Exemplo n.º 1
0
def reconstruct(sname, rot_center, ovlpfind, s_start, s_end):
    fname = dfolder + sname + '.h5'
    print(fname)
    start = s_start
    end = s_end
    chunks = 24
    num_sino = (end - start) // chunks
    for m in range(chunks):
        sino_start = start + num_sino * m
        sino_end = start + num_sino * (m + 1)
        start_read_time = time.time()
        proj, flat, dark, thetat = dxchange.read_aps_2bm(fname,
                                                         sino=(sino_start,
                                                               sino_end))
        print('   done read in %0.1f min' %
              ((time.time() - start_read_time) / 60))
        dark = proj[9001:9002]
        flat = proj[0:1]
        proj = proj[1:9000]
        theta = tomopy.angles(proj.shape[0], 0., 360.)
        proj = tomopy.sino_360_to_180(proj, overlap=ovlpfind, rotation='right')
        proj = tomopy.remove_outlier(proj, dif=0.4)
        proj = tomopy.normalize_bg(proj, air=10)
        proj = tomopy.minus_log(proj)
        center = rot_center
        start_ring_time = time.time()
        proj = tomopy.remove_stripe_fw(proj, wname='sym5', sigma=4, pad=False)
        proj = tomopy.remove_stripe_sf(proj, size=3)
        print('   done pre-process in %0.1f min' %
              ((time.time() - start_ring_time) / 60))
        start_phase_time = time.time()
        proj = tomopy.retrieve_phase(proj,
                                     pixel_size=detector_pixel_size_x,
                                     dist=sample_detector_distance,
                                     energy=energy,
                                     alpha=alpha,
                                     pad=True,
                                     ncore=None,
                                     nchunk=None)
        print('   done phase retrieval in %0.1f min' %
              ((time.time() - start_phase_time) / 60))
        start_recon_time = time.time()
        rec = tomopy.recon(proj,
                           theta,
                           center=center,
                           algorithm='gridrec',
                           filter_name='ramalk')
        tomopy.circ_mask(rec, axis=0, ratio=0.95)
        print("Reconstructed", rec.shape)
        dxchange.write_tiff_stack(rec,
                                  fname=dfolder + '/' + sname + '/' + sname,
                                  overwrite=True,
                                  start=sino_start)
        print('   Chunk reconstruction done in %0.1f min' %
              ((time.time() - start_recon_time) / 60))
    print("Done!")
Exemplo n.º 2
0
def phase_retrieval(data, params):
    
    log.info("  *** retrieve phase")
    if (params.retrieve_phase_method == 'paganin'):
        log.info('  *** *** paganin')
        log.info("  *** *** pixel size: %s" % params.pixel_size)
        log.info("  *** *** sample detector distance: %s" % params.propagation_distance)
        log.info("  *** *** energy: %s" % params.energy)
        log.info("  *** *** alpha: %s" % params.retrieve_phase_alpha)
        data = tomopy.retrieve_phase(data,pixel_size=(params.pixel_size*1e-4),dist=(params.propagation_distance/10.0),energy=params.energy, alpha=params.retrieve_phase_alpha,pad=True)
    elif(params.retrieve_phase_method == 'none'):
        log.warning('  *** *** OFF')

    return data
Exemplo n.º 3
0
def prepare_slice(grid, shift_grid, grid_lines, slice_in_tile, ds_level=0, method='max', blend_options=None, pad=None,
                  rot_center=None, assert_width=None, sino_blur=None, color_correction=False, normalize=True,
                  mode='180', phase_retrieval=None, **kwargs):
    sinos = [None] * grid.shape[1]
    for col in range(grid.shape[1]):
        try:
            sinos[col] = load_sino(grid[grid_lines[col], col], slice_in_tile[col], normalize=normalize)
        except:
            pass
    t = time.time()
    row_sino = register_recon(grid, grid_lines, shift_grid, sinos, method=method, blend_options=blend_options,
                              color_correction=color_correction, assert_width=assert_width)
    if not pad is None:
        row_sino, rot_center = pad_sino(row_sino, pad, rot_center)

    print('stitch:           ' + str(time.time() - t))
    print('final size:       ' + str(row_sino.shape))

    t = time.time()
    row_sino = tomopy.downsample(row_sino, level=ds_level)
    print('downsample:           ' + str(time.time() - t))
    print('new shape :           ' + str(row_sino.shape))

    # t = time.time()
    # row_sino = tomopy.remove_stripe_fw(row_sino, 2)
    # print('strip removal:           ' + str(time.time() - t))
    # Minus Log
    row_sino = tomosaic.util.preprocess(row_sino)
    if sino_blur is not None:
        row_sino[:, 0, :] = gaussian_filter(row_sino[:, 0, :], sino_blur)
    if mode == '360':
        overlap = 2 * (row_sino.shape[2] - rot_center)
        row_sino = tomosaic.morph.sino_360_to_180(row_sino, overlap=overlap, rotation='right')
    if phase_retrieval:
        row_sino = tomopy.retrieve_phase(row_sino, kwargs['pixel_size'], kwargs['dist'], kwargs['energy'],
                                     kwargs['alpha'])
    return row_sino, rot_center
Exemplo n.º 4
0
def reconstruct(sname, rot_center, ovlpfind, s_start, s_end):
    fname = dfolder + sname + '.h5'
    print (fname)
    start = s_start  
    end =   s_end
    chunks = 24 
    num_sino = (end - start) // chunks
    for m in range(chunks):
        sino_start = start + num_sino * m
        sino_end = start + num_sino * (m + 1)
        start_read_time = time.time()
        proj, flat, dark, thetat = dxchange.read_aps_2bm(fname, sino=(sino_start, sino_end))
        print('   done read in %0.1f min' % ((time.time() - start_read_time)/60))
        dark = proj[9001:9002]
        flat = proj[0:1]
        proj = proj[1:9000]
        theta = tomopy.angles(proj.shape[0], 0., 360.)
        proj = tomopy.sino_360_to_180(proj, overlap=ovlpfind, rotation='right')
        proj = tomopy.remove_outlier(proj, dif=0.4)
        proj = tomopy.normalize_bg(proj, air=10)
        proj = tomopy.minus_log(proj)
        center = rot_center
        start_ring_time = time.time()
        proj = tomopy.remove_stripe_fw(proj, wname='sym5', sigma=4, pad=False)
        proj = tomopy.remove_stripe_sf(proj, size=3)
        print('   done pre-process in %0.1f min' % ((time.time() - start_ring_time)/60))
        start_phase_time = time.time()
        proj = tomopy.retrieve_phase(proj, pixel_size=detector_pixel_size_x, dist=sample_detector_distance, energy=energy, alpha=alpha, pad=True, ncore=None, nchunk=None)
        print('   done phase retrieval in %0.1f min' % ((time.time() - start_phase_time)/60))
        start_recon_time = time.time()
        rec = tomopy.recon(proj, theta, center=center, algorithm='gridrec', filter_name='ramalk')
        tomopy.circ_mask(rec, axis=0, ratio=0.95)
        print ("Reconstructed", rec.shape)
        dxchange.write_tiff_stack(rec, fname = dfolder + '/' + sname + '/' + sname, overwrite=True, start=sino_start)
        print('   Chunk reconstruction done in %0.1f min' % ((time.time() - start_recon_time)/60))
    print ("Done!")
def reconstruct(filename,inputPath="", outputPath="", COR=COR, doOutliers=doOutliers, outlier_diff=outlier_diff, outlier_size=outlier_size, doFWringremoval=doFWringremoval, ringSigma=ringSigma,ringLevel=ringLevel, ringWavelet=ringWavelet,pad_sino=pad_sino,  doPhaseRetrieval=doPhaseRetrieval, propagation_dist=propagation_dist, kev=kev,alphaReg=alphaReg, butterworthpars=butterworthpars, doPolarRing=doPolarRing,Rarc=Rarc, Rmaxwidth=Rmaxwidth, Rtmax=Rtmax, Rthr=Rthr, Rtmin=Rtmin, useAutoCOR=useAutoCOR, use360to180=use360to180, num_substacks=num_substacks,recon_slice=recon_slice):

	# Convert filename to list type if only one file name is given
	if type(filename) != list:
		filename=[filename]

	# If useAutoCor == true, a list of COR will be automatically calculated for all files
	# If a list of COR is given, only entries with boolean False will use automatic COR calculation
	if useAutoCOR==True or (len(COR) != len(filename)):
		logging.info('using auto COR for all input files')
		COR = [False]*len(filename)

	for x in range(len(filename)):
		logging.info('opening data set, checking metadata')

		fdata, gdata = read_als_832h5_metadata(inputPath[x]+filename[x]+'.h5')
		pxsize = float(gdata['pxsize'])/10.0 # convert from metadata (mm) to this script (cm)
		numslices = int(gdata['nslices'])

		# recon_slice == True, only center slice will be reconstructed
		# if integer is given, a specific 		
		if recon_slice != False:
			if (type(recon_slice) == int) and (recon_slice <= numslices):
				sinorange [recon_slice-1, recon_slice]
			else:
				sinorange = [numslices//2-1, numslices//2]
		else:
			sinorange = [0, numslices]

		# Calculate number of substacks (chunks)
		substacks = num_substacks #(sinorange[1]-sinorange[0]-1)//num_sino_per_substack+1

		if (sinorange[1]-sinorange[0]) >= substacks:
			num_sino_per_substack = (sinorange[1]-sinorange[0])//num_substacks
		else:
			num_sino_per_substack = 1

	
		firstcor, lastcor = 0, int(gdata['nangles'])-1
		projs, flat, dark, floc = dxchange.read_als_832h5(inputPath[x]+filename[x]+'.h5', ind_tomo=(firstcor, lastcor))
		projs = tomopy.normalize_nf(projs, flat, dark, floc)
		autocor = tomopy.find_center_pc(projs[0], projs[1], tol=0.25)


		if (type(COR[x]) == bool) or (COR[x]<0) or (COR[x]=='auto'):
			firstcor, lastcor = 0, int(gdata['nangles'])-1
			projs, flat, dark, floc = dxchange.read_als_832h5(inputPath[x]+filename[x]+'.h5', ind_tomo=(firstcor, lastcor))
			projs = tomopy.normalize_nf(projs, flat, dark, floc)
			cor = tomopy.find_center_pc(projs[0], projs[1], tol=0.25)
		else:
			cor = COR[x]

		logging.info('Dataset %s, has %d total slices, reconstructing slices %d through %d in %d substack(s), using COR: %f',filename[x], int(gdata['nslices']), sinorange[0], sinorange[1]-1, substacks, cor)
		
		for y in range(0, substacks):
			logging.info('Starting dataset %s (%d of %d), substack %d of %d',filename[x], x+1, len(filename), y+1, substacks)

			logging.info('Reading sinograms...')
			projs, flat, dark, floc = dxchange.read_als_832h5(inputPath[x]+filename[x]+'.h5', sino=(sinorange[0]+y*num_sino_per_substack, sinorange[0]+(y+1)*num_sino_per_substack, 1)) 

			logging.info('Doing remove outliers, norm (nearest flats), and -log...')
			if doOutliers:
				projs = tomopy.remove_outlier(projs, outlier_diff, size=outlier_size, axis=0)
				flat = tomopy.remove_outlier(flat, outlier_diff, size=outlier_size, axis=0)
			tomo = tomopy.normalize_nf(projs, flat, dark, floc)
			tomo = tomopy.minus_log(tomo, out=tomo) # in place logarithm 
		
			# Use padding to remove halo in reconstruction if present
			if pad_sino:
				npad = int(np.ceil(tomo.shape[2] * np.sqrt(2)) - tomo.shape[2])//2
				tomo = tomopy.pad(tomo, 2, npad=npad, mode='edge')
				cor_rec = cor + npad # account for padding
			else:
				cor_rec = cor
		
			if doFWringremoval:
				logging.info('Doing ring (Fourier-wavelet) function...')
				tomo = tomopy.remove_stripe_fw(tomo, sigma=ringSigma, level=ringLevel, pad=True, wname=ringWavelet)		

			if doPhaseRetrieval:
				logging.info('Doing Phase retrieval...')
				#tomo = tomopy.retrieve_phase(tomo, pixel_size=pxsize, dist=propagation_dist, energy=kev, alpha=alphaReg, pad=True)	
				tomo = tomopy.retrieve_phase(tomo, pixel_size=pxsize, dist=propagation_dist, energy=kev, alpha=alphaReg, pad=True)		

			logging.info('Doing recon (gridrec) function and scaling/masking, with cor %f...',cor_rec)
			rec = tomopy.recon(tomo, tomopy.angles(tomo.shape[0], 270, 90), center=cor_rec, algorithm='gridrec', filter_name='butterworth', filter_par=butterworthpars)
			#rec = tomopy.recon(tomo, tomopy.angles(tomo.shape[0], 180+angularrange/2, 180-angularrange/2), center=cor_rec, algorithm='gridrec', filter_name='butterworth', filter_par=butterworthpars)		
			rec /= pxsize  # intensity values in cm^-1
			if pad_sino:
				rec = tomopy.circ_mask(rec[:, npad:-npad, npad:-npad], 0)
			else:
				rec = tomopy.circ_mask(rec, 0, ratio=1.0, val=0.0)
			
			if doPolarRing:
				logging.info('Doing ring (polar mean filter) function...')
				rec = tomopy.remove_ring(rec, theta_min=Rarc, rwidth=Rmaxwidth, thresh_max=Rtmax, thresh=Rthr, thresh_min=Rtmin)

			logging.info('Writing reconstruction slices to %s', filename[x])
			#dxchange.write_tiff_stack(rec, fname=outputPath+'alpha'+str(alphaReg)+'/rec'+filename[x]+'/rec'+filename[x], start=sinorange[0]+y*num_sino_per_substack)
			dxchange.write_tiff_stack(rec, fname=outputPath + 'recon_'+filename[x]+'/recon_'+filename[x], start=sinorange[0]+y*num_sino_per_substack)
		logging.info('Reconstruction Complete: '+ filename[x])
Exemplo n.º 6
0
def paganin(input, pixel=1e-4, distance=50, energy=25, alpha=1e-4):
    assert input.ndim == 2
    input = input.reshape([1, input.shape[0], input.shape[1]]).astype('float32')
    res = tomopy.retrieve_phase(input, pixel_size=pixel, dist=distance, energy=energy, alpha=alpha)
    res = np.squeeze(res)
    return res
Exemplo n.º 7
0
def recon(
        filename,
        inputPath='./',
        outputPath=None,
        outputFilename=None,
        doOutliers1D=False,  # outlier removal in 1d (along sinogram columns)
        outlier_diff1D=750,  # difference between good data and outlier data (outlier removal)
        outlier_size1D=3,  # radius around each pixel to look for outliers (outlier removal)
        doOutliers2D=False,  # outlier removal, standard 2d on each projection
        outlier_diff2D=750,  # difference between good data and outlier data (outlier removal)
        outlier_size2D=3,  # radius around each pixel to look for outliers (outlier removal)
        doFWringremoval=True,  # Fourier-wavelet ring removal
        doTIringremoval=False,  # Titarenko ring removal
        doSFringremoval=False,  # Smoothing filter ring removal
        ringSigma=3,  # damping parameter in Fourier space (Fourier-wavelet ring removal)
        ringLevel=8,  # number of wavelet transform levels (Fourier-wavelet ring removal)
        ringWavelet='db5',  # type of wavelet filter (Fourier-wavelet ring removal)
        ringNBlock=0,  # used in Titarenko ring removal (doTIringremoval)
        ringAlpha=1.5,  # used in Titarenko ring removal (doTIringremoval)
        ringSize=5,  # used in smoothing filter ring removal (doSFringremoval)
        doPhaseRetrieval=False,  # phase retrieval
        alphaReg=0.0002,  # smaller = smoother (used for phase retrieval)
        propagation_dist=75,  # sample-to-scintillator distance (phase retrieval)
        kev=24,  # energy level (phase retrieval)
        butterworth_cutoff=0.25,  #0.1 would be very smooth, 0.4 would be very grainy (reconstruction)
        butterworth_order=2,  # for reconstruction
        doPolarRing=False,  # ring removal
        Rarc=30,  # min angle needed to be considered ring artifact (ring removal)
        Rmaxwidth=100,  # max width of rings to be filtered (ring removal)
        Rtmax=3000.0,  # max portion of image to filter (ring removal)
        Rthr=3000.0,  # max value of offset due to ring artifact (ring removal)
        Rtmin=-3000.0,  # min value of image to filter (ring removal)
        cor=None,  # center of rotation (float). If not used then cor will be detected automatically
        corFunction='pc',  # center of rotation function to use - can be 'pc', 'vo', or 'nm'
        voInd=None,  # index of slice to use for cor search (vo)
        voSMin=-40,  # min radius for searching in sinogram (vo)
        voSMax=40,  # max radius for searching in sinogram (vo)
        voSRad=10,  # search radius (vo)
        voStep=0.5,  # search step (vo)
        voRatio=2.0,  # ratio of field-of-view and object size (vo)
        voDrop=20,  # drop lines around vertical center of mask (vo)
        nmInd=None,  # index of slice to use for cor search (nm)
        nmInit=None,  # initial guess for center (nm)
        nmTol=0.5,  # desired sub-pixel accuracy (nm)
        nmMask=True,  # if True, limits analysis to circular region (nm)
        nmRatio=1.0,  # ratio of radius of circular mask to edge of reconstructed image (nm)
        nmSinoOrder=False,  # if True, analyzes in sinogram space. If False, analyzes in radiograph space
        use360to180=False,  # use 360 to 180 conversion
        doBilateralFilter=False,  # if True, uses bilateral filter on image just before write step # NOTE: image will be converted to 8bit if it is not already
        bilateral_srad=3,  # spatial radius for bilateral filter (image will be converted to 8bit if not already)
        bilateral_rrad=30,  # range radius for bilateral filter (image will be converted to 8bit if not already)
        castTo8bit=False,  # convert data to 8bit before writing
        cast8bit_min=-10,  # min value if converting to 8bit
        cast8bit_max=30,  # max value if converting to 8bit
        useNormalize_nf=False,  # normalize based on background intensity (nf)
        chunk_proj=100,  # chunk size in projection direction
        chunk_sino=100,  # chunk size in sinogram direction
        npad=None,  # amount to pad data before reconstruction
        projused=None,  #should be slicing in projection dimension (start,end,step)
        sinoused=None,  #should be sliceing in sinogram dimension (start,end,step). If first value is negative, it takes the number of slices from the second value in the middle of the stack.
        correcttilt=0,  #tilt dataset
        tiltcenter_slice=None,  # tilt center (x direction)
        tiltcenter_det=None,  # tilt center (y direction)
        angle_offset=0,  #this is the angle offset from our default (270) so that tomopy yields output in the same orientation as previous software (Octopus)
        anglelist=None,  #if not set, will assume evenly spaced angles which will be calculated by the angular range and number of angles found in the file. if set to -1, will read individual angles from each image. alternatively, a list of angles can be passed.
        doBeamHardening=False,  #turn on beam hardening correction, based on "Correction for beam hardening in computed tomography", Gabor Herman, 1979 Phys. Med. Biol. 24 81
        BeamHardeningCoefficients=None,  #6 values, tomo = a0 + a1*tomo + a2*tomo^2 + a3*tomo^3 + a4*tomo^4 + a5*tomo^5
        projIgnoreList=None,  #projections to be ignored in the reconstruction (for simplicity in the code, they will not be removed and will be processed as all other projections but will be set to zero absorption right before reconstruction.
        *args,
        **kwargs):

    start_time = time.time()
    print("Start {} at:".format(filename) +
          time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.localtime()))

    outputPath = inputPath if outputPath is None else outputPath

    outputFilename = filename if outputFilename is None else outputFilename
    tempfilenames = [outputPath + 'tmp0.h5', outputPath + 'tmp1.h5']
    filenametowrite = outputPath + '/rec' + filename.strip(
        ".h5") + '/' + outputFilename
    #filenametowrite = outputPath+'/rec'+filename+'/'+outputFilename

    print("cleaning up previous temp files", end="")
    for tmpfile in tempfilenames:
        try:
            os.remove(tmpfile)
        except OSError:
            pass

    print(", reading metadata")

    datafile = h5py.File(inputPath + filename, 'r')
    gdata = dict(dxchange.reader._find_dataset_group(datafile).attrs)
    pxsize = float(gdata['pxsize']) / 10  # /10 to convert unites from mm to cm
    numslices = int(gdata['nslices'])
    numangles = int(gdata['nangles'])
    angularrange = float(gdata['arange'])
    numrays = int(gdata['nrays'])
    npad = int(np.ceil(numrays * np.sqrt(2)) -
               numrays) // 2 if npad is None else npad
    projused = (0, numangles - 1, 1) if projused is None else projused

    #	ndark = int(gdata['num_dark_fields'])
    #	ind_dark = list(range(0, ndark))
    #	group_dark = [numangles - 1]
    inter_bright = int(gdata['i0cycle'])
    nflat = int(gdata['num_bright_field'])
    ind_flat = list(range(0, nflat))
    if inter_bright > 0:
        group_flat = list(range(0, numangles, inter_bright))
        if group_flat[-1] != numangles - 1:
            group_flat.append(numangles - 1)
    elif inter_bright == 0:
        group_flat = [0, numangles - 1]
    else:
        group_flat = None
    ind_tomo = list(range(0, numangles))
    floc_independent = dxchange.reader._map_loc(ind_tomo, group_flat)

    #figure out the angle list (a list of angles, one per projection image)
    dtemp = datafile[list(datafile.keys())[0]]
    fltemp = list(dtemp.keys())
    firstangle = float(dtemp[fltemp[0]].attrs.get('rot_angle', 0))
    if anglelist is None:
        #the offset angle should offset from the angle of the first image, which is usually 0, but in the case of timbir data may not be.
        #we add the 270 to be inte same orientation as previous software used at bl832
        angle_offset = 270 + angle_offset - firstangle
        anglelist = tomopy.angles(numangles, angle_offset,
                                  angle_offset - angularrange)
    elif anglelist == -1:
        anglelist = np.zeros(shape=numangles)
        for icount in range(0, numangles):
            anglelist[icount] = np.pi / 180 * (270 + angle_offset - float(
                dtemp[fltemp[icount]].attrs['rot_angle']))

    #if projused is different than default, need to chnage numangles and angularrange

    #can't do useNormalize_nf and doOutliers2D at the same time, or doOutliers2D and doOutliers1D at the same time, b/c of the way we chunk, for now just disable that
    if useNormalize_nf == True and doOutliers2D == True:
        useNormalize_nf = False
        print(
            "we cannot currently do useNormalize_nf and doOutliers2D at the same time, turning off useNormalize_nf"
        )
    if doOutliers2D == True and doOutliers1D == True:
        doOutliers1D = False
        print(
            "we cannot currently do doOutliers1D and doOutliers2D at the same time, turning off doOutliers1D"
        )

    #figure out how user can pass to do central x number of slices, or set of slices dispersed throughout (without knowing a priori the value of numslices)
    if sinoused is None:
        sinoused = (0, numslices, 1)
    elif sinoused[0] < 0:
        sinoused = (
            int(np.floor(numslices / 2.0) - np.ceil(sinoused[1] / 2.0)),
            int(np.floor(numslices / 2.0) + np.floor(sinoused[1] / 2.0)), 1)

    num_proj_per_chunk = np.minimum(chunk_proj, projused[1] - projused[0])
    numprojchunks = (projused[1] - projused[0] - 1) // num_proj_per_chunk + 1
    num_sino_per_chunk = np.minimum(chunk_sino, sinoused[1] - sinoused[0])
    numsinochunks = (sinoused[1] - sinoused[0] - 1) // num_sino_per_chunk + 1
    numprojused = (projused[1] - projused[0]) // projused[2]
    numsinoused = (sinoused[1] - sinoused[0]) // sinoused[2]

    BeamHardeningCoefficients = (
        0, 1, 0, 0, 0,
        .1) if BeamHardeningCoefficients is None else BeamHardeningCoefficients

    if cor is None:
        print("Detecting center of rotation", end="")
        if angularrange > 300:
            lastcor = int(np.floor(numangles / 2) - 1)
        else:
            lastcor = numangles - 1
        #I don't want to see the warnings about the reader using a deprecated variable in dxchange
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            tomo, flat, dark, floc = dxchange.read_als_832h5(
                inputPath + filename, ind_tomo=(0, lastcor))
        tomo = tomo.astype(np.float32)
        if useNormalize_nf:
            tomopy.normalize_nf(tomo, flat, dark, floc, out=tomo)
        else:
            tomopy.normalize(tomo, flat, dark, out=tomo)

        if corFunction == 'vo':
            # same reason for catching warnings as above
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                cor = tomopy.find_center_vo(tomo,
                                            ind=voInd,
                                            smin=voSMin,
                                            smax=voSMax,
                                            srad=voSRad,
                                            step=voStep,
                                            ratio=voRatio,
                                            drop=voDrop)
        elif corFunction == 'nm':
            cor = tomopy.find_center(
                tomo,
                tomopy.angles(numangles, angle_offset,
                              angle_offset - angularrange),
                ind=nmInd,
                init=nmInit,
                tol=nmTol,
                mask=nmMask,
                ratio=nmRatio,
                sinogram_order=nmSinoOrder)
        elif corFunction == 'pc':
            cor = tomopy.find_center_pc(tomo[0], tomo[1], tol=0.25)
        else:
            raise ValueError("\'corFunction\' must be one of: [ pc, vo, nm ].")
        print(", {}".format(cor))
    else:
        print("using user input center of {}".format(cor))

    function_list = []

    if doOutliers1D:
        function_list.append('remove_outlier1d')
    if doOutliers2D:
        function_list.append('remove_outlier2d')
    if useNormalize_nf:
        function_list.append('normalize_nf')
    else:
        function_list.append('normalize')
    function_list.append('minus_log')
    if doBeamHardening:
        function_list.append('beam_hardening')
    if doFWringremoval:
        function_list.append('remove_stripe_fw')
    if doTIringremoval:
        function_list.append('remove_stripe_ti')
    if doSFringremoval:
        function_list.append('remove_stripe_sf')
    if correcttilt:
        function_list.append('correcttilt')
    if use360to180:
        function_list.append('do_360_to_180')
    if doPhaseRetrieval:
        function_list.append('phase_retrieval')
    function_list.append('recon_mask')
    if doPolarRing:
        function_list.append('polar_ring')
    if castTo8bit:
        function_list.append('castTo8bit')
    if doBilateralFilter:
        function_list.append('bilateral_filter')
    function_list.append('write_output')

    # Figure out first direction to slice
    for func in function_list:
        if slice_dir[func] != 'both':
            axis = slice_dir[func]
            break

    done = False
    curfunc = 0
    curtemp = 0
    while True:  # Loop over reading data in certain chunking direction
        if axis == 'proj':
            niter = numprojchunks
        else:
            niter = numsinochunks
        for y in range(niter):  # Loop over chunks
            print("{} chunk {} of {}".format(axis, y + 1, niter))
            if curfunc == 0:
                with warnings.catch_warnings():
                    warnings.simplefilter("ignore")
                    if axis == 'proj':
                        tomo, flat, dark, floc = dxchange.read_als_832h5(
                            inputPath + filename,
                            ind_tomo=range(
                                y * num_proj_per_chunk + projused[0],
                                np.minimum(
                                    (y + 1) * num_proj_per_chunk + projused[0],
                                    numangles)),
                            sino=(sinoused[0], sinoused[1], sinoused[2]))
                    else:
                        tomo, flat, dark, floc = dxchange.read_als_832h5(
                            inputPath + filename,
                            ind_tomo=range(projused[0], projused[1],
                                           projused[2]),
                            sino=(y * num_sino_per_chunk + sinoused[0],
                                  np.minimum((y + 1) * num_sino_per_chunk +
                                             sinoused[0], numslices), 1))
            else:
                if axis == 'proj':
                    start, end = y * num_proj_per_chunk, np.minimum(
                        (y + 1) * num_proj_per_chunk, numprojused)
                    tomo = dxchange.reader.read_hdf5(
                        tempfilenames[curtemp],
                        '/tmp/tmp',
                        slc=((start, end, 1), (0, numslices, 1),
                             (0, numrays, 1)))  #read in intermediate file
                else:
                    start, end = y * num_sino_per_chunk, np.minimum(
                        (y + 1) * num_sino_per_chunk, numsinoused)
                    tomo = dxchange.reader.read_hdf5(tempfilenames[curtemp],
                                                     '/tmp/tmp',
                                                     slc=((0, numangles,
                                                           1), (start, end, 1),
                                                          (0, numrays, 1)))
            dofunc = curfunc
            keepvalues = None
            while True:  # Loop over operations to do in current chunking direction
                func_name = function_list[dofunc]
                newaxis = slice_dir[func_name]
                if newaxis != 'both' and newaxis != axis:
                    # We have to switch axis, so flush to disk
                    if y == 0:
                        try:
                            os.remove(tempfilenames[1 - curtemp])
                        except OSError:
                            pass
                    appendaxis = 1 if axis == 'sino' else 0
                    dxchange.writer.write_hdf5(
                        tomo,
                        fname=tempfilenames[1 - curtemp],
                        gname='tmp',
                        dname='tmp',
                        overwrite=False,
                        appendaxis=appendaxis)  #writing intermediate file...
                    break
                print(func_name, end=" ")
                curtime = time.time()
                if func_name == 'remove_outlier1d':
                    tomo = tomo.astype(np.float32, copy=False)
                    remove_outlier1d(tomo,
                                     outlier_diff1D,
                                     size=outlier_size1D,
                                     out=tomo)
                if func_name == 'remove_outlier2d':
                    tomo = tomo.astype(np.float32, copy=False)
                    tomopy.remove_outlier(tomo,
                                          outlier_diff2D,
                                          size=outlier_size2D,
                                          axis=0,
                                          out=tomo)
                elif func_name == 'normalize_nf':
                    tomo = tomo.astype(np.float32, copy=False)
                    tomopy.normalize_nf(
                        tomo, flat, dark, floc_independent, out=tomo
                    )  #use floc_independent b/c when you read file in proj chunks, you don't get the correct floc returned right now to use here.
                elif func_name == 'normalize':
                    tomo = tomo.astype(np.float32, copy=False)
                    tomopy.normalize(tomo, flat, dark, out=tomo)
                elif func_name == 'minus_log':
                    mx = np.float32(0.00000000000000000001)
                    ne.evaluate('where(tomo>mx, tomo, mx)', out=tomo)
                    tomopy.minus_log(tomo, out=tomo)
                elif func_name == 'beam_hardening':
                    loc_dict = {
                        'a{}'.format(i): np.float32(val)
                        for i, val in enumerate(BeamHardeningCoefficients)
                    }
                    tomo = ne.evaluate(
                        'a0 + a1*tomo + a2*tomo**2 + a3*tomo**3 + a4*tomo**4 + a5*tomo**5',
                        local_dict=loc_dict,
                        out=tomo)
                elif func_name == 'remove_stripe_fw':
                    tomo = tomopy.remove_stripe_fw(tomo,
                                                   sigma=ringSigma,
                                                   level=ringLevel,
                                                   pad=True,
                                                   wname=ringWavelet)
                elif func_name == 'remove_stripe_ti':
                    tomo = tomopy.remove_stripe_ti(tomo,
                                                   nblock=ringNBlock,
                                                   alpha=ringAlpha)
                elif func_name == 'remove_stripe_sf':
                    tomo = tomopy.remove_stripe_sf(tomo, size=ringSize)
                elif func_name == 'correcttilt':
                    if tiltcenter_slice is None:
                        tiltcenter_slice = numslices / 2.
                    if tiltcenter_det is None:
                        tiltcenter_det = tomo.shape[2] / 2
                    new_center = tiltcenter_slice - 0.5 - sinoused[0]
                    center_det = tiltcenter_det - 0.5

                    #add padding of 10 pixels, to be unpadded right after tilt correction. This makes the tilted image not have zeros at certain edges, which matters in cases where sample is bigger than the field of view. For the small amounts we are generally tilting the images, 10 pixels is sufficient.
                    #					tomo = tomopy.pad(tomo, 2, npad=10, mode='edge')
                    #					center_det = center_det + 10

                    cntr = (center_det, new_center)
                    for b in range(tomo.shape[0]):
                        tomo[b] = st.rotate(
                            tomo[b],
                            correcttilt,
                            center=cntr,
                            preserve_range=True,
                            order=1,
                            mode='edge',
                            clip=True
                        )  #center=None means image is rotated around its center; order=1 is default, order of spline interpolation


#					tomo = tomo[:, :, 10:-10]

                elif func_name == 'do_360_to_180':

                    # Keep values around for processing the next chunk in the list
                    keepvalues = [
                        angularrange, numangles, projused, num_proj_per_chunk,
                        numprojchunks, numprojused, numrays, anglelist
                    ]

                    #why -.5 on one and not on the other?
                    if tomo.shape[0] % 2 > 0:
                        tomo = sino_360_to_180(
                            tomo[0:-1, :, :],
                            overlap=int(
                                np.round((tomo.shape[2] - cor - .5)) * 2),
                            rotation='right')
                        angularrange = angularrange / 2 - angularrange / (
                            tomo.shape[0] - 1)
                    else:
                        tomo = sino_360_to_180(
                            tomo[:, :, :],
                            overlap=int(np.round((tomo.shape[2] - cor)) * 2),
                            rotation='right')
                        angularrange = angularrange / 2
                    numangles = int(numangles / 2)
                    projused = (0, numangles - 1, 1)
                    num_proj_per_chunk = np.minimum(chunk_proj,
                                                    projused[1] - projused[0])
                    numprojchunks = (projused[1] - projused[0] -
                                     1) // num_proj_per_chunk + 1
                    numprojused = (projused[1] - projused[0]) // projused[2]
                    numrays = tomo.shape[2]

                    anglelist = anglelist[:numangles]

                elif func_name == 'phase_retrieval':
                    tomo = tomopy.retrieve_phase(tomo,
                                                 pixel_size=pxsize,
                                                 dist=propagation_dist,
                                                 energy=kev,
                                                 alpha=alphaReg,
                                                 pad=True)
                elif func_name == 'recon_mask':
                    tomo = tomopy.pad(tomo, 2, npad=npad, mode='edge')

                    if projIgnoreList is not None:
                        for badproj in projIgnoreList:
                            tomo[badproj] = 0

                    rec = tomopy.recon(
                        tomo,
                        anglelist,
                        center=cor + npad,
                        algorithm='gridrec',
                        filter_name='butterworth',
                        filter_par=[butterworth_cutoff, butterworth_order])
                    rec = rec[:, npad:-npad, npad:-npad]
                    rec /= pxsize  # convert reconstructed voxel values from 1/pixel to 1/cm
                    rec = tomopy.circ_mask(rec, 0)
                elif func_name == 'polar_ring':
                    rec = np.ascontiguousarray(rec, dtype=np.float32)
                    rec = tomopy.remove_ring(rec,
                                             theta_min=Rarc,
                                             rwidth=Rmaxwidth,
                                             thresh_max=Rtmax,
                                             thresh=Rthr,
                                             thresh_min=Rtmin,
                                             out=rec)
                elif func_name == 'castTo8bit':
                    rec = convert8bit(rec, cast8bit_min, cast8bit_max)
                elif func_name == 'bilateral_filter':
                    rec = pyF3D.run_BilateralFilter(
                        rec,
                        spatialRadius=bilateral_srad,
                        rangeRadius=bilateral_rrad)
                elif func_name == 'write_output':
                    dxchange.write_tiff_stack(rec,
                                              fname=filenametowrite,
                                              start=y * num_sino_per_chunk +
                                              sinoused[0])
                print('(took {:.2f} seconds)'.format(time.time() - curtime))
                dofunc += 1
                if dofunc == len(function_list):
                    break
            if y < niter - 1 and keepvalues:  # Reset original values for next chunk
                angularrange, numangles, projused, num_proj_per_chunk, numprojchunks, numprojused, numrays, anglelist = keepvalues

        curtemp = 1 - curtemp
        curfunc = dofunc
        if curfunc == len(function_list):
            break
        axis = slice_dir[function_list[curfunc]]
    print("cleaning up temp files")
    for tmpfile in tempfilenames:
        try:
            os.remove(tmpfile)
        except OSError:
            pass
    print("End Time: " +
          time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.localtime()))
    print('It took {:.3f} s to process {}'.format(time.time() - start_time,
                                                  inputPath + filename))
Exemplo n.º 8
0
# -*- coding: utf-8 -*-
"""
Created on Thu Dec  3 16:20:30 2015

@author: lbluque
"""

import tomopy

first, flats, darks, floc = tomopy.read_als_832h5('../../TestDatasets/20151021_105637_ALS10_RT_210lbs_10x.h5', ind_tomo=(0,))
first = tomopy.normalize_nf(first, flats, darks, floc)
base = '20151021_105637_ALS10_RT_210lbs_10x_tomopy_phase_'

dist = (0.1, 0.5, 1.0, 2.5, 5.0, 10.0, 13.2284, 100.0, 500.0)
alpha = (1.0e-3, 1.0e-2, 1.0e-1)

for d in dist:
    for a in alpha:
        print a
        phase = tomopy.retrieve_phase(first,
                                      pixel_size=0.000129,
                                      dist=d,
                                      alpha=a,
                                      energy=40)
        name = base + 'dist{0:.1f}_alpha{1:.1e}'.format(d*10.0, a)
        print(name)
        tomopy.write_tiff(phase, fname='filters/'+name)
def reconstruct(filename,
                inputPath="",
                outputPath="",
                COR=COR,
                doOutliers=doOutliers,
                outlier_diff=outlier_diff,
                outlier_size=outlier_size,
                doFWringremoval=doFWringremoval,
                ringSigma=ringSigma,
                ringLevel=ringLevel,
                ringWavelet=ringWavelet,
                pad_sino=pad_sino,
                doPhaseRetrieval=doPhaseRetrieval,
                propagation_dist=propagation_dist,
                kev=kev,
                alphaReg=alphaReg,
                butterworthpars=butterworthpars,
                doPolarRing=doPolarRing,
                Rarc=Rarc,
                Rmaxwidth=Rmaxwidth,
                Rtmax=Rtmax,
                Rthr=Rthr,
                Rtmin=Rtmin,
                useAutoCOR=useAutoCOR,
                use360to180=use360to180,
                num_substacks=num_substacks,
                recon_slice=recon_slice):

    # Convert filename to list type if only one file name is given
    if type(filename) != list:
        filename = [filename]

    # If useAutoCor == true, a list of COR will be automatically calculated for all files
    # If a list of COR is given, only entries with boolean False will use automatic COR calculation
    if useAutoCOR == True or (len(COR) != len(filename)):
        logging.info('using auto COR for all input files')
        COR = [False] * len(filename)

    for x in range(len(filename)):
        logging.info('opening data set, checking metadata')

        fdata, gdata = read_als_832h5_metadata(inputPath[x] + filename[x] +
                                               '.h5')
        pxsize = float(
            gdata['pxsize']
        ) / 10.0  # convert from metadata (mm) to this script (cm)
        numslices = int(gdata['nslices'])

        # recon_slice == True, only center slice will be reconstructed
        # if integer is given, a specific
        if recon_slice != False:
            if (type(recon_slice) == int) and (recon_slice <= numslices):
                sinorange[recon_slice - 1, recon_slice]
            else:
                sinorange = [numslices // 2 - 1, numslices // 2]
        else:
            sinorange = [0, numslices]

        # Calculate number of substacks (chunks)
        substacks = num_substacks  #(sinorange[1]-sinorange[0]-1)//num_sino_per_substack+1

        if (sinorange[1] - sinorange[0]) >= substacks:
            num_sino_per_substack = (sinorange[1] -
                                     sinorange[0]) // num_substacks
        else:
            num_sino_per_substack = 1

        firstcor, lastcor = 0, int(gdata['nangles']) - 1
        projs, flat, dark, floc = dxchange.read_als_832h5(
            inputPath[x] + filename[x] + '.h5', ind_tomo=(firstcor, lastcor))
        projs = tomopy.normalize_nf(projs, flat, dark, floc)
        autocor = tomopy.find_center_pc(projs[0], projs[1], tol=0.25)

        if (type(COR[x]) == bool) or (COR[x] < 0) or (COR[x] == 'auto'):
            firstcor, lastcor = 0, int(gdata['nangles']) - 1
            projs, flat, dark, floc = dxchange.read_als_832h5(
                inputPath[x] + filename[x] + '.h5',
                ind_tomo=(firstcor, lastcor))
            projs = tomopy.normalize_nf(projs, flat, dark, floc)
            cor = tomopy.find_center_pc(projs[0], projs[1], tol=0.25)
        else:
            cor = COR[x]

        logging.info(
            'Dataset %s, has %d total slices, reconstructing slices %d through %d in %d substack(s), using COR: %f',
            filename[x], int(gdata['nslices']), sinorange[0], sinorange[1] - 1,
            substacks, cor)

        for y in range(0, substacks):
            logging.info('Starting dataset %s (%d of %d), substack %d of %d',
                         filename[x], x + 1, len(filename), y + 1, substacks)

            logging.info('Reading sinograms...')
            projs, flat, dark, floc = dxchange.read_als_832h5(
                inputPath[x] + filename[x] + '.h5',
                sino=(sinorange[0] + y * num_sino_per_substack,
                      sinorange[0] + (y + 1) * num_sino_per_substack, 1))

            logging.info(
                'Doing remove outliers, norm (nearest flats), and -log...')
            if doOutliers:
                projs = tomopy.remove_outlier(projs,
                                              outlier_diff,
                                              size=outlier_size,
                                              axis=0)
                flat = tomopy.remove_outlier(flat,
                                             outlier_diff,
                                             size=outlier_size,
                                             axis=0)
            tomo = tomopy.normalize_nf(projs, flat, dark, floc)
            tomo = tomopy.minus_log(tomo, out=tomo)  # in place logarithm

            # Use padding to remove halo in reconstruction if present
            if pad_sino:
                npad = int(
                    np.ceil(tomo.shape[2] * np.sqrt(2)) - tomo.shape[2]) // 2
                tomo = tomopy.pad(tomo, 2, npad=npad, mode='edge')
                cor_rec = cor + npad  # account for padding
            else:
                cor_rec = cor

            if doFWringremoval:
                logging.info('Doing ring (Fourier-wavelet) function...')
                tomo = tomopy.remove_stripe_fw(tomo,
                                               sigma=ringSigma,
                                               level=ringLevel,
                                               pad=True,
                                               wname=ringWavelet)

            if doPhaseRetrieval:
                logging.info('Doing Phase retrieval...')
                #tomo = tomopy.retrieve_phase(tomo, pixel_size=pxsize, dist=propagation_dist, energy=kev, alpha=alphaReg, pad=True)
                tomo = tomopy.retrieve_phase(tomo,
                                             pixel_size=pxsize,
                                             dist=propagation_dist,
                                             energy=kev,
                                             alpha=alphaReg,
                                             pad=True)

            logging.info(
                'Doing recon (gridrec) function and scaling/masking, with cor %f...',
                cor_rec)
            rec = tomopy.recon(tomo,
                               tomopy.angles(tomo.shape[0], 270, 90),
                               center=cor_rec,
                               algorithm='gridrec',
                               filter_name='butterworth',
                               filter_par=butterworthpars)
            #rec = tomopy.recon(tomo, tomopy.angles(tomo.shape[0], 180+angularrange/2, 180-angularrange/2), center=cor_rec, algorithm='gridrec', filter_name='butterworth', filter_par=butterworthpars)
            rec /= pxsize  # intensity values in cm^-1
            if pad_sino:
                rec = tomopy.circ_mask(rec[:, npad:-npad, npad:-npad], 0)
            else:
                rec = tomopy.circ_mask(rec, 0, ratio=1.0, val=0.0)

            if doPolarRing:
                logging.info('Doing ring (polar mean filter) function...')
                rec = tomopy.remove_ring(rec,
                                         theta_min=Rarc,
                                         rwidth=Rmaxwidth,
                                         thresh_max=Rtmax,
                                         thresh=Rthr,
                                         thresh_min=Rtmin)

            logging.info('Writing reconstruction slices to %s', filename[x])
            #dxchange.write_tiff_stack(rec, fname=outputPath+'alpha'+str(alphaReg)+'/rec'+filename[x]+'/rec'+filename[x], start=sinorange[0]+y*num_sino_per_substack)
            dxchange.write_tiff_stack(rec,
                                      fname=outputPath + 'recon_' +
                                      filename[x] + '/recon_' + filename[x],
                                      start=sinorange[0] +
                                      y * num_sino_per_substack)
        logging.info('Reconstruction Complete: ' + filename[x])
from scipy.ndimage import gaussian_filter
from scipy.ndimage import rotate

# f = h5py.File('cone_256/data_cone_256.h5', 'r')
# f = h5py.File('data_diff_tf_360_unity.h5', 'r')
f = h5py.File('cone_256_filled/data_cone_256_1nm_1um.h5', 'r')
dat = f['exchange/data'][...]
dat = np.copy(dat)
dat = np.abs(dat)**2
# dat = (dat - dat.min()) / (dat.max() - dat.min())

print(dat)

dat = tomopy.retrieve_phase(dat,
                            pixel_size=1. - 7,
                            dist=1.e-4,
                            alpha=1.e-3,
                            energy=5.)
dxchange.write_tiff(dat,
                    'cone_256_filled/paganin_obj/pr/pr',
                    dtype='float32',
                    overwrite=True)
dat = tomopy.minus_log(dat)

extra_options = {'MinConstraint': 0}
options = {'num_iter': 200}

t0 = time.time()
rec = tomopy.recon(
    dat,
    theta=tomopy.angles(dat.shape[0]),
Exemplo n.º 11
0
def center(io_paras, data_paras, center_start, center_end, center_step, diag_cycle=0, 
            mode='diag', normalize=True, stripe_removal=10, phase_retrieval=False):
    
    # Input and output
    datafile = io_paras.get('datafile')
    path2white = io_paras.get('path2white', datafile)
    path2dark = io_paras.get('path2dark', path2white)
    out_dir = io_paras.get('out_dir')
    diag_cent_dir = io_paras.get('diag_cent_dir', out_dir+"/center_diagnose/")
    recon_dir = io_paras.get('recon_dir', out_dir+"/recon/")
    out_prefix = io_paras.get('out_prefix', "recon_")

    # Parameters of dataset
    NumCycles = data_paras.get('NumCycles', 1) # Number of cycles used for recon
    ProjPerCycle = data_paras.get('ProjPerCycle') # Number of projections per cycle, N_theta
    cycle_offset = data_paras.get('cycle_offset', 0) # Offset in output cycle number
    proj_start = data_paras.get('proj_start', 0) # Starting projection of reconstruction 
    proj_step = data_paras.get('proj_step')
    z_start = data_paras.get('z_start', 0)
    z_end = data_paras.get('z_end', z_start+1)
    z_step = data_paras.get('z_step')
    x_start = data_paras.get('x_start')
    x_end = data_paras.get('x_end', x_start+1)
    x_step = data_paras.get('x_step')
    white_start = data_paras.get('white_start')
    white_end = data_paras.get('white_end')
    dark_start = data_paras.get('dark_start')
    dark_end = data_paras.get('dark_end')

    # Set start and end of each subcycle
    projections_start = diag_cycle * ProjPerCycle + proj_start
    projections_end = projections_start + ProjPerCycle
    slice1 = slice(projections_start, projections_end, proj_step)
    slice2 = slice(z_start, z_end, z_step)
    slice3 = slice(x_start, x_end, x_step)
    slices = (slice1, slice2, slice3)
    white_slices = (slice(white_start, white_end), slice2, slice3)
    dark_slices = (slice(dark_start, dark_end), slice2, slice3)
    print("Running center diagnosis (projs %s to %s)" 
        % (projections_start, projections_end))
    
    # Read HDF5 file.
    print("Reading datafile %s..." % datafile, end="")
    sys.stdout.flush()
    data, white, dark = reader.read_aps_2bm(datafile, slices, white_slices, dark_slices, 
                                    path2white=path2white, path2dark=path2dark)
    theta = gen_theta(data.shape[0])
    print("Done!")
    print("Data shape = %s;\nwhite shape = %s;\ndark shape = %s." 
        % (data.shape, white.shape, dark.shape))
    
    ## Normalize dataset using data_white and data_dark
    if normalize:
        data = tomopy.normalize(data, white, dark, cutoff=None, ncore=_ncore, nchunk=None)

    ## Remove stripes caused by dead pixels in the detector
    if stripe_removal:
        data = tomopy.remove_stripe_fw(data, level=stripe_removal, wname='db5', 
                                        sigma=2, pad=True, ncore=None, nchunk=None)
        # data = tomopy.remove_stripe_ti(data, nblock=0, alpha=1.5, 
        #                                 ncore=None, nchunk=None)
    
#        # Show preprocessed projection
#        plt.figure("%s-prep" % projections_start)
#        plt.imshow(d.data[0,:,:], cmap=cm.Greys_r)
#        plt.savefig(out_dir+"/preprocess/%s-prep.jpg" 
#                    % projections_start)
#        # plt.show()
#        continue

    ## Phase retrieval
    if phase_retrieval:
        data = tomopy.retrieve_phase(data,
                    pixel_size=6.5e-5, dist=33, energy=30,
                    alpha=1e-3, pad=True, ncore=_ncore, nchunk=None)
    
    ## Determine and set the center of rotation
    ### Using optimization method to automatically find the center
    # d.optimize_center()
    if 'opti' in mode:
        print("Optimizing center ...", end="")
        sys.stdout.flush()
        rot_center = tomopy.find_center(data, theta, ind=None, emission=True, init=None,
                                        tol=0.5, mask=True, ratio=1.)
        print("Done!")
        print("center = %s" % rot_center)
    ### Output the reconstruction results using a range of centers,
    ### and then manually find the optimal center.
    if 'diag' in mode:
        if not os.path.exists(diag_cent_dir):
            os.makedirs(diag_cent_dir)
        print("Testing centers ...", end="")
        sys.stdout.flush()
        tomopy.write_center(data, theta, dpath=diag_cent_dir, 
                            cen_range=[center_start, center_end, center_step], 
                            ind=None, emission=False, mask=False, ratio=1.)
        print("Done!")
Exemplo n.º 12
0
def recon3(io_paras,
           data_paras,
           rot_center=None,
           normalize=True,
           stripe_removal=10,
           stripe_sigma=2,
           phase_retrieval=False,
           opt_center=False,
           diag_center=False,
           output="tiff",
           z_recon_size=None):
    # Input and output
    datafile = io_paras.get('datafile')
    path2white = io_paras.get('path2white', datafile)
    path2dark = io_paras.get('path2dark', path2white)
    out_dir = io_paras.get('out_dir')
    diag_cent_dir = io_paras.get('diag_cent_dir',
                                 out_dir + "/center_diagnose/")
    recon_dir = io_paras.get('recon_dir', out_dir + "/recon/")
    out_prefix = io_paras.get('out_prefix', "recon_")

    # Parameters of dataset
    NumCycles = data_paras.get('NumCycles',
                               1)  # Number of cycles used for recon
    ProjPerCycle = data_paras.get(
        'ProjPerCycle')  # Number of projections per cycle, N_theta
    cycle_offset = data_paras.get('cycle_offset',
                                  0)  # Offset in output cycle number
    proj_start = data_paras.get('proj_start',
                                0)  # Starting projection of reconstruction
    proj_step = data_paras.get('proj_step')
    z_start = data_paras.get('z_start', 0)
    z_end = data_paras.get('z_end', z_start + 1)
    z_step = data_paras.get('z_step')
    x_start = data_paras.get('x_start')
    x_end = data_paras.get('x_end', x_start + 1)
    x_step = data_paras.get('x_step')
    white_start = data_paras.get('white_start')
    white_end = data_paras.get('white_end')
    dark_start = data_paras.get('dark_start')
    dark_end = data_paras.get('dark_end')

    # TIMBIR parameters
    NumSubCycles = data_paras.get('NumSubCycles',
                                  1)  # Number of subcycles in one cycle, K
    SlewSpeed = data_paras.get('SlewSpeed', 0)  # In deg/s
    MinAcqTime = data_paras.get('MinAcqTime', 0)  # In s
    TotalNumCycles = data_paras.get(
        'TotalNumCycles', 1)  # Total number of cycles in the full scan data
    ProjPerRecon = data_paras.get(
        'ProjPerRecon',
        ProjPerCycle)  # Number of projections per reconstruction

    # Calculate thetas for interlaced scan
    theta = gen_theta_timbir(NumSubCycles, ProjPerCycle, SlewSpeed, MinAcqTime,
                             TotalNumCycles)
    if ProjPerRecon is None:
        ProjPerCycle = theta.size // TotalNumCycles
    else:
        ProjPerCycle = ProjPerRecon

    print("Will use %s projections per reconstruction." % ProjPerCycle)

    # Distribute z slices to processes
    if z_step is None:
        z_step = 1

    z_pool = get_pool(z_start,
                      z_end,
                      z_step,
                      z_chunk_size=z_recon_size,
                      fmt='slice')

    slice3 = slice(x_start, x_end, x_step)

    rot_center_copy = rot_center

    for cycle in xrange(NumCycles):

        # Set start and end of each cycle
        projections_start = cycle * ProjPerCycle + proj_start
        projections_end = projections_start + ProjPerCycle
        slice1 = slice(projections_start, projections_end, proj_step)

        # Setup continuous output
        if "cont" in output:
            if not os.path.exists(recon_dir):
                os.makedirs(recon_dir)
            cont_fname = recon_dir+"/"+out_prefix+"t_%d_z_%d_%d.bin" \
                        % (cycle + cycle_offset, z_start, z_end)
            cont_file = file(cont_fname, 'wb')
        # Distribute z slices to processes
        for i in range(_rank, len(z_pool), _nprocs):
            slice2 = z_pool[i]
            slices = (slice1, slice2, slice3)
            white_slices = (slice(white_start, white_end), slice2, slice3)
            dark_slices = (slice(dark_start, dark_end), slice2, slice3)
            print(
                "Running cycle #%s (projs %s to %s, z = %s - %s) on process %s of %s"
                % (cycle, projections_start, projections_end, slice2.start,
                   slice2.stop, _rank, _nprocs))

            # Read HDF5 file.
            print("Reading datafile %s..." % datafile, end="")
            sys.stdout.flush()
            data, white, dark = reader.read_aps_2bm(datafile,
                                                    slices,
                                                    white_slices,
                                                    dark_slices,
                                                    path2white=path2white,
                                                    path2dark=path2dark)
            # data += 1
            # theta = gen_theta(data.shape[0])
            print("Done!")
            print("Data shape = %s;\nwhite shape = %s;\ndark shape = %s." %
                  (data.shape, white.shape, dark.shape))

            # data = tomopy.focus_region(data, dia=1560, xcoord=1150, ycoord=1080,
            #                 center=rot_center, pad=False, corr=True)
            # rot_center = None
            # print("Data shape = %s;\nwhite shape = %s;\ndark shape = %s."
            #     % (data.shape, white.shape, dark.shape))

            ## Normalize dataset using data_white and data_dark
            if normalize:
                print("Normalizing data ...")
                # white = white.mean(axis=0).reshape(-1, *data.shape[1:])
                # dark = dark.mean(axis=0).reshape(-1, *data.shape[1:])
                # data = (data - dark) / (white - dark)
                data = tomopy.normalize(data,
                                        white,
                                        dark,
                                        cutoff=None,
                                        ncore=_ncore,
                                        nchunk=_nchunk)[...]

            ## Remove stripes caused by dead pixels in the detector
            if stripe_removal:
                print("Removing stripes ...")
                data = tomopy.remove_stripe_fw(data,
                                               level=stripe_removal,
                                               wname='db5',
                                               sigma=stripe_sigma,
                                               pad=True,
                                               ncore=_ncore,
                                               nchunk=_nchunk)
                # data = tomopy.remove_stripe_ti(data, nblock=0, alpha=1.5,
                #                                 ncore=None, nchunk=None)

    #        # Show preprocessed projection
    #        plt.figure("%s-prep" % projections_start)
    #        plt.imshow(d.data[0,:,:], cmap=cm.Greys_r)
    #        plt.savefig(out_dir+"/preprocess/%s-prep.jpg"
    #                    % projections_start)
    #        # plt.show()
    #        continue

    ## Phase retrieval
            if phase_retrieval:
                print("Retrieving phase ...")
                data = tomopy.retrieve_phase(data,
                                             pixel_size=1.1e-4,
                                             dist=6,
                                             energy=25.7,
                                             alpha=1e-2,
                                             pad=True,
                                             ncore=_ncore,
                                             nchunk=_nchunk)

            ## Determine and set the center of rotation
            if opt_center:  # or (rot_center == None):
                ### Using optimization method to automatically find the center
                # d.optimize_center()
                print("Optimizing center ...", end="")
                sys.stdout.flush()
                rot_center = tomopy.find_center(data,
                                                theta,
                                                ind=None,
                                                emission=True,
                                                init=None,
                                                tol=0.5,
                                                mask=True,
                                                ratio=1.)
                print("Done!")
                print("center = %s" % rot_center)
            if diag_center:
                ### Output the reconstruction results using a range of centers,
                ### and then manually find the optimal center.
                # d.diagnose_center()
                if not os.path.exists(diag_cent_dir):
                    os.makedirs(diag_cent_dir)
                print("Testing centers ...", end="")
                sys.stdout.flush()
                tomopy.write_center(
                    data,
                    theta,
                    dpath=diag_cent_dir,
                    cen_range=[center_start, center_end, center_step],
                    ind=None,
                    emission=False,
                    mask=False,
                    ratio=1.)
                print("Done!")

            ## Flip odd frames


#            if (cycle % 2):
#                data[...] = data[...,::-1]
#                rot_center = data.shape[-1] - rot_center_copy
#            else:
#                rot_center = rot_center_copy

## Reconstruction using FBP
            print("Running gridrec ...", end="")
            sys.stdout.flush()
            recon = tomopy.recon(
                data,
                theta[slice1],
                center=rot_center,
                emission=False,
                algorithm='gridrec',
                # num_gridx=None, num_gridy=None, filter_name='shepp',
                ncore=_ncore,
                nchunk=_nchunk)
            print("Done!")

            ## Collect background
            # if cycle == 0:
            #     bg = recon
            # elif cycle < 4:
            #     bg += recon
            # else:
            #     recon -= bg/4.

            # Write to stack of TIFFs.
            if not os.path.exists(recon_dir):
                os.makedirs(recon_dir)
            out_fname = recon_dir + "/" + out_prefix + "t_%d_z_" % (
                cycle + cycle_offset)
            if "hdf" in output:
                hdf_fname = out_fname + "%d_%d.hdf5" % (slice2.start,
                                                        slice2.stop)
                print("Writing reconstruction output file %s..." % hdf_fname,
                      end="")
                sys.stdout.flush()
                tomopy.write_hdf5(recon,
                                  fname=hdf_fname,
                                  gname='exchange',
                                  overwrite=False)
                print("Done!")
            if "tif" in output:
                if "stack" in output:  # single stacked file for multiple z
                    tiff_fname = out_fname + "%d_%d.tiff" % (slice2.start,
                                                             slice2.stop)
                    print("Writing reconstruction tiff files %s ..." %
                          tiff_fname,
                          end="")
                    sys.stdout.flush()
                    tomopy.write_tiff(recon, fname=tiff_fname, overwrite=False)
                    print("Done!")

                else:  # separate files for different z
                    for iz, z in enumerate(
                            range(slice2.start, slice2.stop, slice2.step)):
                        tiff_fname = out_fname + "%d.tiff" % z
                        print("Writing reconstruction tiff files %s ..." %
                              tiff_fname,
                              end="")
                        sys.stdout.flush()
                        tomopy.write_tiff(recon[iz],
                                          fname=tiff_fname,
                                          overwrite=False)
                        print("Done!")
            if "bin" in output:
                bin_fname = out_fname + "%d_%d.bin" % (slice2.start,
                                                       slice2.stop)
                print("Writing reconstruction to binary files %s..." %
                      bin_fname,
                      end="")
                sys.stdout.flush()
                recon.tofile(bin_fname)
            if "cont" in output:
                print("Writing reconstruction to binary files %s..." %
                      cont_fname,
                      end="")
                sys.stdout.flush()
                recon.tofile(cont_file)
                print("Done!")
        if "cont" in output:
            cont_file.close()

    if _usempi:
        comm.Barrier()
    if _rank == 0:
        print("All done!")
Exemplo n.º 13
0
def prepare_slice(grid,
                  shift_grid,
                  grid_lines,
                  slice_in_tile,
                  ds_level=0,
                  method='max',
                  blend_options=None,
                  pad=None,
                  rot_center=None,
                  assert_width=None,
                  sino_blur=None,
                  color_correction=False,
                  normalize=True,
                  mode='180',
                  phase_retrieval=None,
                  data_format='aps_32id',
                  **kwargs):
    sinos = [None] * grid.shape[1]
    t = time.time()
    for col in range(grid.shape[1]):
        if os.path.exists(grid[grid_lines[col], col]):
            sinos[col] = load_sino(grid[grid_lines[col], col],
                                   slice_in_tile[col],
                                   normalize=normalize,
                                   data_format=data_format)
        else:
            pass
    internal_print('reading:           ' + str(time.time() - t))
    t = time.time()
    row_sino = register_recon(grid,
                              grid_lines,
                              shift_grid,
                              sinos,
                              method=method,
                              blend_options=blend_options,
                              color_correction=color_correction,
                              assert_width=assert_width)
    if not pad is None:
        row_sino, rot_center = pad_sino(row_sino, pad, rot_center)

    internal_print('stitch:           ' + str(time.time() - t))
    internal_print('final size:       ' + str(row_sino.shape))

    t = time.time()
    row_sino = tomopy.downsample(row_sino, level=ds_level)
    internal_print('downsample:           ' + str(time.time() - t))
    internal_print('new shape :           ' + str(row_sino.shape))

    # t = time.time()
    # row_sino = tomopy.remove_stripe_fw(row_sino, 2)
    # print('strip removal:           ' + str(time.time() - t))
    # Minus Log
    row_sino = tomosaic.util.preprocess(row_sino)
    if sino_blur is not None:
        row_sino[:, 0, :] = gaussian_filter(row_sino[:, 0, :], sino_blur)
    if mode == '360':
        overlap = 2 * (row_sino.shape[2] - rot_center)
        row_sino = tomosaic.sino_360_to_180(row_sino,
                                            overlap=overlap,
                                            rotation='right')
    if phase_retrieval:
        row_sino = tomopy.retrieve_phase(row_sino, kwargs['pixel_size'],
                                         kwargs['dist'], kwargs['energy'],
                                         kwargs['alpha'])
    return row_sino, rot_center
Exemplo n.º 14
0
def recon_single(fname,
                 center,
                 dest_folder,
                 sino_range=None,
                 chunk_size=50,
                 read_theta=True,
                 pad_length=0,
                 phase_retrieval=False,
                 ring_removal=True,
                 algorithm='gridrec',
                 flattened_radius=40,
                 crop=None,
                 remove_padding=True,
                 **kwargs):

    prj_shape = read_data_adaptive(fname, shape_only=True)
    if read_theta:
        theta = read_data_adaptive(fname, proj=(0, 1), return_theta=True)
    else:
        theta = tomopy.angles(prj_shape[0])
    if sino_range is None:
        sino_st = 0
        sino_end = prj_shape[1]
        sino_step = 1
    else:
        sino_st, sino_end = sino_range[:2]
        if len(sino_range) == 3:
            sino_step = sino_range[-1]
        else:
            sino_step = 1
    chunks = np.arange(0, sino_end, chunk_size * sino_step, dtype='int')
    for chunk_st in chunks:
        t0 = time.time()
        chunk_end = min(chunk_st + chunk_size * sino_step, prj_shape[1])
        data, flt, drk = read_data_adaptive(fname,
                                            sino=(chunk_st, chunk_end,
                                                  sino_step),
                                            return_theta=False)
        data = tomopy.normalize(data, flt, drk)
        data = data.astype('float32')
        data = tomopy.remove_stripe_ti(data, alpha=4)
        if phase_retrieval:
            data = tomopy.retrieve_phase(data, kwargs['pixel_size'],
                                         kwargs['dist'], kwargs['energy'],
                                         kwargs['alpha'])
        if pad_length != 0:
            data = pad_sinogram(data, pad_length)
        if ring_removal:
            data = tomopy.remove_stripe_ti(data, alpha=4)
            rec0 = tomopy.recon(data,
                                theta,
                                center=center + pad_length,
                                algorithm=algorithm,
                                **kwargs)
            rec = tomopy.remove_ring(np.copy(rec0))
            cent = int((rec.shape[1] - 1) / 2)
            xx, yy = np.meshgrid(np.arange(rec.shape[2]),
                                 np.arange(rec.shape[1]))
            mask0 = ((xx - cent)**2 + (yy - cent)**2 <= flattened_radius**2)
            mask = np.zeros(rec.shape, dtype='bool')
            for i in range(mask.shape[0]):
                mask[i, :, :] = mask0
            rec[mask] = (rec[mask] + rec0[mask]) / 2
        else:
            rec = tomopy.recon(data,
                               theta,
                               center=center + pad_length,
                               algorithm=algorithm,
                               **kwargs)
        if pad_length != 0 and remove_padding:
            rec = rec[:, pad_length:pad_length + prj_shape[2],
                      pad_length:pad_length + prj_shape[2]]
        rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)
        if crop is not None:
            crop = np.asarray(crop)
            rec = rec[:, crop[0, 0]:crop[1, 0], crop[0, 1]:crop[1, 1]]
        for i in range(rec.shape[0]):
            slice = chunk_st + sino_step * i
            internal_print('Saving slice {}'.format(slice))
            dxchange.write_tiff(
                rec[i, :, :],
                fname=os.path.join(dest_folder,
                                   'recon_{:05d}.tiff').format(slice),
                dtype='float32')
        internal_print('Block finished in {:.2f} s.'.format(time.time() - t0))
Exemplo n.º 15
0
import dxchange
import numpy as np
import tomopy

src_fname = 'data/cameraman_512_dp.tiff'
actual_size = [512, 512]
energy_ev = 25000.
psize_cm = 1e-4
dist_cm = 50

img = dxchange.read_tiff(src_fname)
img = np.sqrt(img)
img = img[np.newaxis, :, :]
res = np.squeeze(
    tomopy.retrieve_phase(img, psize_cm, dist_cm, energy_ev / 1000,
                          alpha=5e-2))
dxchange.write_tiff(res,
                    'data/cameraman_512_paganin',
                    dtype='float32',
                    overwrite=True)
Exemplo n.º 16
0
def recon(
    filename,
    inputPath = './',
    outputPath = None,
    outputFilename = None,
    doOutliers1D = False, # outlier removal in 1d (along sinogram columns)
    outlier_diff1D = 750, # difference between good data and outlier data (outlier removal)
    outlier_size1D = 3, # radius around each pixel to look for outliers (outlier removal)
    doOutliers2D = False, # outlier removal, standard 2d on each projection
    outlier_diff2D = 750, # difference between good data and outlier data (outlier removal)
    outlier_size2D = 3, # radius around each pixel to look for outliers (outlier removal)
    doFWringremoval = True,  # Fourier-wavelet ring removal
    doTIringremoval = False, # Titarenko ring removal
    doSFringremoval = False, # Smoothing filter ring removal
    ringSigma = 3, # damping parameter in Fourier space (Fourier-wavelet ring removal)
    ringLevel = 8, # number of wavelet transform levels (Fourier-wavelet ring removal)
    ringWavelet = 'db5', # type of wavelet filter (Fourier-wavelet ring removal)
    ringNBlock = 0, # used in Titarenko ring removal (doTIringremoval)
    ringAlpha = 1.5, # used in Titarenko ring removal (doTIringremoval)
    ringSize = 5, # used in smoothing filter ring removal (doSFringremoval)
    doPhaseRetrieval = False, # phase retrieval
    alphaReg = 0.0002, # smaller = smoother (used for phase retrieval)
    propagation_dist = 75, # sample-to-scintillator distance (phase retrieval)
    kev = 24, # energy level (phase retrieval)
    butterworth_cutoff = 0.25, #0.1 would be very smooth, 0.4 would be very grainy (reconstruction)
    butterworth_order = 2, # for reconstruction
    doTranslationCorrection = False, # correct for linear drift during scan
    xshift = 0, # undesired dx transation correction (from 0 degree to 180 degree proj)
    yshift = 0, # undesired dy transation correction (from 0 degree to 180 degree proj)
    doPolarRing = False, # ring removal
    Rarc=30, # min angle needed to be considered ring artifact (ring removal)
    Rmaxwidth=100, # max width of rings to be filtered (ring removal)
    Rtmax=3000.0, # max portion of image to filter (ring removal)
    Rthr=3000.0, # max value of offset due to ring artifact (ring removal)
    Rtmin=-3000.0, # min value of image to filter (ring removal)
    cor=None, # center of rotation (float). If not used then cor will be detected automatically
    corFunction = 'pc', # center of rotation function to use - can be 'pc', 'vo', or 'nm'
    voInd = None, # index of slice to use for cor search (vo)
    voSMin = -40, # min radius for searching in sinogram (vo)
    voSMax = 40, # max radius for searching in sinogram (vo)
    voSRad = 10, # search radius (vo)
    voStep = 0.5, # search step (vo)
    voRatio = 2.0, # ratio of field-of-view and object size (vo)
    voDrop = 20, # drop lines around vertical center of mask (vo)
    nmInd = None, # index of slice to use for cor search (nm)
    nmInit = None, # initial guess for center (nm)
    nmTol = 0.5, # desired sub-pixel accuracy (nm)
    nmMask = True, # if True, limits analysis to circular region (nm)
    nmRatio = 1.0, # ratio of radius of circular mask to edge of reconstructed image (nm)
    nmSinoOrder = False, # if True, analyzes in sinogram space. If False, analyzes in radiograph space
    use360to180 = False, # use 360 to 180 conversion
    doBilateralFilter = False, # if True, uses bilateral filter on image just before write step # NOTE: image will be converted to 8bit if it is not already
    bilateral_srad = 3, # spatial radius for bilateral filter (image will be converted to 8bit if not already)
    bilateral_rrad = 30, # range radius for bilateral filter (image will be converted to 8bit if not already)
    castTo8bit = False, # convert data to 8bit before writing
    cast8bit_min=-10, # min value if converting to 8bit
    cast8bit_max=30, # max value if converting to 8bit
    useNormalize_nf = False, # normalize based on background intensity (nf)
    chunk_proj = 100, # chunk size in projection direction
    chunk_sino = 100, # chunk size in sinogram direction
    npad = None, # amount to pad data before reconstruction
    projused = None, #should be slicing in projection dimension (start,end,step)
    sinoused = None, #should be sliceing in sinogram dimension (start,end,step). If first value is negative, it takes the number of slices from the second value in the middle of the stack.
    correcttilt = 0, #tilt dataset
    tiltcenter_slice = None, # tilt center (x direction)
    tiltcenter_det = None, # tilt center (y direction)
    angle_offset = 0, #this is the angle offset from our default (270) so that tomopy yields output in the same orientation as previous software (Octopus)
    anglelist = None, #if not set, will assume evenly spaced angles which will be calculated by the angular range and number of angles found in the file. if set to -1, will read individual angles from each image. alternatively, a list of angles can be passed.
    doBeamHardening = False, #turn on beam hardening correction, based on "Correction for beam hardening in computed tomography", Gabor Herman, 1979 Phys. Med. Biol. 24 81
    BeamHardeningCoefficients = None, #6 values, tomo = a0 + a1*tomo + a2*tomo^2 + a3*tomo^3 + a4*tomo^4 + a5*tomo^5
    projIgnoreList = None, #projections to be ignored in the reconstruction (for simplicity in the code, they will not be removed and will be processed as all other projections but will be set to zero absorption right before reconstruction.
    *args, **kwargs):
    
    start_time = time.time()
    print("Start {} at:".format(filename)+time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.localtime()))
    
    outputPath = inputPath if outputPath is None else outputPath

    outputFilename = filename if outputFilename is None else outputFilename
    outputFilename = outputFilename.replace('.h5','')
    tempfilenames = [outputPath+'tmp0.h5',outputPath+'tmp1.h5']
    filenametowrite = outputPath+'/rec'+filename.strip(".h5")+'/'+outputFilename
    #filenametowrite = outputPath+'/rec'+filename+'/'+outputFilename
    
    print("cleaning up previous temp files", end="")
    for tmpfile in tempfilenames:
        try:
            os.remove(tmpfile)
        except OSError:
            pass
    
    print(", reading metadata")
    
    datafile = h5py.File(inputPath+filename, 'r')
    gdata = dict(dxchange.reader._find_dataset_group(datafile).attrs) 
    pxsize = float(gdata['pxsize'])/10 # /10 to convert units from mm to cm
    numslices = int(gdata['nslices'])
    numangles = int(gdata['nangles'])
    angularrange = float(gdata['arange'])
    numrays = int(gdata['nrays'])
    npad = int(np.ceil(numrays * np.sqrt(2)) - numrays)//2 if npad is None else npad
    projused = (0,numangles-1,1) if projused is None else projused

#    ndark = int(gdata['num_dark_fields'])
#    ind_dark = list(range(0, ndark))
#    group_dark = [numangles - 1]
    inter_bright = int(gdata['i0cycle'])
    nflat = int(gdata['num_bright_field'])
    ind_flat = list(range(0, nflat))
    if inter_bright > 0:
        group_flat = list(range(0, numangles, inter_bright))
        if group_flat[-1] != numangles - 1:
            group_flat.append(numangles - 1)
    elif inter_bright == 0:
        group_flat = [0, numangles - 1]
    else:
        group_flat = None
    ind_tomo = list(range(0, numangles))
    floc_independent = dxchange.reader._map_loc(ind_tomo, group_flat)        

    #figure out the angle list (a list of angles, one per projection image)
    dtemp = datafile[list(datafile.keys())[0]]
    fltemp = list(dtemp.keys())
    firstangle = float(dtemp[fltemp[0]].attrs.get('rot_angle',0))
    if anglelist is None:
        #the offset angle should offset from the angle of the first image, which is usually 0, but in the case of timbir data may not be.
        #we add the 270 to be inte same orientation as previous software used at bl832
        angle_offset = 270 + angle_offset - firstangle
        anglelist = tomopy.angles(numangles, angle_offset, angle_offset-angularrange)
    elif anglelist==-1:
        anglelist = np.zeros(shape=numangles)
        for icount in range(0,numangles):
            anglelist[icount] = np.pi/180*(270 + angle_offset - float(dtemp[fltemp[icount]].attrs['rot_angle']))
            
    #if projused is different than default, need to chnage numangles and angularrange
    
    #can't do useNormalize_nf and doOutliers2D at the same time, or doOutliers2D and doOutliers1D at the same time, b/c of the way we chunk, for now just disable that
    if useNormalize_nf==True and doOutliers2D==True:
        useNormalize_nf = False
        print("we cannot currently do useNormalize_nf and doOutliers2D at the same time, turning off useNormalize_nf")
    if doOutliers2D==True and doOutliers1D==True:
        doOutliers1D = False
        print("we cannot currently do doOutliers1D and doOutliers2D at the same time, turning off doOutliers1D")
    
    #figure out how user can pass to do central x number of slices, or set of slices dispersed throughout (without knowing a priori the value of numslices)
    if sinoused is None:
        sinoused = (0,numslices,1)
    elif sinoused[0]<0:
        sinoused=(int(np.floor(numslices/2.0)-np.ceil(sinoused[1]/2.0)),int(np.floor(numslices/2.0)+np.floor(sinoused[1]/2.0)),1)
    
    num_proj_per_chunk = np.minimum(chunk_proj,projused[1]-projused[0])
    numprojchunks = (projused[1]-projused[0]-1)//num_proj_per_chunk+1
    num_sino_per_chunk = np.minimum(chunk_sino,sinoused[1]-sinoused[0])
    numsinochunks = (sinoused[1]-sinoused[0]-1)//num_sino_per_chunk+1
    numprojused = (projused[1]-projused[0])//projused[2]
    numsinoused = (sinoused[1]-sinoused[0])//sinoused[2]
    
    BeamHardeningCoefficients = (0, 1, 0, 0, 0, .1) if BeamHardeningCoefficients is None else BeamHardeningCoefficients

    if cor is None:
        print("Detecting center of rotation", end="") 
        if angularrange>300:
            lastcor = int(np.floor(numangles/2)-1)
        else:
            lastcor = numangles-1
        #I don't want to see the warnings about the reader using a deprecated variable in dxchange
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            tomo, flat, dark, floc = dxchange.read_als_832h5(inputPath+filename,ind_tomo=(0,lastcor))
        tomo = tomo.astype(np.float32)
        if useNormalize_nf:
            tomopy.normalize_nf(tomo, flat, dark, floc, out=tomo)
        else:
            tomopy.normalize(tomo, flat, dark, out=tomo)

        if corFunction == 'vo':
            # same reason for catching warnings as above
            with warnings.catch_warnings():
                warnings.simplefilter("ignore")
                cor = tomopy.find_center_vo(tomo, ind=voInd, smin=voSMin, smax=voSMax, srad=voSRad, step=voStep,
                                        ratio=voRatio, drop=voDrop)
        elif corFunction == 'nm':
            cor = tomopy.find_center(tomo, tomopy.angles(numangles, angle_offset, angle_offset-angularrange),
                                     ind=nmInd, init=nmInit, tol=nmTol, mask=nmMask, ratio=nmRatio,
                                     sinogram_order=nmSinoOrder)
        elif corFunction == 'pc':
            cor = tomopy.find_center_pc(tomo[0], tomo[1], tol=0.25)
        else:
            raise ValueError("\'corFunction\' must be one of: [ pc, vo, nm ].")
        print(", {}".format(cor))
    else:
        print("using user input center of {}".format(cor))
        
    
    function_list = []

    if doOutliers1D:
        function_list.append('remove_outlier1d')
    if doOutliers2D:
        function_list.append('remove_outlier2d')
    if useNormalize_nf:
        function_list.append('normalize_nf')
    else:
        function_list.append('normalize')
    function_list.append('minus_log')
    if doBeamHardening:
        function_list.append('beam_hardening')
    if doFWringremoval:
        function_list.append('remove_stripe_fw')
    if doTIringremoval:
        function_list.append('remove_stripe_ti')
    if doSFringremoval:
        function_list.append('remove_stripe_sf')
    if correcttilt:
        function_list.append('correcttilt')
    if use360to180:
        function_list.append('do_360_to_180')
    if doPhaseRetrieval:
        function_list.append('phase_retrieval')
    function_list.append('recon_mask')
    if doPolarRing:
        function_list.append('polar_ring')
    if castTo8bit:
        function_list.append('castTo8bit')
    if doBilateralFilter:
        function_list.append('bilateral_filter')
    function_list.append('write_output')
        
    
    # Figure out first direction to slice
    for func in function_list:
        if slice_dir[func] != 'both':
            axis = slice_dir[func]
            break
    
    done = False
    curfunc = 0
    curtemp = 0
    while True: # Loop over reading data in certain chunking direction
        if axis=='proj':
            niter = numprojchunks
        else:
            niter = numsinochunks
        for y in range(niter): # Loop over chunks
            print("{} chunk {} of {}".format(axis, y+1, niter))
            if curfunc==0:
                with warnings.catch_warnings():
                    warnings.simplefilter("ignore")
                    if axis=='proj':
                        tomo, flat, dark, floc = dxchange.read_als_832h5(inputPath+filename,ind_tomo=range(y*num_proj_per_chunk+projused[0],np.minimum((y + 1)*num_proj_per_chunk+projused[0],numangles)),sino=(sinoused[0],sinoused[1], sinoused[2]) )
                    else:
                        tomo, flat, dark, floc = dxchange.read_als_832h5(inputPath+filename,ind_tomo=range(projused[0],projused[1],projused[2]),sino=(y*num_sino_per_chunk+sinoused[0],np.minimum((y + 1)*num_sino_per_chunk+sinoused[0],numslices),1) )
            else:
                if axis=='proj':
                    start, end = y * num_proj_per_chunk, np.minimum((y + 1) * num_proj_per_chunk,numprojused)
                    tomo = dxchange.reader.read_hdf5(tempfilenames[curtemp],'/tmp/tmp',slc=((start,end,1),(0,numslices,1),(0,numrays,1))) #read in intermediate file
                else:
                    start, end = y * num_sino_per_chunk, np.minimum((y + 1) * num_sino_per_chunk,numsinoused)
                    tomo = dxchange.reader.read_hdf5(tempfilenames[curtemp],'/tmp/tmp',slc=((0,numangles,1),(start,end,1),(0,numrays,1)))
            dofunc = curfunc
            keepvalues = None
            while True: # Loop over operations to do in current chunking direction
                func_name = function_list[dofunc]
                newaxis = slice_dir[func_name]
                if newaxis != 'both' and newaxis != axis:
                    # We have to switch axis, so flush to disk
                    if y==0:
                        try:
                            os.remove(tempfilenames[1-curtemp])
                        except OSError:
                            pass
                    appendaxis = 1 if axis=='sino' else 0
                    dxchange.writer.write_hdf5(tomo,fname=tempfilenames[1-curtemp],gname='tmp',dname='tmp',overwrite=False,appendaxis=appendaxis) #writing intermediate file...
                    break
                print(func_name, end=" ")
                curtime = time.time()
                if func_name == 'remove_outlier1d':
                    tomo = tomo.astype(np.float32,copy=False)
                    remove_outlier1d(tomo, outlier_diff1D, size=outlier_size1D, out=tomo)
                if func_name == 'remove_outlier2d':
                    tomo = tomo.astype(np.float32,copy=False)
                    tomopy.remove_outlier(tomo, outlier_diff2D, size=outlier_size2D, axis=0, out=tomo)
                elif func_name == 'normalize_nf':
                    tomo = tomo.astype(np.float32,copy=False)
                    tomopy.normalize_nf(tomo, flat, dark, floc_independent, out=tomo) #use floc_independent b/c when you read file in proj chunks, you don't get the correct floc returned right now to use here.
                elif func_name == 'normalize':
                    tomo = tomo.astype(np.float32,copy=False)
                    tomopy.normalize(tomo, flat, dark, out=tomo)
                elif func_name == 'minus_log':
                    mx = np.float32(0.00000000000000000001)
                    ne.evaluate('where(tomo>mx, tomo, mx)', out=tomo)
                    tomopy.minus_log(tomo, out=tomo)
                elif func_name == 'beam_hardening':
                    loc_dict = {'a{}'.format(i):np.float32(val) for i,val in enumerate(BeamHardeningCoefficients)}
                    tomo = ne.evaluate('a0 + a1*tomo + a2*tomo**2 + a3*tomo**3 + a4*tomo**4 + a5*tomo**5', local_dict=loc_dict, out=tomo)
                elif func_name == 'remove_stripe_fw':
                    tomo = tomopy.remove_stripe_fw(tomo, sigma=ringSigma, level=ringLevel, pad=True, wname=ringWavelet)
                elif func_name == 'remove_stripe_ti':
                    tomo = tomopy.remove_stripe_ti(tomo, nblock=ringNBlock, alpha=ringAlpha)
                elif func_name == 'remove_stripe_sf':
                    tomo = tomopy.remove_stripe_sf(tomo, size=ringSize)
                elif func_name == 'correcttilt':
                    if tiltcenter_slice is None:
                        tiltcenter_slice = numslices/2.
                    if tiltcenter_det is None:
                        tiltcenter_det = tomo.shape[2]/2
                    new_center = tiltcenter_slice - 0.5 - sinoused[0]
                    center_det = tiltcenter_det - 0.5
                    
                    #add padding of 10 pixels, to be unpadded right after tilt correction. This makes the tilted image not have zeros at certain edges, which matters in cases where sample is bigger than the field of view. For the small amounts we are generally tilting the images, 10 pixels is sufficient.
#                    tomo = tomopy.pad(tomo, 2, npad=10, mode='edge')
#                    center_det = center_det + 10
                    
                    cntr = (center_det, new_center)
                    for b in range(tomo.shape[0]):
                        tomo[b] = st.rotate(tomo[b], correcttilt, center=cntr, preserve_range=True, order=1, mode='edge', clip=True) #center=None means image is rotated around its center; order=1 is default, order of spline interpolation
#                    tomo = tomo[:, :, 10:-10]    
                        
                elif func_name == 'do_360_to_180':
                    
                    # Keep values around for processing the next chunk in the list
                    keepvalues = [angularrange, numangles, projused, num_proj_per_chunk, numprojchunks, numprojused, numrays, anglelist]
                    
                    #why -.5 on one and not on the other?
                    if tomo.shape[0]%2>0:
                        tomo = sino_360_to_180(tomo[0:-1,:,:], overlap=int(np.round((tomo.shape[2]-cor-.5))*2), rotation='right')
                        angularrange = angularrange/2 - angularrange/(tomo.shape[0]-1)
                    else:
                        tomo = sino_360_to_180(tomo[:,:,:], overlap=int(np.round((tomo.shape[2]-cor))*2), rotation='right')
                        angularrange = angularrange/2
                    numangles = int(numangles/2)
                    projused = (0,numangles-1,1)
                    num_proj_per_chunk = np.minimum(chunk_proj,projused[1]-projused[0])
                    numprojchunks = (projused[1]-projused[0]-1)//num_proj_per_chunk+1
                    numprojused = (projused[1]-projused[0])//projused[2]
                    numrays = tomo.shape[2]
                    
                    anglelist = anglelist[:numangles]
                
                elif func_name == 'phase_retrieval':
                    tomo = tomopy.retrieve_phase(tomo, pixel_size=pxsize, dist=propagation_dist, energy=kev, alpha=alphaReg, pad=True)
                
                elif func_name == 'translation_correction':
                    tomo = linear_translation_correction(tomo,dx=xshift,dy=yshift,interpolation=False):
                    
                elif func_name == 'recon_mask':
                    tomo = tomopy.pad(tomo, 2, npad=npad, mode='edge')

                    if projIgnoreList is not None:
                        for badproj in projIgnoreList:
                            tomo[badproj] = 0

                    rec = tomopy.recon(tomo, anglelist, center=cor+npad, algorithm='gridrec', filter_name='butterworth', filter_par=[butterworth_cutoff, butterworth_order])
                    rec = rec[:, npad:-npad, npad:-npad]
                    rec /= pxsize  # convert reconstructed voxel values from 1/pixel to 1/cm
                    rec = tomopy.circ_mask(rec, 0)
                elif func_name == 'polar_ring':
                    rec = np.ascontiguousarray(rec, dtype=np.float32)
                    rec = tomopy.remove_ring(rec, theta_min=Rarc, rwidth=Rmaxwidth, thresh_max=Rtmax, thresh=Rthr, thresh_min=Rtmin,out=rec)
                elif func_name == 'castTo8bit':
                    rec = convert8bit(rec, cast8bit_min, cast8bit_max)
                elif func_name == 'bilateral_filter':
                    rec = pyF3D.run_BilateralFilter(rec, spatialRadius=bilateral_srad, rangeRadius=bilateral_rrad)
                elif func_name == 'write_output':
                    dxchange.write_tiff_stack(rec, fname=filenametowrite, start=y*num_sino_per_chunk + sinoused[0])
                print('(took {:.2f} seconds)'.format(time.time()-curtime))
                dofunc+=1
                if dofunc==len(function_list):
                    break
            if y<niter-1 and keepvalues: # Reset original values for next chunk
                angularrange, numangles, projused, num_proj_per_chunk, numprojchunks, numprojused, numrays, anglelist = keepvalues
                
        curtemp = 1 - curtemp
        curfunc = dofunc
        if curfunc==len(function_list):
            break
        axis = slice_dir[function_list[curfunc]]
    print("cleaning up temp files")
    for tmpfile in tempfilenames:
        try:
            os.remove(tmpfile)
        except OSError:
            pass
    print("End Time: "+time.strftime("%a, %d %b %Y %H:%M:%S +0000", time.localtime()))
    print('It took {:.3f} s to process {}'.format(time.time()-start_time,inputPath+filename))
		# dxchange.write_tiff_stack(tomo, fname=sinofilenametowrite, start=sinorange[0]+y*num_sino_per_chunk,axis=1)
			
		if doFWringremoval == True and useFLOCforFWringremoval != True:
			logging.info('Doing ring (Fourier-wavelet) function')
			tomo = tomopy.remove_stripe_fw(tomo, sigma=ringSigma, level=ringLevel, pad=True, wname=ringWavelet)	
			
		if doFWringremovalofJustCentralPortion:
			logging.info('Doing ring (Fourier-wavelet) function on just central portion')
			tomo[:,:,int(np.round(cor_rec-radiusPixels_CentralFW)):int(np.round(cor_rec+radiusPixels_CentralFW))] = tomopy.remove_stripe_fw(tomo[:,:,int(np.round(cor_rec-radiusPixels_CentralFW)):int(np.round(cor_rec+radiusPixels_CentralFW))], sigma=ringSigma, level=ringLevel, pad=True, wname=ringWavelet)	
				
		if doPhaseRetrieval:
			logging.info('Doing Phase retrieval')
			# phase_pad_each_side = 10
			# tomo = tomopy.pad(tomo,axis=1,mode='edge',npad=phase_pad_each_side)
			#logging.info('Shape of projections matrix after phase pad: %d, %d, %d', tomo.shape[0],tomo.shape[1],tomo.shape[2])
			tomo = tomopy.retrieve_phase(tomo, pixel_size=pxsize, dist=propagation_dist, energy=kev, alpha=alphaReg, pad=True)	
			# tomo = tomo[:,phase_pad_each_side:-phase_pad_each_side,:]
			#logging.info('Shape of projections matrix after phase crop: %d, %d, %d', tomo.shape[0],tomo.shape[1],tomo.shape[2])
		
		# sinofilenametowrite = odirectory+'/rec'+iname[x]+'/'+iname[x]+'sinoAfterPhase_'
		# dxchange.write_tiff_stack(tomo, fname=sinofilenametowrite, start=sinorange[0]+y*num_sino_per_chunk,axis=1)
		
		
		if recon_centralSlice != True and overlap_chunk>0:
			if y < chunks-1:
				tomo = tomo[:,:-overlap_chunk,:]
			if y > 0:
				tomo = tomo[:,overlap_chunk:,:]

		logging.info('Doing recon (gridrec) function...')
Exemplo n.º 18
0
def recon_hdf5(src_fanme, dest_folder, sino_range, sino_step, shift_grid, center_vec=None, center_eq=None, dtype='float32',
               algorithm='gridrec', tolerance=1, chunk_size=20, save_sino=False, sino_blur=None, flattened_radius=120,
               mode='180', test_mode=False, phase_retrieval=None, ring_removal=True, **kwargs):
    """
    center_eq: a and b parameters in fitted center position equation center = a*slice + b.
    """

    if not os.path.exists(dest_folder):
        try:
            os.mkdir(dest_folder)
        except:
            pass
    sino_ini = int(sino_range[0])
    sino_end = int(sino_range[1])
    sino_ls_all = np.arange(sino_ini, sino_end, sino_step, dtype='int')
    alloc_set = allocate_mpi_subsets(sino_ls_all.size, size, task_list=sino_ls_all)
    sino_ls = alloc_set[rank]

    # prepare metadata
    f = h5py.File(src_fanme)
    dset = f['exchange/data']
    full_shape = dset.shape
    theta = tomopy.angles(full_shape[0])
    if center_eq is not None:
        a, b = center_eq
        center_ls = sino_ls * a + b
        center_ls = np.round(center_ls)
        for iblock in range(int(sino_ls.size/chunk_size)+1):
            print('Beginning block {:d}.'.format(iblock))
            t0 = time.time()
            istart = iblock*chunk_size
            iend = np.min([(iblock+1)*chunk_size, sino_ls.size])
            fstart = sino_ls[istart]
            fend = sino_ls[iend]
            center = center_ls[istart:iend]
            data = dset[:, fstart:fend:sino_step, :]
            data[np.isnan(data)] = 0
            data = data.astype('float32')
            data = tomopy.remove_stripe_ti(data, alpha=4)
            if sino_blur is not None:
                for i in range(data.shape[1]):
                    data[:, i, :] = gaussian_filter(data[:, i, :], sino_blur)
            rec = tomopy.recon(data, theta, center=center, algorithm=algorithm, **kwargs)
            rec = tomopy.remove_ring(rec)
            rec = tomopy.remove_outlier(rec, tolerance)
            rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)
            for i in range(rec.shape[0]):
                slice = fstart + i*sino_step
                dxchange.write_tiff(rec[i, :, :], fname=os.path.join(dest_folder, 'recon/recon_{:05d}_{:05d}.tiff').format(slice, sino_ini))
                if save_sino:
                    dxchange.write_tiff(data[:, i, :], fname=os.path.join(dest_folder, 'sino/recon_{:05d}_{:d}.tiff').format(slice, int(center[i])))
            iblock += 1
            print('Block {:d} finished in {:.2f} s.'.format(iblock, time.time()-t0))
    else:
        # divide chunks
        grid_bins = np.append(np.ceil(shift_grid[:, 0, 0]), full_shape[1])
        chunks = []
        center_ls = []
        istart = 0
        counter = 0
        # irow should be 0 for slice 0
        irow = np.searchsorted(grid_bins, sino_ls[0], side='right')-1

        for i in range(sino_ls.size):
            counter += 1
            sino_next = i+1 if i != sino_ls.size-1 else i
            if counter >= chunk_size or sino_ls[sino_next] >= grid_bins[irow+1] or sino_next == i:
                iend = i+1
                chunks.append((istart, iend))
                istart = iend
                center_ls.append(center_vec[irow])
                if sino_ls[sino_next] >= grid_bins[irow+1]:
                    irow += 1
                counter = 0

        # reconstruct chunks
        iblock = 1
        for (istart, iend), center in izip(chunks, center_ls):
            print('Beginning block {:d}.'.format(iblock))
            t0 = time.time()
            fstart = sino_ls[istart]
            fend = sino_ls[iend-1]
            print('Reading data...')
            data = dset[:, fstart:fend+1:sino_step, :]
            if mode == '360':
                overlap = 2 * (dset.shape[2] - center)
                data = tomosaic.morph.sino_360_to_180(data, overlap=overlap, rotation='right')
                theta = tomopy.angles(data.shape[0])
            data[np.isnan(data)] = 0
            data = data.astype('float32')
            if sino_blur is not None:
                for i in range(data.shape[1]):
                    data[:, i, :] = gaussian_filter(data[:, i, :], sino_blur)
            if ring_removal:
                data = tomopy.remove_stripe_ti(data, alpha=4)
                if phase_retrieval:
                    data = tomopy.retrieve_phase(data, kwargs['pixel_size'], kwargs['dist'], kwargs['energy'],
                                                 kwargs['alpha'])
                rec0 = tomopy.recon(data, theta, center=center, algorithm=algorithm, **kwargs)
                rec = tomopy.remove_ring(np.copy(rec0))
                cent = int((rec.shape[1]-1) / 2)
                xx, yy = np.meshgrid(np.arange(rec.shape[2]), np.arange(rec.shape[1]))
                mask0 = ((xx-cent)**2+(yy-cent)**2 <= flattened_radius**2)
                mask = np.zeros(rec.shape, dtype='bool')
                for i in range(mask.shape[0]):
                    mask[i, :, :] = mask0
                rec[mask] = (rec[mask] + rec0[mask])/2
            else:
                rec = tomopy.recon(data, theta, center=center, algorithm=algorithm, **kwargs)
            rec = tomopy.remove_outlier(rec, tolerance)
            rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

            for i in range(rec.shape[0]):
                slice = fstart + i*sino_step
                if test_mode:
                    dxchange.write_tiff(rec[i, :, :], fname=os.path.join(dest_folder, 'recon/recon_{:05d}_{:d}.tiff').format(slice, center), dtype=dtype)
                else:
                    dxchange.write_tiff(rec[i, :, :], fname=os.path.join(dest_folder, 'recon/recon_{:05d}.tiff').format(slice), dtype=dtype)
                if save_sino:
                    dxchange.write_tiff(data[:, i, :], fname=os.path.join(dest_folder, 'sino/recon_{:05d}_{:d}.tiff').format(slice, center), dtype=dtype)
            print('Block {:d} finished in {:.2f} s.'.format(iblock, time.time()-t0))
            iblock += 1
    return
Exemplo n.º 19
0
dim1 = between 1000 and 10000
dim2 = between 1000 and 10000
dim3 = between 1000 and 10000

prj = numpy.random( ... )

# -----------------------------




# Processing funcs --------------

# phase retrieval
t = time.time()
prj = tomopy.retrieve_phase(prj,
	alpha=1e-4)
print time.time() - t

# reconstruct
t = time.time()
rec = tomopy.recon(prj, ang,
	algorithm='gridrec',
	center=1010,
	emission=False)
print time.time() - t

# -----------------------------



# save as tiff stack
Exemplo n.º 20
0
def recon_hdf5(src_fanme,
               dest_folder,
               sino_range,
               sino_step,
               shift_grid,
               center_vec=None,
               center_eq=None,
               dtype='float32',
               algorithm='gridrec',
               tolerance=1,
               chunk_size=20,
               save_sino=False,
               sino_blur=None,
               flattened_radius=120,
               mode='180',
               test_mode=False,
               phase_retrieval=None,
               ring_removal=True,
               crop=None,
               num_iter=None,
               pad_length=0,
               read_theta=True,
               **kwargs):
    """
    center_eq: a and b parameters in fitted center position equation center = a*slice + b.
    """

    if not os.path.exists(dest_folder):
        try:
            os.mkdir(dest_folder)
        except:
            pass
    sino_ini = int(sino_range[0])
    sino_end = int(sino_range[1])
    sino_ls_all = np.arange(sino_ini, sino_end, sino_step, dtype='int')
    alloc_set = allocate_mpi_subsets(sino_ls_all.size,
                                     size,
                                     task_list=sino_ls_all)
    sino_ls = alloc_set[rank]

    # prepare metadata
    f = h5py.File(src_fanme)
    dset = f['exchange/data']
    full_shape = dset.shape
    if read_theta:
        _, _, _, theta = read_data_adaptive(src_fanme, proj=(0, 1))
    else:
        theta = tomopy.angles(full_shape[0])
    if center_eq is not None:
        a, b = center_eq
        center_ls = sino_ls_all * a + b
        center_ls = np.round(center_ls)
        for iblock in range(int(sino_ls.size / chunk_size) + 1):
            internal_print('Beginning block {:d}.'.format(iblock))
            t0 = time.time()
            istart = iblock * chunk_size
            iend = np.min([(iblock + 1) * chunk_size, sino_ls.size])
            sub_sino_ls = sino_ls[istart:iend - 1]
            center = np.take(center_ls, sub_sino_ls)
            data = np.zeros([dset.shape[0], len(sub_sino_ls), dset.shape[2]])
            for ind, i in enumerate(sub_sino_ls):
                data[:, ind, :] = dset[:, i, :]
            data[np.isnan(data)] = 0
            data = data.astype('float32')
            data = tomopy.remove_stripe_ti(data, alpha=4)
            if sino_blur is not None:
                for i in range(data.shape[1]):
                    data[:, i, :] = gaussian_filter(data[:, i, :], sino_blur)
            if phase_retrieval:
                data = tomopy.retrieve_phase(data, kwargs['pixel_size'],
                                             kwargs['dist'], kwargs['energy'],
                                             kwargs['alpha'])
            if pad_length != 0:
                data = pad_sinogram(data, pad_length)
            data = tomopy.remove_stripe_ti(data, alpha=4)
            if ring_removal:
                rec0 = tomopy.recon(data,
                                    theta,
                                    center=center + pad_length,
                                    algorithm=algorithm,
                                    **kwargs)
                rec = tomopy.remove_ring(np.copy(rec0))
                cent = int((rec.shape[1] - 1) / 2)
                xx, yy = np.meshgrid(np.arange(rec.shape[2]),
                                     np.arange(rec.shape[1]))
                mask0 = ((xx - cent)**2 +
                         (yy - cent)**2 <= flattened_radius**2)
                mask = np.zeros(rec.shape, dtype='bool')
                for i in range(mask.shape[0]):
                    mask[i, :, :] = mask0
                rec[mask] = (rec[mask] + rec0[mask]) / 2
            else:
                rec = tomopy.recon(data,
                                   theta,
                                   center=center + pad_length,
                                   algorithm=algorithm,
                                   **kwargs)
            if pad_length != 0:
                rec = rec[:, pad_length:pad_length + full_shape[2],
                          pad_length:pad_length + full_shape[2]]
            rec = tomopy.remove_outlier(rec, tolerance)
            rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)
            if crop is not None:
                crop = np.asarray(crop)
                rec = rec[:, crop[0, 0]:crop[1, 0], crop[0, 1]:crop[1, 1]]
            for i in range(rec.shape[0]):
                slice = sub_sino_ls[i]
                dxchange.write_tiff(
                    rec[i, :, :],
                    fname=os.path.join(
                        dest_folder, 'recon/recon_{:05d}.tiff').format(slice))
                if save_sino:
                    dxchange.write_tiff(
                        data[:, i, :],
                        fname=os.path.join(
                            dest_folder, 'sino/recon_{:05d}_{:d}.tiff').format(
                                slice, int(center[i])))
            iblock += 1
            internal_print('Block {:d} finished in {:.2f} s.'.format(
                iblock,
                time.time() - t0))
    else:
        # divide chunks
        grid_bins = np.append(np.ceil(shift_grid[:, 0, 0]), full_shape[1])
        chunks = []
        center_ls = []
        istart = 0
        counter = 0
        # irow should be 0 for slice 0
        irow = np.searchsorted(grid_bins, sino_ls[0], side='right') - 1

        for i in range(sino_ls.size):
            counter += 1
            sino_next = i + 1 if i != sino_ls.size - 1 else i
            if counter >= chunk_size or sino_ls[sino_next] >= grid_bins[
                    irow + 1] or sino_next == i:
                iend = i + 1
                chunks.append((istart, iend))
                istart = iend
                center_ls.append(center_vec[irow])
                if sino_ls[sino_next] >= grid_bins[irow + 1]:
                    irow += 1
                counter = 0

        # reconstruct chunks
        iblock = 1
        for (istart, iend), center in zip(chunks, center_ls):
            internal_print('Beginning block {:d}.'.format(iblock))
            t0 = time.time()
            internal_print('Reading data...')
            sub_sino_ls = sino_ls[istart:iend]
            data = np.zeros([dset.shape[0], len(sub_sino_ls), dset.shape[2]])
            for ind, i in enumerate(sub_sino_ls):
                data[:, ind, :] = dset[:, i, :]
            if mode == '360':
                overlap = 2 * (dset.shape[2] - center)
                data = tomosaic.sino_360_to_180(data,
                                                overlap=overlap,
                                                rotation='right')
                theta = tomopy.angles(data.shape[0])
            data[np.isnan(data)] = 0
            data = data.astype('float32')
            if sino_blur is not None:
                for i in range(data.shape[1]):
                    data[:, i, :] = gaussian_filter(data[:, i, :], sino_blur)
            if phase_retrieval:
                data = tomopy.retrieve_phase(data, kwargs['pixel_size'],
                                             kwargs['dist'], kwargs['energy'],
                                             kwargs['alpha'])
            if pad_length != 0:
                data = pad_sinogram(data, pad_length)
            data = tomopy.remove_stripe_ti(data, alpha=4)
            if ring_removal:
                rec0 = tomopy.recon(data,
                                    theta,
                                    center=center + pad_length,
                                    algorithm=algorithm,
                                    **kwargs)
                rec = tomopy.remove_ring(np.copy(rec0))
                cent = int((rec.shape[1] - 1) / 2)
                xx, yy = np.meshgrid(np.arange(rec.shape[2]),
                                     np.arange(rec.shape[1]))
                mask0 = ((xx - cent)**2 +
                         (yy - cent)**2 <= flattened_radius**2)
                mask = np.zeros(rec.shape, dtype='bool')
                for i in range(mask.shape[0]):
                    mask[i, :, :] = mask0
                rec[mask] = (rec[mask] + rec0[mask]) / 2
            else:
                rec = tomopy.recon(data,
                                   theta,
                                   center=center + pad_length,
                                   algorithm=algorithm,
                                   **kwargs)
            if pad_length != 0:
                rec = rec[:, pad_length:pad_length + full_shape[2],
                          pad_length:pad_length + full_shape[2]]
            rec = tomopy.remove_outlier(rec, tolerance)
            rec = tomopy.circ_mask(rec, axis=0, ratio=0.95)

            if crop is not None:
                crop = np.asarray(crop)
                rec = rec[:, crop[0, 0]:crop[1, 0], crop[0, 1]:crop[1, 1]]

            for i in range(rec.shape[0]):
                slice = sub_sino_ls[i]
                if test_mode:
                    dxchange.write_tiff(
                        rec[i, :, :],
                        fname=os.path.join(
                            dest_folder,
                            'recon/recon_{:05d}_{:d}.tiff').format(
                                slice, center),
                        dtype=dtype)
                else:
                    dxchange.write_tiff(
                        rec[i, :, :],
                        fname=os.path.join(
                            dest_folder,
                            'recon/recon_{:05d}.tiff').format(slice),
                        dtype=dtype)
                if save_sino:
                    dxchange.write_tiff(
                        data[:, i, :],
                        fname=os.path.join(
                            dest_folder, 'sino/recon_{:05d}_{:d}.tiff').format(
                                slice, center),
                        dtype=dtype)
            internal_print('Block {:d} finished in {:.2f} s.'.format(
                iblock,
                time.time() - t0))
            iblock += 1
    return
Exemplo n.º 21
0
def paganin(input, pixel=1e-4, distance=50, energy=25, alpha=1e-4):
    assert input.ndim == 2
    input = input.reshape([1, input.shape[0], input.shape[1]]).astype('float32')
    res = tomopy.retrieve_phase(input, pixel_size=pixel, dist=distance, energy=energy, alpha=alpha)
    res = np.squeeze(res)
    return res
Exemplo n.º 22
0
def recon(io_paras, data_paras, rot_center=None, normalize=True, stripe_removal=10, phase_retrieval=False, 
            opt_center=False, diag_center=False, output="tiff"):
    # Input and output
    datafile = io_paras.get('datafile')
    path2white = io_paras.get('path2white', datafile)
    path2dark = io_paras.get('path2dark', path2white)
    out_dir = io_paras.get('out_dir')
    diag_cent_dir = io_paras.get('diag_cent_dir', out_dir+"/center_diagnose/")
    recon_dir = io_paras.get('recon_dir', out_dir+"/recon/")
    out_prefix = io_paras.get('out_prefix', "recon_")

    # Parameters of dataset
    NumCycles = data_paras.get('NumCycles', 1) # Number of cycles used for recon
    ProjPerCycle = data_paras.get('ProjPerCycle') # Number of projections per cycle, N_theta
    cycle_offset = data_paras.get('cycle_offset', 0) # Offset in output cycle number
    proj_start = data_paras.get('proj_start', 0) # Starting projection of reconstruction 
    proj_step = data_paras.get('proj_step')
    z_start = data_paras.get('z_start', 0)
    z_end = data_paras.get('z_end', z_start+1)
    z_step = data_paras.get('z_step')
    x_start = data_paras.get('x_start')
    x_end = data_paras.get('x_end', x_start+1)
    x_step = data_paras.get('x_step')
    white_start = data_paras.get('white_start')
    white_end = data_paras.get('white_end')
    dark_start = data_paras.get('dark_start')
    dark_end = data_paras.get('dark_end')

    rot_center_copy = rot_center

    for cycle in xrange(NumCycles):
        # Set start and end of each cycle
        projections_start = cycle * ProjPerCycle + proj_start
        projections_end = projections_start + ProjPerCycle
        slice1 = slice(projections_start, projections_end, proj_step)
        slice2 = slice(z_start, z_end, z_step)
        slice3 = slice(x_start, x_end, x_step)
        slices = (slice1, slice2, slice3)
        white_slices = (slice(white_start, white_end), slice2, slice3)
        dark_slices = (slice(dark_start, dark_end), slice2, slice3)
        print("Running cycle #%s (projs %s to %s)" 
            % (cycle, projections_start, projections_end))
        
        # Read HDF5 file.
        print("Reading datafile %s..." % datafile, end="")
        sys.stdout.flush()
        data, white, dark = reader.read_aps_2bm(datafile, slices, white_slices, dark_slices, 
                                        path2white=path2white, path2dark=path2dark)
        theta = gen_theta(data.shape[0])
        print("Done!")
        print("Data shape = %s;\nwhite shape = %s;\ndark shape = %s." 
            % (data.shape, white.shape, dark.shape))
        
        ## Normalize dataset using data_white and data_dark
        if normalize:
            print("Normalizing data ...")
            # white = white.mean(axis=0).reshape(-1, *data.shape[1:])
            # dark = dark.mean(axis=0).reshape(-1, *data.shape[1:])
            # data = (data - dark) / (white - dark)
            data = tomopy.normalize(data, white, dark, cutoff=None, ncore=_ncore, nchunk=None)[...]
    
        ## Remove stripes caused by dead pixels in the detector
        if stripe_removal:
            print("Removing stripes ...")
            data = tomopy.remove_stripe_fw(data, level=stripe_removal, wname='db5', sigma=2,
                                    pad=True, ncore=_ncore, nchunk=None)
            # data = tomopy.remove_stripe_ti(data, nblock=0, alpha=1.5, 
            #                                 ncore=None, nchunk=None)

#        # Show preprocessed projection
#        plt.figure("%s-prep" % projections_start)
#        plt.imshow(d.data[0,:,:], cmap=cm.Greys_r)
#        plt.savefig(out_dir+"/preprocess/%s-prep.jpg" 
#                    % projections_start)
#        # plt.show()
#        continue

        ## Phase retrieval
        if phase_retrieval:
            print("Retrieving phase ...")
            data = tomopy.retrieve_phase(data,
                        pixel_size=1e-4, dist=50, energy=20,
                        alpha=1e-3, pad=True, ncore=_ncore, nchunk=None)
        
        ## Determine and set the center of rotation 
        if opt_center or (rot_center == None):
            ### Using optimization method to automatically find the center
            # d.optimize_center()
            print("Optimizing center ...", end="")
            sys.stdout.flush()
            rot_center = tomopy.find_center(data, theta, ind=None, emission=True, init=None,
                                            tol=0.5, mask=True, ratio=1.)
            print("Done!")
            print("center = %s" % rot_center)
        if diag_center:
            ### Output the reconstruction results using a range of centers,
            ### and then manually find the optimal center.
            # d.diagnose_center()
            if not os.path.exists(diag_cent_dir):
                os.makedirs(diag_cent_dir)
            print("Testing centers ...", end="")
            sys.stdout.flush()
            tomopy.write_center(data, theta, dpath=diag_cent_dir, 
                                cen_range=[center_start, center_end, center_step], 
                                ind=None, emission=False, mask=False, ratio=1.)
            print("Done!")
        
        ## Flip odd frames
        if (cycle % 2):
            data[...] = data[...,::-1]
            rot_center = data.shape[-1] - rot_center_copy
        else:
            rot_center = rot_center_copy

        ## Reconstruction using FBP
        print("Running gridrec ...", end="")
        sys.stdout.flush()
        recon = tomopy.recon(data, theta, center=rot_center, emission=False, algorithm='gridrec',
                                # num_gridx=None, num_gridy=None, filter_name='shepp',
                                ncore=_ncore, nchunk=_nchunk)
        print("Done!")

        ## Collect background
        # if cycle == 0:
        #     bg = recon
        # elif cycle < 4:
        #     bg += recon
        # else:
        #     recon -= bg/4.

        # Write to stack of TIFFs.
        if not os.path.exists(recon_dir):
            os.makedirs(recon_dir)
        out_fname = recon_dir+"/"+out_prefix+"t_%d" % (cycle + cycle_offset)      
        if "hdf" in output: 
            hdf_fname = out_fname + ".hdf5"
            print("Writing reconstruction output file %s..." 
                 % hdf_fname, end="")
            sys.stdout.flush()
            tomopy.write_hdf5(recon, fname=hdf_fname, gname='exchange', overwrite=False)
            print("Done!")
        if "tif" in output:
            tiff_fname = out_fname + ".tiff"
            print("Writing reconstruction tiff files %s ..."
                    % tiff_fname, end="")
            sys.stdout.flush()
            tomopy.write_tiff_stack(recon, fname=tiff_fname, axis=0, digit=5, start=0, overwrite=False)
            print("Done!")
        if "bin" in output:
            bin_fname = out_fname + ".bin"
            print("Writing reconstruction to binary files %s..." 
                    % bin_fname, end="")
            sys.stdout.flush()
            recon.tofile(bin_fname)
Exemplo n.º 23
0
#dim2 = between 1000 and 10000
#dim3 = between 1000 and 10000
dim1 = 1000

prj = numpy.random.random([dim1,dim1,dim1])

# -----------------------------




# Processing funcs --------------

# phase retrieval
t = time.time()
prj = tomopy.retrieve_phase(prj)
#print time.time() - t
logging.info("Phase - dt: %s" % (time.time() - t))

# reconstruct
t = time.time()
rec = tomopy.recon(prj, ang,
	algorithm='gridrec',
	center=1010,
	alpha=1e-4,
	emission=False)
#print time.time() - t
logging.info("Reconstruction - dt: %s" % (time.time() - t))

# -----------------------------