Exemplo n.º 1
0
def run(source_yaml: str, output_dir: str, dry_run: bool,
        impl_path: Optional[str], gen_ts_lowerings: bool, node_base: str,
        node_base_hdr: Optional[str], tensor_class: str,
        tensor_class_hdr: str) -> None:

    # Assumes that this file lives at PYTORCH_ROOT/tools/codegen/gen_backend_stubs.py
    pytorch_root = pathlib.Path(__file__).parent.parent.parent.absolute()
    template_dir = os.path.join(pytorch_root, "aten/src/ATen/templates")

    def make_file_manager(install_dir: str) -> FileManager:
        return FileManager(install_dir=install_dir,
                           template_dir=template_dir,
                           dry_run=dry_run)

    fm = make_file_manager(output_dir)

    native_yaml_path = os.path.join(
        pytorch_root, 'aten/src/ATen/native/native_functions.yaml')
    parsed_yaml = parse_native_yaml(native_yaml_path)
    native_functions, backend_indices = parsed_yaml.native_functions, parsed_yaml.backend_indices
    grouped_native_functions = get_grouped_native_functions(native_functions)

    def sort_native_function(
            f: Union[NativeFunctionsGroup, NativeFunction]) -> str:
        """
        We sort the native function because of the note in concat_map_codegen.
        TODO(alanwaketan): Remove this sorting hack once all ops are grouped properly.
        """
        func = f.functional.func if isinstance(
            f, NativeFunctionsGroup) else f.func
        return str(func.name.name)

    grouped_native_functions = sorted(grouped_native_functions,
                                      key=sort_native_function)
    parsed_backend_yaml = parse_backend_yaml(source_yaml,
                                             grouped_native_functions,
                                             backend_indices)
    backend_key = parsed_backend_yaml.backend_key
    autograd_key = parsed_backend_yaml.autograd_key
    cpp_namespace = parsed_backend_yaml.cpp_namespace
    backend_indices = parsed_backend_yaml.backend_indices
    full_codegen = parse_full_codegen_ops(source_yaml,
                                          grouped_native_functions)

    def concat_map_codegen(
            func: Callable[[NativeFunction], Sequence[str]],
            xs: Iterable[Union[NativeFunctionsGroup, NativeFunction]],
            *,
            codegenInplaceVariant: bool = False) -> Iterator[str]:
        """
        We code-gen for the functional variant, which is all we need for IR classes/lowerings/shape inferences, but we
        only code-gen additional entries for the inplace variant for the native functions.
        Note: If xs is not sorted, there may be an edge case when generating IR classes. Considering relu and relu_, if
        we encounter relu_ before relu. we will then generate an IR class with op = at::aten::relu_ for both relu and
        relu_ which will cause problems for relu.
        TODO(alanwaketan): Once all ops are grouped properly, we should no longer need this hack.
        """
        generated = set()

        def gen_key(func: FunctionSchema) -> Tuple[str, str]:
            # we want to generate unique entries for overloads of functional variants,
            # but not for inplace variants unless explicitly told `codegenInplaceVariant`
            return (func.name.name.base, func.name.overload_name)

        for x in xs:
            f = x.functional if isinstance(x, NativeFunctionsGroup) else x
            # For the 'or'd terms:
            # 1. codegenInplaceVariant means we can generate the in-place variant corresponding items.
            # 2. not f.func.name.name.inplace means the op is not a in-place variant, so we can generate the item.
            # 3. f.func.name.name.base not in generated means even for in-place ops we still need to generate the item
            # as if they were the functional variants for one time.
            if f.func.name in full_codegen and \
               (codegenInplaceVariant or not f.func.name.name.inplace or gen_key(f.func) not in generated):
                generated.add(gen_key(f.func))
                for r in func(f):
                    yield r

    selector = SelectiveBuilder.get_nop_selector()

    assert backend_key is not None
    class_name = backend_indices[backend_key].native_function_class_name()

    if impl_path is not None:
        error_on_missing_kernels(native_functions, backend_indices,
                                 backend_key, autograd_key, impl_path,
                                 full_codegen)

    assert class_name is not None

    # Generate nativefunction declarations
    gen_dispatchkey_nativefunc_headers(fm, class_name, cpp_namespace,
                                       backend_indices,
                                       grouped_native_functions, backend_key,
                                       autograd_key)

    # Generate Dispatcher registrations which hook up the nativefunctions
    for dispatch_key in [backend_key] if autograd_key is None else [
            backend_key, autograd_key
    ]:
        gen_dispatcher_registrations(fm, output_dir, cpp_namespace,
                                     backend_indices, grouped_native_functions,
                                     backend_key, dispatch_key, selector)

    # Generate native function impls that build IR nodes
    fm.write_with_template(
        f'{backend_key}NativeFunctions.cpp',
        'DispatchKeyNativeFunctions.cpp',
        lambda: {
            'includes': [
                f'#include <{path}>' for path in [
                    tensor_class_hdr,
                    "ATen/MetaFunctions.h",
                    "torch/csrc/lazy/core/metrics.h",
                    "torch/csrc/lazy/core/shape.h",
                    "lazy_tensor_core/csrc/aten_ltc_bridge.h",
                    "lazy_tensor_core/csrc/lazy_graph_executor.h",
                    f"{output_dir}/{backend_key}NativeFunctions.h",
                    f"{output_dir}/{backend_key}LazyIr.h",
                    f"{output_dir}/{backend_key}ShapeInference.h",
                ]
            ],
            'native_functions_include':
            '',
            'backend_namespace':
            'torch_lazy_tensors',  # this is wrong
            'native_function_definitions':
            list(
                concat_map_codegen(dest.GenLazyNativeFuncDefinition(
                    f'{backend_key}NativeFunctions', backend_indices[
                        backend_key], tensor_class),
                                   grouped_native_functions,
                                   codegenInplaceVariant=True)),
        })
    # Generate headers for shape/dtype funcs for non-meta kernels
    fm.write_with_template(
        f'{backend_key}ShapeInference.h', 'ShapeInference.h', lambda: {
            'lazy_ir_sysinc': [
                f'#include <{path}>' for path in [
                    "ATen/Tensor.h",
                    "c10/core/ScalarType.h",
                    "c10/util/Optional.h",
                    "torch/csrc/lazy/core/ir.h",
                    "torch/csrc/lazy/core/shape.h",
                    "vector",
                ]
            ],
            'lazy_ir_inc': [],
            'DispatchKey':
            backend_key,
            'dispatch_namespace':
            backend_key.lower(),
            'func_declarations':
            list(
                concat_map_codegen(
                    dest.GenLazyShapeInferenceDefinition(
                        backend_indices[backend_key], tensor_class),
                    grouped_native_functions)),
        })
    # Generate IR node classes
    fm.write_with_template(
        f'{backend_key}LazyIr.h', 'LazyIr.h', lambda: {
            'lazy_ir_sysinc': [
                f'#include <{path}>' for path in [
                    "ATen/core/Formatting.h",
                    "c10/core/ScalarType.h",
                    "c10/util/Optional.h",
                    "torch/csrc/lazy/core/hash.h",
                    "torch/csrc/lazy/core/ir.h",
                    "vector",
                ]
            ],
            'lazy_ir_inc': [
                f'#include "{path}"' for path in
                [node_base_hdr if node_base_hdr is not None else None]
                if path is not None
            ],
            'external_backend_headers':
            f'#include "{output_dir}/{backend_key}NativeFunctions.h"',
            'namespaced_headers':
            '',
            'DispatchKey':
            backend_key,
            'dispatch_namespace':
            backend_key.lower(),
            'ir_declarations':
            list(
                concat_map_codegen(
                    dest.LazyIR(backend_indices[backend_key], node_base),
                    grouped_native_functions)),
        })
Exemplo n.º 2
0
def run_gen_lazy_tensor(
        aten_path: str,
        source_yaml: str,
        output_dir: str,
        dry_run: bool,
        impl_path: Optional[str],
        node_base: str = default_args.node_base,
        node_base_hdr: Optional[str] = default_args.node_base_hdr,
        tensor_class: str = default_args.tensor_class,
        tensor_class_hdr: str = default_args.tensor_class_hdr,
        shape_inference_hdr: str = default_args.shape_inference_hdr,
        lazy_ir_cls: Type[LazyIR] = default_args.lazy_ir_cls,
        # build_in_tree is true for TS backend and affects include paths
        build_in_tree: bool = False,
        # per_operator_headers changes whether ATen/Functions.h or individual operator headers are used
        # it must match how ATen was built
        per_operator_headers: bool = False,
        backend_name: str = default_args.backend_name,
        gen_forced_fallback_code: bool = False) -> None:

    template_dir = os.path.join(aten_path, "templates")

    def make_file_manager(install_dir: str) -> FileManager:
        return FileManager(install_dir=install_dir,
                           template_dir=template_dir,
                           dry_run=dry_run)

    fm = make_file_manager(output_dir)

    native_yaml_path = os.path.join(aten_path, 'native/native_functions.yaml')
    parsed_yaml = parse_native_yaml(native_yaml_path)
    native_functions, backend_indices = parsed_yaml.native_functions, parsed_yaml.backend_indices
    grouped_native_functions = get_grouped_native_functions(native_functions)

    def sort_native_function(
            f: Union[NativeFunctionsGroup, NativeFunction]) -> str:
        """
        We sort the native function because of the note in concat_map_codegen.
        TODO(alanwaketan): Remove this sorting hack once all ops are grouped properly.
        """
        func = f.functional.func if isinstance(
            f, NativeFunctionsGroup) else f.func
        return str(func.name.name)

    grouped_native_functions = sorted(grouped_native_functions,
                                      key=sort_native_function)
    parsed_backend_yaml = parse_backend_yaml(source_yaml,
                                             grouped_native_functions,
                                             backend_indices)
    backend_key = parsed_backend_yaml.backend_key
    autograd_key = parsed_backend_yaml.autograd_key
    cpp_namespace = parsed_backend_yaml.cpp_namespace
    backend_indices = parsed_backend_yaml.backend_indices
    full_codegen = parse_full_codegen_ops(source_yaml,
                                          grouped_native_functions)

    def concat_map_codegen(
            func: Callable[[NativeFunction], Sequence[str]],
            xs: Iterable[Union[NativeFunctionsGroup, NativeFunction]],
            *,
            codegenInplaceVariant: bool = False) -> Iterator[str]:
        """
        We code-gen for the functional variant, which is all we need for IR classes/lowerings/shape inferences, but we
        only code-gen additional entries for the inplace variant for the native functions.
        Note: If xs is not sorted, there may be an edge case when generating IR classes. Considering relu and relu_, if
        we encounter relu_ before relu. we will then generate an IR class with op = at::aten::relu_ for both relu and
        relu_ which will cause problems for relu.
        TODO(alanwaketan): Once all ops are grouped properly, we should no longer need this hack.
        """
        generated = set()

        def gen_key(func: FunctionSchema) -> Tuple[str, str]:
            # we want to generate unique entries for overloads of functional variants,
            # but not for inplace variants unless explicitly told `codegenInplaceVariant`
            return (func.name.name.base, func.name.overload_name)

        for x in xs:
            f = x.functional if isinstance(x, NativeFunctionsGroup) else x
            # For the 'or'd terms:
            # 1. codegenInplaceVariant means we can generate the in-place variant corresponding items.
            # 2. not f.func.name.name.inplace means the op is not a in-place variant, so we can generate the item.
            # 3. f.func.name.name.base not in generated means even for in-place ops we still need to generate the item
            # as if they were the functional variants for one time.
            if f.func.name in full_codegen and \
               (codegenInplaceVariant or not f.func.name.name.inplace or gen_key(f.func) not in generated):
                generated.add(gen_key(f.func))
                for r in func(f):
                    yield r

    selector = SelectiveBuilder.get_nop_selector()

    assert backend_key is not None
    class_name = backend_indices[backend_key].native_function_class_name()

    if impl_path is not None:
        error_on_missing_kernels(native_functions, backend_indices,
                                 backend_key, autograd_key, class_name,
                                 impl_path, full_codegen)
    """ Validate Shape Inference Definitions

    Generated lazy native functions all perform shape inference, by first using a meta:: kernel
    if available for that op, and otherwise using a 'compute_shape_{op}' function instead.  The generator
    knows the call signature for compute_shape_{op} becuase it matches the nativefunction (and meta::) signature,
    so it just has to check whether the op is structured and generate a call for one or the other.  It's up to the dev
    to supply the missing compute_shape_{op} function, but the codegen at least warns you about this and provides
    the expected signature which can be copy-pasted into shape_inference.h.

    compute_shape_{op} functions are handwritten and should be replaced over time as ops get ported
    to structured kernels.

    See torch/csrc/lazy/core/shape_inference.cpp #READ THIS! for more information.
    """
    if shape_inference_hdr is not None:
        expected_shape_infr_decls = list(
            concat_map_codegen(dest.GenLazyShapeInferenceDefinition(
                backend_indices[backend_key], tensor_class),
                               grouped_native_functions,
                               codegenInplaceVariant=True))

        validate_shape_inference_header(shape_inference_hdr,
                                        expected_shape_infr_decls)
    assert class_name is not None

    # Generate nativefunction declarations
    # Note, eager registrations is set to False for the lazy TS backend as another LTC backend
    # may want to register their own lazy kernels instead of registering the TS ones.
    # The registration will lazily happen when init_ts_backend is called.
    gen_dispatchkey_nativefunc_headers(fm, class_name, cpp_namespace,
                                       backend_indices,
                                       grouped_native_functions, backend_key,
                                       autograd_key, backend_name)

    # Generate Dispatcher registrations which hook up the nativefunctions
    for dispatch_key in [backend_key] if autograd_key is None else [
            backend_key, autograd_key
    ]:
        gen_dispatcher_registrations(fm,
                                     output_dir,
                                     class_name,
                                     cpp_namespace,
                                     backend_indices,
                                     grouped_native_functions,
                                     backend_key,
                                     dispatch_key,
                                     selector,
                                     build_in_tree=build_in_tree,
                                     per_operator_headers=per_operator_headers,
                                     backend_name=backend_name,
                                     eager_registration=False)

    # Generate native function impls that build IR nodes
    ns_helper = NamespaceHelper(cpp_namespace)
    fm.write_with_template(
        f'{backend_key}NativeFunctions.cpp', 'DispatchKeyNativeFunctions.cpp',
        lambda: {
            'includes': [
                f'#include <{path}>' for path in [
                    tensor_class_hdr,
                    shape_inference_hdr,
                    "ATen/Functions.h",
                    "ATen/MetaFunctions.h",
                    "ATen/Operators.h",
                    "ATen/native/CPUFallback.h",
                    "torch/csrc/lazy/core/lazy_graph_executor.h",
                    "torch/csrc/lazy/core/metrics.h",
                    "torch/csrc/lazy/core/shape.h",
                    f"{output_dir}/{backend_key}NativeFunctions.h",
                    f"{output_dir}/LazyIr.h",
                ] + (["torch/csrc/lazy/ts_backend/ts_eager_fallback.h"]
                     if gen_forced_fallback_code else [])
            ],
            'native_functions_include':
            '',
            'namespace_prologue':
            ns_helper.prologue,
            'namespace_epilogue':
            ns_helper.epilogue,
            'native_function_definitions':
            list(
                concat_map_codegen(dest.GenLazyNativeFuncDefinition(
                    f'{backend_key}NativeFunctions', backend_indices[
                        backend_key], tensor_class, gen_forced_fallback_code),
                                   grouped_native_functions,
                                   codegenInplaceVariant=True)),
        })
    # Generate IR node classes
    fm.write_with_template(
        'LazyIr.h', 'LazyIr.h', lambda: {
            'lazy_ir_sysinc': [
                f'#include <{path}>' for path in [
                    "ATen/core/Formatting.h",
                    "c10/core/ScalarType.h",
                    "c10/util/Optional.h",
                    "torch/csrc/lazy/core/hash.h",
                    "torch/csrc/lazy/core/ir.h",
                    "torch/csrc/lazy/core/shape.h",
                    "vector",
                ]
            ],
            'lazy_ir_inc': [
                f'#include "{path}"' for path in
                [node_base_hdr if node_base_hdr is not None else None]
                if path is not None
            ],
            'ir_declarations':
            list(
                concat_map_codegen(
                    lazy_ir_cls(backend_indices[backend_key], node_base),
                    grouped_native_functions)),
            'namespace_prologue':
            ns_helper.prologue,
            'namespace_epilogue':
            ns_helper.epilogue,
        })