Exemplo n.º 1
0
    def testDropoutFlipUD(self):
        orig_events, sensor_size = create_random_input()

        flip_probability = 1
        drop_probability = 0.5

        transform = transforms.Compose([
            transforms.DropEvent(p=drop_probability),
            transforms.RandomFlipUD(sensor_size=sensor_size,
                                    p=flip_probability),
        ])

        events = transform(orig_events)

        drop_events = np.isclose(events.shape[0],
                                 (1 - drop_probability) * orig_events.shape[0])
        assert drop_events, (
            "Event dropout should result in drop_probability*len(original) events"
            " dropped out.")

        temporal_order = np.isclose(
            np.sum((events["t"] - np.sort(events["t"]))**2), 0)
        assert temporal_order, "Temporal order should be maintained."

        first_dropped_index = np.where(
            events["t"][0] == orig_events["t"])[0][0]
        flipped_events = (
            sensor_size[1] - 1 -
            orig_events["y"][first_dropped_index] == events["y"][0])
        assert flipped_events, (
            "When flipping up and down y must map to the opposite pixel, i.e. y' ="
            " sensor width - y")
        assert events is not orig_events
Exemplo n.º 2
0
    def testTimeSkewFlipPolarityFlipLR(self):
        orig_events, sensor_size = create_random_input()

        coefficient = 1.5
        offset = 0
        flip_probability_pol = 1
        flip_probability_lr = 1

        transform = transforms.Compose([
            transforms.TimeSkew(coefficient=coefficient, offset=offset),
            transforms.RandomFlipPolarity(p=flip_probability_pol),
            transforms.RandomFlipLR(sensor_size=sensor_size,
                                    p=flip_probability_lr),
        ])

        events = transform(orig_events)

        assert len(events) == len(orig_events)
        assert (events["t"] >= orig_events["t"]).all()
        assert np.min(events["t"]) >= 0

        assert (events["p"] == orig_events["p"] *
                (-1)).all(), "Polarities should be flipped."

        same_pixel = np.isclose((sensor_size[0] - 1) - events["x"][0],
                                orig_events["x"][0])
        assert same_pixel, (
            "When flipping left and right x must map to the opposite pixel, i.e. x' ="
            " sensor width - x")
        assert events is not orig_events
Exemplo n.º 3
0
def test_caching_transforms():
    sensor_size = datasets.POKERDVS.sensor_size
    preprocess = transforms.Compose(
        [transforms.Downsample(time_factor=1, spatial_factor=1)])
    augmentation = transforms.Compose(
        [transforms.Downsample(time_factor=1, spatial_factor=1)])
    dataset = datasets.POKERDVS(save_to="./data",
                                train=True,
                                transform=preprocess)

    dataset_cached = CachedDataset(dataset,
                                   cache_path="./cache/test2",
                                   transform=augmentation,
                                   num_copies=4)

    for (data, label), (data2, label2) in zip(dataset, dataset_cached):
        assert (data == data2).all()
        assert label == label2
Exemplo n.º 4
0
def plot_events(events, sensor_size, ordering, frame_time=25000, repeat=False):
    from .utils import plot_frames

    transform = transforms.Compose([
        transforms.Denoise(time_filter=20000),
        transforms.ToRatecodedFrame(frame_time=frame_time,
                                    merge_polarities=True),
    ])
    frames = transform(events, sensor_size=sensor_size, ordering=ordering)
    plot_frames(frames, frame_time)
Exemplo n.º 5
0
 def testToTimesurfaces(self):
     events = self.random_xytp[0].copy()
     surf_dims = (7, 7)
     transform = transforms.Compose([
         transforms.ToTimesurface(surface_dimensions=surf_dims,
                                  tau=5e3,
                                  decay="lin")
     ])
     surfaces = transform(events=events,
                          sensor_size=self.random_xytp[2],
                          ordering=self.ordering)
     self.assertEqual(surfaces.shape[0], len(self.original_events))
     self.assertEqual(surfaces.shape[1], 2)
     self.assertEqual(surfaces.shape[2:], surf_dims)
Exemplo n.º 6
0
    def testTimeJitter(self):
        events = self.random_xytp[0].copy()
        images = None
        variance = max(self.random_xytp[0][:, 2]) / 10
        transform = transforms.Compose(
            [transforms.TimeJitter(variance=variance, clip_negative=False)])
        transform(events=events,
                  sensor_size=self.random_xytp[2],
                  ordering=self.ordering)

        self.assertTrue(len(events) == len(self.original_events))
        self.assertTrue((events[:, 0] == self.original_events[:, 0]).all())
        self.assertTrue((events[:, 1] == self.original_events[:, 1]).all())
        self.assertFalse((events[:, 2] == self.original_events[:, 2]).all())
        self.assertTrue((events[:, 3] == self.original_events[:, 3]).all())
        self.assertTrue(
            np.isclose(events[:, 2].all(),
                       self.original_events[:, 2].all(),
                       atol=variance))
Exemplo n.º 7
0
    def testDropoutFlipUD(self):
        events = self.random_xytp[0].copy()
        images = self.random_xytp[1].copy()
        multi_image = self.random_xytp[3]
        flip_probability = 1
        drop_probability = 0.5

        transform = transforms.Compose([
            transforms.DropEvents(drop_probability=drop_probability),
            transforms.FlipUD(flip_probability=flip_probability),
        ])

        events, images = transform(
            events=events,
            images=images,
            sensor_size=self.random_xytp[2],
            ordering=self.ordering,
            multi_image=multi_image,
        )

        drop_events = np.isclose(events.shape[0], (1 - drop_probability) *
                                 self.original_events.shape[0])
        self.assertTrue(
            drop_events,
            "Event dropout should result in drop_probability*len(original) events"
            " dropped out.",
        )

        temporal_order = np.isclose(
            np.sum((events[:, 2] - np.sort(events[:, 2]))**2), 0)
        self.assertTrue(temporal_order, "Temporal order should be maintained.")

        first_dropped_index = np.where(
            events[0, 2] == self.original_events[:, 2])[0][0]
        flipped_events = (
            self.random_xytp[2][1] - 1 -
            self.original_events[first_dropped_index, 1] == events[0, 1])
        self.assertTrue(
            flipped_events,
            "When flipping up and down y must map to the opposite pixel, i.e. y' ="
            " sensor width - y",
        )
Exemplo n.º 8
0
    def testTimeReversalSpatialJitter(self):
        orig_events, sensor_size = create_random_input()

        flip_probability = 1
        variance_x = 3
        variance_y = 3
        sigma_x_y = 0
        transform = transforms.Compose([
            transforms.RandomTimeReversal(p=flip_probability),
            transforms.SpatialJitter(
                sensor_size=sensor_size,
                variance_x=variance_x,
                variance_y=variance_y,
                sigma_x_y=sigma_x_y,
                clip_outliers=False,
            ),
        ])
        events = transform(orig_events)

        assert len(events) == len(
            orig_events), "Number of events should be the same."
        spatial_var_x = np.isclose(events["x"].all(),
                                   orig_events["x"].all(),
                                   atol=variance_x)
        assert spatial_var_x, "Spatial jitter should be within chosen variance x."
        assert (events["x"] !=
                orig_events["x"]).any(), "X coordinates should be different."
        spatial_var_y = np.isclose(events["y"].all(),
                                   orig_events["y"].all(),
                                   atol=variance_y)
        assert spatial_var_y, "Spatial jitter should be within chosen variance y."
        assert (events["y"] !=
                orig_events["y"]).any(), "Y coordinates should be different."
        assert (events["p"] == orig_events["p"] *
                (-1)).all(), "Polarities should be flipped."
        time_reversal = (events["t"] == np.max(orig_events["t"]) -
                         orig_events["t"]).all()
        assert (
            time_reversal
        ), "Condition of time reversal t_i' = max(t) - t_i has to be fullfilled"
        assert events is not orig_events
Exemplo n.º 9
0
    def testTimeSkewFlipPolarityFlipLR(self):
        events = self.random_xytp[0].copy()
        images = self.random_xytp[1].copy()
        multi_image = self.random_xytp[3]
        coefficient = 1.5
        offset = 0
        flip_probability_pol = 1
        flip_probability_lr = 1

        transform = transforms.Compose([
            transforms.TimeSkew(coefficient=coefficient, offset=offset),
            transforms.FlipPolarity(flip_probability=flip_probability_pol),
            transforms.FlipLR(flip_probability=flip_probability_lr),
        ])

        events, images = transform(
            events=events,
            images=images,
            sensor_size=self.random_xytp[2],
            ordering=self.ordering,
            multi_image=multi_image,
        )

        self.assertTrue(len(events) == len(self.original_events))
        self.assertTrue((events[:, 2] >= self.original_events[:, 2]).all())
        self.assertTrue(np.min(events[:, 2]) >= 0)

        self.assertTrue(
            (events[:, 3] == self.original_events[:, 3] * (-1)).all(),
            "Polarities should be flipped.",
        )

        same_pixel = np.isclose((self.random_xytp[2][0] - 1) - events[0, 0],
                                self.original_events[0, 0])
        self.assertTrue(
            same_pixel,
            "When flipping left and right x must map to the opposite pixel, i.e. x' ="
            " sensor width - x",
        )
Exemplo n.º 10
0
def test_pytorch_batch_collation_dense_tensor():
    import torch

    events1, sensor_size = create_random_input()
    events2, sensor_size = create_random_input()

    time_window = 1000
    transform = transforms.Compose(
        [transforms.ToFrame(sensor_size=sensor_size, time_window=time_window)])
    dataset = DummyDataset(
        (events1[:5000], events2),
        transform)  # simulate recordings of different length
    batch_size = 2
    dataloader = torch.utils.data.DataLoader(
        dataset,
        collate_fn=tonic.collation.PadTensors(),
        batch_size=batch_size)

    batch, label = next(iter(dataloader))

    max_time = int(events2["t"][-1])
    assert batch.shape[0] == max_time // time_window
    assert batch.shape[1] == batch_size
    assert batch.shape[2] == sensor_size[2]
Exemplo n.º 11
0
    def testTimeReversalSpatialJitter(self):
        events = self.random_xytp[0].copy()
        images = self.random_xytp[1].copy()
        flip_probability = 1
        multi_image = self.random_xytp[3]
        variance_x = 1
        variance_y = 1
        sigma_x_y = 0
        transform = transforms.Compose([
            transforms.TimeReversal(flip_probability=flip_probability),
            transforms.SpatialJitter(
                variance_x=variance_x,
                variance_y=variance_y,
                sigma_x_y=sigma_x_y,
                clip_outliers=False,
            ),
        ])
        events, images = transform(
            events=events,
            images=images,
            sensor_size=self.random_xytp[2],
            ordering=self.ordering,
            multi_image=multi_image,
        )

        self.assertTrue(
            len(events) == len(self.original_events),
            "Number of events should be the same.",
        )
        spatial_var_x = np.isclose(events[:, 0].all(),
                                   self.original_events[:, 0].all(),
                                   atol=variance_x)
        self.assertTrue(spatial_var_x,
                        "Spatial jitter should be within chosen variance x.")
        self.assertFalse(
            (events[:, 0] == self.original_events[:, 0]).all(),
            "X coordinates should be different.",
        )
        spatial_var_y = np.isclose(events[:, 1].all(),
                                   self.original_events[:, 1].all(),
                                   atol=variance_y)
        self.assertTrue(spatial_var_y,
                        "Spatial jitter should be within chosen variance y.")
        self.assertFalse(
            (events[:, 1] == self.original_events[:, 1]).all(),
            "Y coordinates should be different.",
        )
        self.assertTrue(
            (events[:, 3] == self.original_events[:, 3] * (-1)).all(),
            "Polarities should be flipped.",
        )
        time_reversal = (events[:, 2] == np.max(self.original_events[:, 2]) -
                         self.original_events[:, 2]).all()
        self.assertTrue(
            time_reversal,
            "Condition of time reversal t_i' = max(t) - t_i has to be fullfilled",
        )
        self.assertTrue(
            (images[::-1] == self.original_images).all(),
            "Images should be in reversed order.",
        )