSIAN
    elif (object_type == 'mix'):
        mix_objects = True
    else:
        raise TypeError(
            'object_type can be only ellipse, parabola, gaussian or mix')
    X0 = np.float32(np.zeros(tot_objects))
    Y0 = np.float32(np.zeros(tot_objects))
    Z0 = np.float32(np.zeros(tot_objects))
    AB = np.float32(np.zeros(tot_objects))
    C0_var = np.float32(np.zeros(tot_objects))
    for i in range(0, tot_objects):
        (x0, y0, z0, c0, ab) = rand_init3D(x0min, x0max, y0min, y0max, z0min,
                                           z0max, c0min, c0max, ab_min, ab_max)
        if (i > 0):
            breakj = False
            for j in range(0, attemptsNo):
                if breakj:
                    (x0, y0, z0, c0,
                     ab) = rand_init3D(x0min, x0max, y0min, y0max, z0min,
                                       z0max, c0min, c0max, ab_min, ab_max)
                    breakj = False
                else:
                    for l in range(
                            0, i
                    ):  # checks consistency with previously created objects
                        dist = math.sqrt((X0[l] - x0)**2 + (Y0[l] - y0)**2 +
                                         (Z0[l] - z0)**2)
                        if (dist < (ab + AB[l])) or ((abs(x0) + ab)**2 +
                                                     (abs(y0) + ab)**2 +
                                                     (abs(z0) + ab)**2 > 1.0):
                            breakj = True
                            break
                    if (breakj == False
                        ):  # re-initialise if doesn't fit the criteria
                        X0[i] = x0
                        Y0[i] = y0
                        Z0[i] = z0
                        AB[i] = ab
                        C0_var[i] = c0
                        break
        if (AB[i] == 0.0):
            X0[i] = x0
            Y0[i] = y0
            AB[i] = 0.0001
            C0_var[i] = c0

    myObjects = []  # dictionary of objects
    for obj in range(0, len(X0)):
        if (mix_objects == True):
            rand_obj = random.randint(0, 2)
            if (rand_obj == 0):
                object_type = Objects3D.ELLIPSOID
            if (rand_obj == 1):
                object_type = Objects3D.PARABOLOID
            if (rand_obj == 2):
                object_type = Objects3D.GAUSSIAN
        curr_obj = {
            'Obj': object_type,
            'C0': C0_var[obj],
            'x0': X0[obj],
            'y0': Y0[obj],
            'z0': Z0[obj],
            'a': AB[obj],
            'b': AB[obj],
            'c': AB[obj],
            'phi1': 0.0
        }
        myObjects.append(curr_obj)
    Object3D = TomoP3D.Object(N_size, myObjects)
    return (Object3D, myObjects)