Exemplo n.º 1
0
def func_to_minimize(
        k: int,  # optimizable variable
        volatility: float,  # optimizable variable
        b_temp: float,  # optimizable variable
        bias: float,  # optimizable variable
        dilution: float,  # optimizable variable
        choices_agent=results.choice_agent0,  # known variables
        choices_opponent=results.choice_agent1,  # known variables
        opponent=ts.create_agents("2-ToM"),  # known variables
        agent_pov=0,  # known variables
):
    agent0 = ts.create_agents(f"{k}-ToM",
                              volatility=volatility,
                              b_temp=b_temp,
                              bias=bias,
                              dilution=dilution)

    p_choices = list(
        forced_choice_competition(
            agent0=agent0,
            agent1=opponent,
            choices_a0=choices_agent,
            choices_a1=choices_opponent,
            p_matrix=penny,
            agent_pov=agent_pov,
        ))

    # euclidian distance between actual choices and probability of the simulated agents
    return np.linalg.norm(np.array(choices_agent) - np.array(p_choices))
def test_tutorial():
    random.seed(1995)

    # initiate the competitive matching pennies game
    penny = ts.PayoffMatrix(name="penny_competitive")

    # print the payoff matrix
    print(penny)

    # define the random bias agent, which chooses 1 70 percent of the time, and call the agent "jung"
    jung = ts.RB(bias=0.7)

    # Examine Agent
    print(f"jung is a class of type: {type(jung)}")
    if isinstance(jung, ts.Agent):
        print(f"but jung is also an instance of the parent class ts.Agent")

    # let us have Jung make a choice
    choice = jung.compete()

    print(
        f"jung chose {choice} and his probability for choosing 1 was {jung.get_bias()}."
    )

    # create a reinforcement learning agent
    skinner = ts.create_agents(agents="QL", start_params={"save_history": True})

    # have the agents compete for 30 rounds
    results = ts.compete(jung, skinner, p_matrix=penny, n_rounds=4)

    # examine results
    print(results.head())  # inspect the first 5 rows of the dataframe

    # Creating a simple 1-ToM with default parameters
    tom_1 = ts.TOM(level=1, dilution=None, save_history=True)

    # Extract the parameters
    tom_1.print_parameters()

    tom_2 = ts.TOM(
        level=2,
        volatility=-2,
        b_temp=-2,  # more deterministic
        bias=0,
        dilution=None,
        save_history=True,
    )
    choice = tom_2.compete(p_matrix=penny, agent=0, op_choice=None)
    print("tom_2 choose:", choice)

    tom_2.reset()  # reset before start

    prev_choice_1tom = None
    prev_choice_2tom = None
    for trial in range(1, 4):
        # note that op_choice is choice on previous turn
        # and that agent is the agent you respond to in the payoff matrix
        choice_1 = tom_1.compete(p_matrix=penny, agent=0, op_choice=prev_choice_1tom)
        choice_2 = tom_2.compete(p_matrix=penny, agent=1, op_choice=prev_choice_2tom)

        # update previous choice
        prev_choice_1tom = choice_1
        prev_choice_2tom = choice_2

        print(
            f"Round {trial}",
            f"  1-ToM choose {choice_1}",
            f"  2-ToM choose {choice_2}",
            sep="\n",
        )

    tom_2.print_internal(
        keys=["p_k", "p_op"], level=[0, 1]  # print these two states
    )  # for the agent simulated opponents 0-ToM and 1-ToM

    # Create a list of agents
    agents = ["RB", "QL", "WSLS", "1-TOM", "2-TOM"]
    # And set their starting parameters. An empty dictionary denotes default values
    start_params = [{"bias": 0.7}, {"learning_rate": 0.5}, {}, {}, {}]

    group = ts.create_agents(agents, start_params)  # create a group of agents

    # Specify the environment
    # round_robin e.g. each agent will play against all other agents
    group.set_env(env="round_robin")

    # Finally, we make the group compete 20 simulations of 30 rounds
    results = group.compete(p_matrix=penny, n_rounds=4, n_sim=2, save_history=True)

    res = group.get_results()
    print(res.head(1))  # print the first row

    res.head(1)

    # res.to_json("tutorials/paper.ndjson", orient="records", lines=True)

    import matplotlib.pyplot as plt

    # Set figure size
    plt.rcParams["figure.figsize"] = [10, 10]

    # plot a heatmap of the rewards for all agent in the tournament
    group.plot_heatmap(cmap="RdBu", show=False)

    # plot the choices of the RB agent when competing against the Q-learning agent
    group.plot_choice(
        agent0="RB", agent1="QL", agent=0, plot_individual_sim=False, show=False
    )

    # plot the score of the RB agent when competing against the Q-learning agent
    group.plot_score(agent0="RB", agent1="QL", agent=0, show=False)

    # plot 2-ToM estimate of its opponent sophistication level
    group.plot_p_k(agent0="1-TOM", agent1="2-TOM", agent=1, level=0, show=False)
    group.plot_p_k(agent0="1-TOM", agent1="2-TOM", agent=1, level=1, show=False)

    # plot 2-ToM estimate of its opponent's volatility while believing the opponent to be level 1.
    group.plot_tom_op_estimate(
        agent0="1-TOM",
        agent1="2-TOM",
        agent=1,
        estimate="volatility",
        level=1,
        plot="mean",
        show=False,
    )

    # plot 2-ToM estimate of its opponent's bias while believing the opponent to be level 1.
    group.plot_tom_op_estimate(
        agent0="1-TOM",
        agent1="2-TOM",
        agent=1,
        estimate="bias",
        level=1,
        plot="mean",
        show=False,
    )
Exemplo n.º 3
0
This script fits the k-ToM model to data using scipy.optimize()
"""
import sys
from functools import partial

sys.path.append("..")
sys.path.append(".")
from wasabi import msg

import numpy as np
from scipy.optimize import minimize

import tomsup as ts

# generating some sample data
group = ts.create_agents(["1-ToM", "2-ToM"])
penny = ts.PayoffMatrix("penny_competitive")
results = group.compete(p_matrix=penny,
                        n_rounds=30,
                        env="round_robin",
                        save_history=True)


def forced_choice_competition(
    agent0,
    agent1,
    choices_a0,
    choices_a1,
    p_matrix,
    agent_pov,
):
# Initialize vector for populaitng with times
elapsed_times = [None] * n_tests

# pr = cProfile.Profile()
# pr.enable()

for test in range(n_tests):

    # print(test)

    # Get start time
    start_time = time()

    # Make group
    group = ts.create_agents(agents, start_params)

    # Set as round robin tournament
    group.set_env(env="round_robin")

    # Run tournament
    results = group.compete(
        p_matrix=penny_comp,
        n_rounds=n_rounds,
        n_sim=n_sim,
        save_history=False,
        verbose=False,
        n_jobs=n_jobs,
    )

    # Save elapsed time in vector
Exemplo n.º 5
0
#Make a group competition
agents = ['RB', '0-TOM', '2-TOM']  #Select agents
params = [
    {
        'bias': 0.7
    },  #RB's parameters
    {},  #0-ToM's parameters (empty means default)
    {
        'volatility': -3,
        'b_temp': 0,
        'dilution': 0.1
    }
]  #2-ToM's parameters

group = ts.create_agents(agents, params)  #Create the group
type(group)
group.set_env(
    env='round_robin'
)  #Set the tournament structure. Right now there's only one option
print(group)  #check the group settings

#Make the group compete
results = group.compete(p_matrix=penny, n_rounds=40, n_sim=4)
results.head()  #examine the first 5 rows in results

#Plot score and choices for some competing agents (WORK IN PROGRESS)
ts.plot.score(results, agent0="RB", agent1="0-TOM", agent=0)
ts.plot.choice(results, agent0="RB", agent1="2-TOM", agent=0)

#It's also possible for people to play against agents from tomsup. We have made a basic psychopy script for this.
Exemplo n.º 6
0
        for v in vol:
            for b in bias:
                for beta in b_temp:
                    agents.append(f"{k}-tom")
                    args.append({"bias": b, "b_temp": beta, "volatility": v})
    return agents, args


agents, args = make_grid(k, vol_r, bias_r, b_temp_r)

a = "3-tom"
agents.append(a)
args.append({})

# generating some sample data
group = ts.create_agents(agents, args)
penny = ts.PayoffMatrix("penny_competitive")
group.set_env("round_robin")

# remove non-2tom pairs
group.pairing = [
    pair for pair in group.pairing if a in pair[0] or a in pair[1]
]

results = group.compete(p_matrix=penny,
                        n_rounds=n_rounds,
                        save_history=True,
                        n_jobs=-1)

### Extract 3-toms recoved parameters
assert results.agent1.unique()[0] == "3-tom"
Exemplo n.º 7
0
popup.addField("Number of trials", 2)
popup.show()

if popup.OK:
    ID = popup.data[0]
    age = popup.data[1]
    gender = popup.data[2]
    k = popup.data[3]
    n_trials = popup.data[4]
elif popup.Cancel:
    core.quit

print(f"this is {k}")

# ------------- create agent and payoff matrix ---------
tom = ts.create_agents(agents="RB")  # this need to be changed
penny = ts.PayoffMatrix(name="penny_competitive")

# ------------- Defining Variables and function ---------
intro0 = f"""Dear participant

In the following experiment you will compete against another person in the matching pennies game for {n_trials}.

Before starting the experiment, we would like to inform you that no personal information is collected, and that beside the given information no personal information will be recorded. If at any time you should feel uncomfortable, you are free to stop the experiment and ask for any generated data to be deleted.
If you have read the above and agree to proceed, press ENTER."""

intro1 = f"""We will now briefly explain the rules of the game.

You will see two closed hands. Your opponent will have hidden a penny in either one of them. Yours goal is to figure out which of the two hands contain the penny.
If you guess right, you get a point, if not, your opponnent gains a point.
If you have read the above and understand the rules, press ENTER."""
Exemplo n.º 8
0
def test_tutorial():
    jung = ts.RB(
        bias=0.7, save_history=True
    )  # calling the agent subclass RB - for more on save_history see '3) inspecting Agent and AgentGroup'

    # Let's examine the jung
    print(f"jung is an class of type: {type(jung)}")
    if isinstance(jung, ts.Agent):
        print(f"but jung is also an instance of the parent class ts.Agent")

    # let us have Jung make a choice
    choice = jung.compete()

    print(
        f"jung chose {choice} and his probability for choosing 1 was {jung.get_bias()}."
    )

    skinner = ts.create_agents(agents="QL",
                               start_params={
                                   "save_history": True
                               })  # create a reinforcement learning agent

    penny = ts.PayoffMatrix(name="penny_competitive"
                            )  # fetch the competitive matching pennies game.

    # print the payoff matrix
    print(penny)

    # fetch the underlying numpy matrix
    print(penny.get_matrix())

    jung_a = jung.compete()  # a for action
    skinner_a = skinner.compete(
        p_matrix=penny, agent=1, op_choice=None
    )  # Note that op_choice can be unspecified (or None) in the first round

    jung_p = penny.payoff(choice_agent0=jung_a,
                          choice_agent1=skinner_a,
                          agent=0)
    skinner_p = penny.payoff(choice_agent0=jung_a,
                             choice_agent1=skinner_a,
                             agent=1)

    print(
        f"jung chose {jung_a} and skinner chose {skinner_a}, which results in a payoff for jung of {jung_p} and skinner of {skinner_p}."
    )
    # Note that you might get different results simply by chance

    results = ts.compete(jung,
                         skinner,
                         p_matrix=penny,
                         n_rounds=4,
                         save_history=True,
                         verbose=True)
    print(type(results))

    jung_sum = results["payoff_agent0"].sum()
    skinner_sum = results["payoff_agent1"].sum()

    print(
        f"jung seemed to get a total of {jung_sum} points, while skinner got a total of {skinner_sum}."
    )

    results.head()  # inspect the first 5 rows of the df

    results = ts.compete(
        jung,
        skinner,
        penny,
        n_rounds=4,
        n_sim=2,
        save_history=True,
        return_val="df",
        verbose=False,
    )
    results.head()

    agents = ["RB", "QL", "WSLS"]  # create a list of agents
    start_params = [
        {
            "bias": 0.7
        },
        {
            "learning_rate": 0.5
        },
        {},
    ]  # create a list of their starting parameters (an empty dictionary {} simply assumes defaults)

    group = ts.create_agents(agents, start_params)  # create a group of agents
    print(group)
    print("\n----\n")  # to space out the outputs

    group.set_env(
        env="round_robin"
    )  # round_robin e.g. each agent will play against all other agents

    # make them compete
    group.compete(p_matrix=penny, n_rounds=4, n_sim=2, verbose=True)
    results = group.get_results()
    results.head()  # examine the first 5 rows in results

    # What if I want to know the starting parameters?
    print("This is the starting parameters of jung: ", jung.get_start_params()
          )  # Note that it also prints out default parameters
    print("This is the starting parameters of skinner: ",
          skinner.get_start_params())

    # What if I want to know the agent last choice?
    print("This is jung's last choice: ", jung.get_choice())
    print("This is skinner's last choice: ", skinner.get_choice())

    # What if I want to know the agents strategy?
    print("jung's strategy is: ", jung.get_strategy())
    print("skinner's strategy is: ", skinner.get_strategy())

    # What is the history of skinner (e.g. what is his choices and internal states)

    history = jung.get_history(format="df")
    print(history.head())

    print("\n --- \n")  # for spacing

    history = skinner.get_history(format="df")
    print(history.head(15))  # the first 15 rows

    ts.plot.score(results, agent0="RB", agent1="QL", agent=0, show=False)

    ts.plot.choice(results, agent0="RB", agent1="QL", agent=0, show=False)

    # Create a list of agents
    agents = ["RB", "QL", "WSLS", "1-TOM", "2-TOM"]
    # And set their starting parameters. An empty dict denotes default values
    start_params = [{"bias": 0.7}, {"learning_rate": 0.5}, {}, {}, {}]

    group = ts.create_agents(agents, start_params)  # create a group of agents

    # Specify the environment
    # round_robin e.g. each agent will play against all other agents
    group.set_env(env="round_robin")

    # Finally, we make the group compete 20 simulations of 30 rounds
    group.compete(p_matrix=penny, n_rounds=4, n_sim=2, save_history=True)

    res = group.get_results()
    res.head(1)  # print the first row

    import matplotlib.pyplot as plt

    # Set figure size
    plt.rcParams["figure.figsize"] = [10, 10]

    group.plot_heatmap(cmap="RdBu", show=False)

    group.plot_choice(agent0="RB",
                      agent1="QL",
                      agent=0,
                      plot_individual_sim=False,
                      show=False)

    group.plot_score(agent0="RB", agent1="QL", agent=0, show=False)

    group.plot_p_k(agent0="1-TOM",
                   agent1="2-TOM",
                   agent=1,
                   level=0,
                   show=False)
    group.plot_p_k(agent0="1-TOM",
                   agent1="2-TOM",
                   agent=1,
                   level=1,
                   show=False)

    group.plot_history(
        "1-TOM",
        "2-TOM",
        agent=1,
        state="",
        fun=lambda x: x["internal_states"]["own_states"]["p_op_mean"][0],
        show=False,
    )

    df = group.get_results()
    print(df.loc[(df["agent0"] == "1-TOM")
                 & (df["agent1"] == "2-TOM")]["history_agent1"][1]
          ["internal_states"]["opponent_states"][1]["own_states"])

    # volatility
    group.plot_history(
        "1-TOM",
        "2-TOM",
        agent=1,
        state="",
        fun=lambda x: x["internal_states"]["opponent_states"][1]["own_states"][
            "param_mean"][0, 0],
        ylab="Volalitity (log-odds)",
        show=False,
    )
    #

    # behav temp
    group.plot_history(
        "1-TOM",
        "2-TOM",
        agent=1,
        state="",
        fun=lambda x: x["internal_states"]["opponent_states"][1]["own_states"][
            "param_mean"][0, 1],
        ylab="Behavioral Temperature (log-odds)",
        show=False,
    )

    # ktom simple example
    tom_1 = ts.TOM(level=1, dilution=None, save_history=True)

    # Extact the parameters
    print(tom_1.get_parameters())

    tom_2 = ts.TOM(
        level=2,
        volatility=-2,
        b_temp=-2,  # more deterministic
        bias=0,
        dilution=None,
        save_history=True,
    )

    choice = tom_2.compete(p_matrix=penny, agent=0, op_choice=None)
    print(choice)

    tom_2.reset()  # reset before start

    prev_choice_1tom = None
    prev_choice_2tom = None
    for trial in range(1, 4):
        # note that op_choice is choice on previous turn
        # and that agent is the agent you repond to the in payoff matrix
        choice_1 = tom_1.compete(p_matrix=penny,
                                 agent=0,
                                 op_choice=prev_choice_1tom)
        choice_2 = tom_2.compete(p_matrix=penny,
                                 agent=1,
                                 op_choice=prev_choice_2tom)

        # update previous choice
        prev_choice_1tom = choice_1
        prev_choice_2tom = choice_2

        print(
            f"Round {trial}",
            f"  1-ToM choose {choice_1}",
            f"  2-ToM choose {choice_2}",
            sep="\n",
        )

    tom_2.print_internal(keys=["p_k", "p_op"], level=[0, 1])