Exemplo n.º 1
0
 def create_examples(self, lines, example_type, cached_examples_file):
     '''
     Creates examples for data
     '''
     pbar = ProgressBar(n_total=len(lines), desc='create examples')
     if cached_examples_file.exists():
         logger.info("Loading examples from cached file %s",
                     cached_examples_file)
         examples = torch.load(cached_examples_file)
     else:
         examples = []
         for i, line in enumerate(lines):
             guid = '%s-%d' % (example_type, i)
             text_a = line[0]
             text_b = line[1]
             label = line[2]
             label = int(label)
             example = InputExample(guid=guid,
                                    text_a=text_a,
                                    text_b=text_b,
                                    label=label)
             examples.append(example)
             pbar(step=i)
         logger.info("Saving examples into cached file %s",
                     cached_examples_file)
         torch.save(examples, cached_examples_file)
     return examples
Exemplo n.º 2
0
def evaluate(args, model, tokenizer, prefix=""):
    eval_task_names = (args.task_name,)
    eval_outputs_dirs = (args.output_dir,)
    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, data_type='dev')
        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,
                                     collate_fn=xlnet_collate_fn if args.model_type in ['xlnet'] else collate_fn)

        # Eval!
        logger.info("********* Running evaluation {} ********".format(prefix))
        eval_loss = 0.0
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        pbar = ProgressBar(n_total=len(eval_dataloader), desc="Evaluating")
        for step, batch in enumerate(eval_dataloader):
            model.eval()
            batch = tuple(t.to(args.device) for t in batch)
            with torch.no_grad():
                inputs = {'input_ids': batch[0],
                          'attention_mask': batch[1],
                          'labels': batch[3]}
                if args.model_type != 'distilbert':
                    inputs['token_type_ids'] = batch[2] if args.model_type in ['bert', 'xlnet', 'albert',
                                                                               'roberta'] else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]
                eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
            pbar(step)
        print(' ')
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(eval_task, preds, out_label_ids)
        results.update(result)
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
        logger.info("******** Eval results {} ********".format(prefix))
        for key in sorted(result.keys()):
            logger.info(" dev: %s = %s", key, str(result[key]))
    return results
Exemplo n.º 3
0
def load_and_cache_examples(args, task, tokenizer, data_type='train'):
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training process the dataset, and the others will use the cache

    processor = processors[task]()
    output_mode = output_modes[task]
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(
        args.data_dir, 'cached_{}_{}_{}_{}'.format(
            data_type,
            list(filter(None, args.model_name_or_path.split('/'))).pop(),
            str(args.max_seq_length), str(task)))
    if os.path.exists(cached_features_file):
        logger.info("Loading features from cached file %s",
                    cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", args.data_dir)
        # os.makedirs(cached_features_file, exist_ok=True, mode=0o777)
        if task == "ner":
            label_list = processor.get_labels_ner(args.data_dir,
                                                  args.label_with_bi)
        else:
            label_list = processor.get_labels()
        if task in ['mnli', 'mnli-mm'] and 'roberta' in args.model_type:
            # HACK(label indices are swapped in RoBERTa pretrained model)
            label_list[1], label_list[2] = label_list[2], label_list[1]

        if data_type == 'train':
            examples = processor.get_train_examples(args.data_dir)
        elif data_type == 'dev':
            examples = processor.get_dev_examples(args.data_dir)
        else:
            examples = processor.get_test_examples(args.data_dir)

        features = convert_examples_to_features(
            examples,
            tokenizer,
            label_list=label_list,
            max_seq_length=args.max_seq_length,
            output_mode=output_mode)

    if args.local_rank == 0 and not evaluate:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features],
                                 dtype=torch.long)
    all_attention_mask = torch.tensor([f.attention_mask for f in features],
                                      dtype=torch.long)
    all_token_type_ids = torch.tensor([f.token_type_ids for f in features],
                                      dtype=torch.long)
    all_lens = torch.tensor([f.input_len for f in features], dtype=torch.long)

    all_labels = torch.tensor([f.label for f in features], dtype=torch.long)
    dataset = TensorDataset(all_input_ids, all_attention_mask,
                            all_token_type_ids, all_lens, all_labels)
    return dataset
Exemplo n.º 4
0
def load_and_cache_examples(args, task, tokenizer, data_type='train'):
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    processor = processors[task]()
    # Load data features from dataset file
    logger.info("Creating features from dataset file at %s", args.data_dir)
    label_list = processor.get_labels()
    if data_type == 'train':
        examples = processor.get_train_examples(args.data_dir)
    elif data_type == 'dev':
        examples = processor.get_dev_examples(args.data_dir)
    else:
        examples = processor.get_test_examples(args.data_dir)

    if "bert" in args.model_type:
        # 数据处理成bert所需的格式
        features = convert_examples_to_features_for_bert(
            examples=examples,
            tokenizer=tokenizer,
            label_list=label_list,
            max_seq_length=args.train_max_seq_length
            if data_type == 'train' else args.eval_max_seq_length,
            cls_token_at_end=bool(args.model_type in ["xlnet"]),
            pad_on_left=bool(args.model_type in ['xlnet']),
            cls_token=tokenizer.cls_token,
            cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0,
            sep_token=tokenizer.sep_token,
            # pad on the left for xlnet
            pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token
                                                       ])[0],
            pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
        )
    else:
        # 一般格式
        features = convert_examples_to_features_for_lstm(
            examples=examples,
            label_list=label_list,
            max_seq_length=args.train_max_seq_length
            if data_type == 'train' else args.eval_max_seq_length,
            tokenizer=tokenizer)

    if args.local_rank == 0 and not evaluate:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features],
                                 dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features],
                                  dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features],
                                   dtype=torch.long)
    all_label_ids = torch.tensor([f.label_ids for f in features],
                                 dtype=torch.long)
    all_lens = torch.tensor([f.input_len for f in features], dtype=torch.long)
    dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                            all_lens, all_label_ids)
    return dataset
def load_and_cache_examples(args, task, tokenizer, data_type='train'):
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    processor = processors[task]()
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(args.data_dir, 'cached_crf-{}_{}_{}_{}'.format(
        data_type,
        list(filter(None, args.model_name_or_path.split('/'))).pop(),
        str(args.train_max_seq_length if data_type=='train' else args.eval_max_seq_length),
        str(task)))
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
        logger.info("Loading features from cached file %s", cached_features_file)
        features = torch.load(cached_features_file)
    else:
        label_list = processor.get_labels()
        if data_type == 'train':
            logger.info("Creating features from dataset file at %s", args.train_data_path)
            examples = processor.get_train_examples(args.train_data_path)
        elif data_type == 'dev':
            logger.info("Creating features from dataset file at %s", args.dev_data_path)
            examples = processor.get_dev_examples(args.dev_data_path)
        else:
            logger.info("Creating features from dataset file at %s", args.test_data_path)
            examples = processor.get_test_examples(args.test_data_path)
        features = convert_examples_to_features(examples=examples,
                                                tokenizer=tokenizer,
                                                label_list=label_list,
                                                max_seq_length=args.train_max_seq_length if data_type=='train' \
                                                               else args.eval_max_seq_length,
                                                max_attr_length = args.max_attr_length
                                                )
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s", cached_features_file)
            torch.save(features, cached_features_file)
    if args.local_rank == 0 and not evaluate:
        torch.distributed.barrier()  # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    # Convert to Tensors and build dataset
    t_all_input_ids = torch.tensor([f.t_input_ids for f in features], dtype=torch.long)
    t_all_input_mask = torch.tensor([f.t_input_mask for f in features], dtype=torch.long)
    t_all_segment_ids = torch.tensor([f.t_segment_ids for f in features], dtype=torch.long)
    t_all_lens = torch.tensor([f.t_input_len for f in features], dtype=torch.long)
    t_all_orig_to_tok_index = torch.tensor([f.t_orig_to_tok_index for f in features], dtype=torch.long)

    t_all_word_lens = torch.tensor([f.t_word_len for f in features], dtype=torch.long)

    a_all_input_ids = torch.tensor([f.a_input_ids for f in features], dtype=torch.long)
    a_all_input_mask = torch.tensor([f.a_input_mask for f in features], dtype=torch.long)
    a_all_segment_ids = torch.tensor([f.a_segment_ids for f in features], dtype=torch.long)
    a_all_lens = torch.tensor([f.a_input_len for f in features], dtype=torch.long)
    a_all_orig_to_tok_index = torch.tensor([f.a_orig_to_tok_index for f in features], dtype=torch.long)
    a_all_word_lens = torch.tensor([f.a_word_len for f in features], dtype=torch.long)

    all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long)
    dataset = TensorDataset(t_all_input_ids, t_all_input_mask, t_all_segment_ids, t_all_lens, t_all_orig_to_tok_index, t_all_word_lens,
                            a_all_input_ids, a_all_input_mask, a_all_segment_ids, a_all_lens, a_all_orig_to_tok_index, a_all_word_lens,
                            all_label_ids)
    return dataset
Exemplo n.º 6
0
def evaluate(args, model, tokenizer, prefix=""):
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
        eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, data_type='dev')
        if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(eval_output_dir)

        args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
        # Note that DistributedSampler samples randomly
        eval_sampler = SequentialSampler(eval_dataset)# if args.local_rank == -1 else DistributedSampler(eval_dataset)
        eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,
                                     collate_fn=collate_fn)

        # Eval!
        logger.info("***** Running evaluation {} *****".format(prefix))
        logger.info("  Num examples = %d", len(eval_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
        eval_loss = 0.0
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        pbar = ProgressBar(n_total=len(eval_dataloader), desc="Evaluating")
        for step, batch in enumerate(eval_dataloader):
            model.eval()
            batch = tuple(t.to(args.device) for t in batch)
            with torch.no_grad():
                inputs = {'input_ids': batch[0],
                          'attention_mask': batch[1],
                          'labels': batch[3]}
                inputs['token_type_ids'] = batch[2]
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]
                eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
            pbar(step)
        print(' ')
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
        eval_loss = eval_loss / nb_eval_steps
        preds = np.argmax(preds, axis=1)
        
        result = metrics(eval_task, preds, out_label_ids)
        results.update(result)
        logger.info("***** Eval results {} *****".format(prefix))
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
    return results
Exemplo n.º 7
0
 def is_valid(self, proxy):
     proxies = {"http": "http://" + proxy, "https": "http://" + proxy, }
     try:
         requests.get(self.TEST_URL, proxies=proxies, timeout=self.TIMEOUT)
     except Exception as e:
         logger.error(repr(e))
         return False
     else:
         logger.info("it's works {0}".format(proxy))
         return True
Exemplo n.º 8
0
    def refresh_train_data(big_file):
        cmd = f"python prepare_lm_data_ngram.py --do_split --big_file={big_file} "
        command = cmd
        logger.info(f"command:{command}")
        os.system(f"{command}")

        cmd = f"python prepare_lm_data_ngram.py --do_mdata"
        command = cmd
        logger.info(f"command:{command}")
        os.system(f"{command}")
Exemplo n.º 9
0
    def is_valid_batch(self, proxys):
        """批量测试代理是否可用"""
        i = 1
        for proxy in proxys:
            logger.info('正在发送第 {0} 个请求。\n\r'.format(i))
            i += 1
            self.is_valid_batch(proxy)

        logger.info('InvalidProxiesList: {0}'.format(len(self.InvalidProxiesList)))
        logger.info('***已经有 {0} 个代理被淘汰***'.format(len(self.InvalidProxiesList)))
        logger.info('UseProxiesList: {0}'.format(self.UseProxiesList))
        logger.info('可用代理数量 {0}'.format(len(self.UseProxiesList)))
Exemplo n.º 10
0
 def __init__(self, training_path, file_id, tokenizer, data_name, reduce_memory=False):
     self.tokenizer = tokenizer
     self.file_id = file_id
     data_file = training_path / f"{data_name}_file_{self.file_id}.json"
     metrics_file = training_path / f"{data_name}_file_{self.file_id}_metrics.json"
     assert data_file.is_file() and metrics_file.is_file()
     metrics = json.loads(metrics_file.read_text())
     num_samples = metrics['num_training_examples']
     seq_len = metrics['max_seq_len']
     self.temp_dir = None
     self.working_dir = None
     if reduce_memory:
         self.temp_dir = TemporaryDirectory()
         self.working_dir = Path(self.temp_dir.name)
         input_ids = np.memmap(filename=self.working_dir / 'input_ids.memmap',
                               mode='w+', dtype=np.int32, shape=(num_samples, seq_len))
         input_masks = np.memmap(filename=self.working_dir / 'input_masks.memmap',
                                 shape=(num_samples, seq_len), mode='w+', dtype=np.bool)
         segment_ids = np.memmap(filename=self.working_dir / 'segment_ids.memmap',
                                 shape=(num_samples, seq_len), mode='w+', dtype=np.bool)
         lm_label_ids = np.memmap(filename=self.working_dir / 'lm_label_ids.memmap',
                                  shape=(num_samples, seq_len), mode='w+', dtype=np.int32)
         lm_label_ids[:] = -1
         is_nexts = np.memmap(filename=self.working_dir / 'is_nexts.memmap',
                              shape=(num_samples,), mode='w+', dtype=np.bool)
     else:
         input_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.int32)
         input_masks = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
         segment_ids = np.zeros(shape=(num_samples, seq_len), dtype=np.bool)
         lm_label_ids = np.full(shape=(num_samples, seq_len), dtype=np.int32, fill_value=-1)
         is_nexts = np.zeros(shape=(num_samples,), dtype=np.bool)
     logger.info(f"Loading training examples for {str(data_file)}")
     with data_file.open() as f:
         for i, line in enumerate(f):
             line = line.strip()
             example = json.loads(line)
             features = convert_example_to_features(example, tokenizer, seq_len)
             input_ids[i] = features.input_ids
             segment_ids[i] = features.segment_ids
             input_masks[i] = features.input_mask
             lm_label_ids[i] = features.lm_label_ids
             is_nexts[i] = features.is_next
     assert i == num_samples - 1  # Assert that the sample count metric was true
     logger.info("Loading complete!")
     self.num_samples = num_samples
     self.seq_len = seq_len
     self.input_ids = input_ids
     self.input_masks = input_masks
     self.segment_ids = segment_ids
     self.lm_label_ids = lm_label_ids
     self.is_nexts = is_nexts
Exemplo n.º 11
0
def predict(args, model, tokenizer, prefix=""):
    '''模型预测'''
    pred_output_dir = args.output_dir
    if not os.path.exists(pred_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(pred_output_dir)

    test_dataset = load_and_cache_examples(args,
                                           args.task_name,
                                           tokenizer,
                                           data_type='test')
    # Note that DistributedSampler samples randomly
    test_sampler = SequentialSampler(
        test_dataset) if args.local_rank == -1 else DistributedSampler(
            test_dataset)
    test_dataloader = DataLoader(test_dataset,
                                 sampler=test_sampler,
                                 batch_size=1,
                                 collate_fn=collate_fn)
    # Eval!
    logger.info("***** Running prediction %s *****", prefix)
    logger.info("  Num examples = %d", len(test_dataset))
    logger.info("  Batch size = %d", 1)

    results = []
    output_submit_file = os.path.join(pred_output_dir, prefix,
                                      "test_prediction.json")
    pbar = ProgressBar(n_total=len(test_dataloader), desc="Predicting")
    for step, batch in enumerate(test_dataloader):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "labels": None
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
        logits = outputs[0]
        preds = logits.detach().cpu().numpy()
        preds = np.argmax(preds, axis=2).tolist()
        preds = preds[0][1:-1]  # [CLS]XXXX[SEP]
        tags = [args.id2label[x] for x in preds]
        label_entities = get_entities(preds, args.id2label,
                                      args.markup)  # 得到实体
        json_d = {}
        json_d['id'] = step
        json_d['tag_seq'] = " ".join(tags)
        json_d['entities'] = label_entities
        results.append(json_d)
        pbar(step)
    logger.info("\n")
    with open(output_submit_file, "w") as writer:
        for record in results:
            writer.write(json.dumps(record) + '\n')
Exemplo n.º 12
0
def create_training_instances(input_file, tokenizer, max_seq_len,
                              short_seq_prob):
    # def create_training_instances(input_file, tokenizer, max_seq_len, short_seq_prob,
    #                               max_ngram, masked_lm_prob, max_predictions_per_seq):
    """Create `TrainingInstance`s from raw text."""
    all_documents = [[]]
    # Input file format:
    # (1) One sentence per line. These should ideally be actual sentences, not
    # entire paragraphs or arbitrary spans of text. (Because we use the
    # sentence boundaries for the "next sentence prediction" task).
    # (2) Blank lines between documents. Document boundaries are needed so
    # that the "next sentence prediction" task doesn't span between documents.
    with open(input_file, 'r') as f:
        lines = f.readlines()
    pbar = ProgressBar(n_total=len(lines), desc='read data')
    for line_cnt, line in enumerate(lines):
        line = line.strip()
        # Empty lines are used as document delimiters
        if not line:
            all_documents.append([])
        tokens = tokenizer.tokenize(line)
        if tokens:
            all_documents[-1].append(tokens)
        pbar(step=line_cnt)
    print(' ')
    # Remove empty documents
    all_documents = [x for x in all_documents if x]
    random.shuffle(all_documents)

    # vocab_words = list(tokenizer.vocab.keys())
    instances = []
    pbar = ProgressBar(n_total=len(all_documents), desc='create instances')
    for document_index in range(len(all_documents)):
        instances.extend(
            create_instances_from_document(all_documents, document_index,
                                           max_seq_len, short_seq_prob))
        pbar(step=document_index)

    # def create_instances_from_document(all_documents, document_index, max_seq_length, short_seq_prob):

    print(' ')
    ex_idx = 0
    while ex_idx < 2:
        instance = instances[ex_idx]
        logger.info("-------------------------Example-----------------------")
        logger.info(f"id: {ex_idx}")
        logger.info(
            f"tokens: {' '.join([str(x) for x in instance['tokens']])}")
        # logger.info(f"masked_lm_labels: {' '.join([str(x) for x in instance['masked_lm_labels']])}")
        logger.info(
            f"segment_ids: {' '.join([str(x) for x in instance['segment_ids']])}"
        )
        # logger.info(f"masked_lm_positions: {' '.join([str(x) for x in instance['masked_lm_positions']])}")
        # logger.info(f"is_random_next : {instance['is_random_next']}")
        ex_idx += 1
    random.shuffle(instances)
    return instances
Exemplo n.º 13
0
def main():
    parser = ArgumentParser()
    ## Required parameters
    parser.add_argument("--do_data", default=True, action='store_true')
    parser.add_argument('--data_name', default='albert', type=str)
    parser.add_argument('--max_ngram', default=3, type=int)
    parser.add_argument("--do_lower_case", default=False, action='store_true')
    parser.add_argument('--seed', default=42, type=int)
    # parser.add_argument("--file_num", type=int, default=10,                        help="Number of dynamic masking to pregenerate (with different masks)")
    parser.add_argument("--max_seq_len", type=int, default=128)
    parser.add_argument(
        "--short_seq_prob",
        type=float,
        default=0.1,
        help="Probability of making a short sentence as a training example")
    parser.add_argument(
        "--masked_lm_prob",
        type=float,
        default=0.15,
        help="Probability of masking each token for the LM task")
    # 128 * 0.15
    parser.add_argument(
        "--max_predictions_per_seq",
        type=int,
        default=20,
        help="Maximum number of tokens to mask in each sequence")
    args = parser.parse_args()
    seed_everything(args.seed)
    from configs.base import config
    args.vocab_path = config['albert_vocab_path']
    args.data_dir = config['data_dir']
    logger.info("pregenerate training data parameters:\n %s", args)
    tokenizer = BertTokenizer(vocab_file=args.vocab_path,
                              do_lower_case=args.do_lower_case)

    small_path = config['data_dir'] / "corpus/small"
    files = sorted(
        [f for f in small_path.iterdir() if f.exists() and '.txt' in str(f)])

    file_path = files[0].absolute()
    max_seq_len = args.max_seq_len
    train(file_path, tokenizer, max_seq_len)
    print("  dataloader ok! ")
    sys.exit(0)
Exemplo n.º 14
0
def load_and_cache_examples(args, task, tokenizer, data_type='train'):
    '''加载数据'''
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    processor = processors[task]()
    # Load data features from cache or dataset file
    cached_features_file = os.path.join(
        args.data_dir, 'cached_soft-{}_{}_{}_{}'.format(
            data_type,
            list(filter(None, args.model_name_or_path.split('/'))).pop(),
            str(args.train_max_seq_length if data_type ==
                'train' else args.eval_max_seq_length), str(task)))
    if os.path.exists(cached_features_file) and not args.overwrite_cache:
        logger.info("Loading features from cached file %s",
                    cached_features_file)
        features = torch.load(cached_features_file)
    else:
        logger.info("Creating features from dataset file at %s", args.data_dir)
        label_list = processor.get_labels()
        if data_type == 'train':
            examples = processor.get_train_examples(args.data_dir)
        elif data_type == 'dev':
            examples = processor.get_dev_examples(args.data_dir)
        else:
            examples = processor.get_test_examples(args.data_dir)
        features = convert_examples_to_features(examples=examples,
                                                tokenizer=tokenizer,
                                                label_list=label_list,
                                                max_seq_length=args.train_max_seq_length if data_type=='train' \
                                                               else args.eval_max_seq_length,
                                                cls_token_at_end=bool(args.model_type in ["xlnet"]),
                                                pad_on_left=bool(args.model_type in ['xlnet']),
                                                cls_token = tokenizer.cls_token,
                                                cls_token_segment_id=2 if args.model_type in ["xlnet"] else 0,
                                                sep_token=tokenizer.sep_token,
                                                # pad on the left for xlnet
                                                pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
                                                pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
                                                )
        if args.local_rank in [-1, 0]:
            logger.info("Saving features into cached file %s",
                        cached_features_file)
            torch.save(features, cached_features_file)
    if args.local_rank == 0 and not evaluate:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    # Convert to Tensors and build dataset
    all_input_ids = torch.tensor([f.input_ids for f in features],
                                 dtype=torch.long)
    all_input_mask = torch.tensor([f.input_mask for f in features],
                                  dtype=torch.long)
    all_segment_ids = torch.tensor([f.segment_ids for f in features],
                                   dtype=torch.long)
    all_label_ids = torch.tensor([f.label_ids for f in features],
                                 dtype=torch.long)
    all_lens = torch.tensor([f.input_len for f in features], dtype=torch.long)
    dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,
                            all_lens, all_label_ids)
    return dataset
Exemplo n.º 15
0
def apicall():
    logger.info('<<albert_cls')
    try:
        start = time.time()
        req_data = request.get_data(as_text=True)
        logger.info(req_data)
        if req_data:
            req_data = json.loads(req_data)
            text = req_data['text']
            task = req_data['task']

            dict_res = for_server(text=text, task=task)

            logger.info("时间{}".format(time.time() - start))
            dict_ = {}
            dict_['status'] = 'success'
            dict_['results'] = dict_res
            return jsonify(dict_)
        else:
            res = {'status': 'failed', 'results': '没有收到request消息'}
            return jsonify(res)
    except BadRequestKeyError as e:
        logger.error(e)
        res = {'status': 'failed', 'results': str(e)}
        return jsonify(res)
    except FileNotFoundError as e:
        logger.error(e)
        res = {'status': 'failed', 'results': e.strerror}
        return jsonify(res)
    except Exception as e:
        logger.error(e)
        res = {'status': 'failed', 'results': str(e)}
        return jsonify(res)
Exemplo n.º 16
0
def predict(args, model, tokenizer, prefix=""):
    pred_output_dir = args.output_dir
    if not os.path.exists(pred_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(pred_output_dir)
    test_dataset = load_and_cache_examples(args,
                                           args.task_name,
                                           tokenizer,
                                           data_type='test')
    print(len(test_dataset))
    # Note that DistributedSampler samples randomly
    test_sampler = SequentialSampler(
        test_dataset) if args.local_rank == -1 else DistributedSampler(
            test_dataset)
    test_dataloader = DataLoader(test_dataset,
                                 sampler=test_sampler,
                                 batch_size=1,
                                 collate_fn=collate_fn)
    # Eval!
    logger.info("***** Running prediction %s *****", prefix)
    logger.info("  Num examples = %d", len(test_dataset))
    logger.info("  Batch size = %d", 1)

    results = []
    output_submit_file = os.path.join(pred_output_dir, prefix,
                                      "test_prediction.json")
    pbar = ProgressBar(n_total=len(test_dataloader), desc="Predicting")
    for step, batch in enumerate(test_dataloader):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "start_positions": None,
                "end_positions": None
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
        start_logits, end_logits = outputs[:2]
        R = bert_extract_item(start_logits, end_logits)
        if R:
            label_entities = [[args.id2label[x[0]], x[1], x[2]] for x in R]
        else:
            label_entities = []
        json_d = {}
        json_d['id'] = step
        json_d['entities'] = label_entities
        results.append(json_d)
        pbar(step)
    print(" ")
    with open(output_submit_file, "w") as writer:
        for record in results:
            writer.write(json.dumps(record) + '\n')
Exemplo n.º 17
0
def load_and_cache_examples(args, task, tokenizer, data_type='train'):
    if args.local_rank not in [-1, 0] and not evaluate:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training process the dataset, and the others will use the cache
    processor = processors[task]()

    logger.info("Creating features from dataset file at %s", args.data_dir)
    label_list = processor.get_labels()  #[B I O]
    if data_type == 'train':
        examples = processor.get_train_examples(args.data_dir)
    elif data_type == 'dev':
        examples = processor.get_dev_examples(args.data_dir)
    else:
        examples = processor.get_test_examples(args.data_dir)

    features = convert_examples_to_features(examples=examples,
                                            tokenizer=tokenizer,
                                            label_list=label_list,
                                            max_seq_length=args.max_seq_length if data_type == 'train' \
                                                else args.max_seq_length,
                                            pad_token=tokenizer.convert_tokens_to_ids([tokenizer.pad_token])[0],
                                            pad_token_segment_id=4 if args.model_type in ['xlnet'] else 0,
                                            )
    return features
Exemplo n.º 18
0
def predict(args, model, tokenizer, lines, prefix=""):
    pred_output_dir = args.output_dir
    if not os.path.exists(pred_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(pred_output_dir)
    test_dataset = load_and_cache_examples(args,
                                           args.task_name,
                                           tokenizer,
                                           lines,
                                           data_type='test')
    # Note that DistributedSampler samples randomly
    test_sampler = SequentialSampler(
        test_dataset) if args.local_rank == -1 else DistributedSampler(
            test_dataset)
    test_dataloader = DataLoader(test_dataset,
                                 sampler=test_sampler,
                                 batch_size=1,
                                 collate_fn=collate_fn)
    # Eval!
    logger.info("***** Running prediction %s *****", prefix)
    logger.info("  Num examples = %d", len(test_dataset))
    logger.info("  Batch size = %d", 1)

    results = []
    pbar = ProgressBar(n_total=len(test_dataloader), desc="Predicting")
    if isinstance(model, nn.DataParallel):
        model = model.module
    for step, batch in enumerate(test_dataloader):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "labels": None,
                'input_lens': batch[4]
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
            logits = outputs[0]
            preds, _ = model.crf._obtain_labels(logits, args.id2label,
                                                inputs['input_lens'])
        preds = preds[0][1:-1]  # [CLS]XXXX[SEP]
        label_entities = get_entities(preds, args.id2label, args.markup)
        json_d = {}
        json_d['id'] = step
        json_d['tag_seq'] = " ".join(preds)
        json_d['entities'] = label_entities
        results.append(json_d)
        pbar(step)
    print(results[:3])
Exemplo n.º 19
0
def predict(args, model, tokenizer, prefix=""):
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    pred_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
    pred_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,)

    results = {}
    for pred_task, pred_output_dir in zip(pred_task_names, pred_outputs_dirs):
        pred_dataset = load_and_cache_examples(args, pred_task, tokenizer, data_type='test')
        if not os.path.exists(pred_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(pred_output_dir)

        args.pred_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
        # Note that DistributedSampler samples randomly
        pred_sampler = SequentialSampler(pred_dataset) if args.local_rank == -1 else DistributedSampler(pred_dataset)
        pred_dataloader = DataLoader(pred_dataset, sampler=pred_sampler, batch_size=args.pred_batch_size,
                                     collate_fn=collate_fn)

        logger.info("***** Running prediction {} *****".format(prefix))
        logger.info("  Num examples = %d", len(pred_dataset))
        logger.info("  Batch size = %d", args.pred_batch_size)
        nb_pred_steps = 0
        preds = None
        pbar = ProgressBar(n_total=len(pred_dataloader), desc="Predicting")
        for step, batch in enumerate(pred_dataloader):
            model.eval()
            batch = tuple(t.to(args.device) for t in batch)
            with torch.no_grad():
                inputs = {'input_ids': batch[0],
                          'attention_mask': batch[1],
                          'labels': batch[3]}
                if args.model_type != 'distilbert':
                    inputs['token_type_ids'] = batch[2] if (
                            'bert' in args.model_type or 'xlnet' in args.model_type) else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
                outputs = model(**inputs)
                _, logits = outputs[:2]
            nb_pred_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
            pbar(step)
        print(' ')
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        output_pred_file = os.path.join(pred_output_dir, prefix, "test_prediction.txt")
        with open(output_pred_file, "w") as writer:
            for pred in preds:
                writer.write(str(pred) + '\n')
    return results
Exemplo n.º 20
0
def train(args, train_dataset, model, tokenizer, config):
    """ Train the model """
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size,
                                  collate_fn=collate_fn)
    if args.max_steps > 0:
        t_total = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        t_total = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs
    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ["bias", "LayerNorm.weight"]
    bert_param_optimizer = list(model.bert.named_parameters())
    crf_param_optimizer = list(model.crf.named_parameters())
    linear_param_optimizer = list(model.classifier.named_parameters())
    optimizer_grouped_parameters = [{
        'params': [
            p for n, p in bert_param_optimizer
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay,
        'lr':
        args.learning_rate
    }, {
        'params': [
            p for n, p in bert_param_optimizer
            if any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        0.0,
        'lr':
        args.learning_rate
    }, {
        'params': [
            p for n, p in crf_param_optimizer
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay,
        'lr':
        args.crf_learning_rate
    }, {
        'params':
        [p for n, p in crf_param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0,
        'lr':
        args.crf_learning_rate
    }, {
        'params': [
            p for n, p in linear_param_optimizer
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay,
        'lr':
        args.crf_learning_rate
    }, {
        'params': [
            p for n, p in linear_param_optimizer
            if any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        0.0,
        'lr':
        args.crf_learning_rate
    }]
    args.warmup_steps = int(t_total * args.warmup_proportion)
    optimizer = AdamW(optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=t_total)
    # Check if saved optimizer or scheduler states exist
    if os.path.isfile(os.path.join(
            args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
                os.path.join(args.model_name_or_path, "scheduler.pt")):
        # Load in optimizer and scheduler states
        optimizer.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
        scheduler.load_state_dict(
            torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)
    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)
    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)
    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1),
    )
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", t_total)

    global_step = 0
    steps_trained_in_current_epoch = 0
    # Check if continuing training from a checkpoint
    if os.path.exists(args.model_name_or_path
                      ) and "checkpoint" in args.model_name_or_path:
        # set global_step to gobal_step of last saved checkpoint from model path
        global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
        epochs_trained = global_step // (len(train_dataloader) //
                                         args.gradient_accumulation_steps)
        steps_trained_in_current_epoch = global_step % (
            len(train_dataloader) // args.gradient_accumulation_steps)
        logger.info(
            "  Continuing training from checkpoint, will skip to saved global_step"
        )
        logger.info("  Continuing training from epoch %d", epochs_trained)
        logger.info("  Continuing training from global step %d", global_step)
        logger.info("  Will skip the first %d steps in the first epoch",
                    steps_trained_in_current_epoch)

    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    seed_everything(
        args.seed
    )  # Added here for reproductibility (even between python 2 and 3)
    # train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])

    best_eval_p = 0.0
    best_eval_r = 0.0
    best_eval_f1 = 0.0

    for _ in range(int(args.num_train_epochs)):
        # pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
        epoch_iterator = tqdm(train_dataloader,
                              desc="Iteration",
                              disable=args.local_rank not in [-1, 0])
        for step, batch in enumerate(epoch_iterator):
            # Skip past any already trained steps if resuming training
            if steps_trained_in_current_epoch > 0:
                steps_trained_in_current_epoch -= 1
                continue

            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "labels": batch[3],
                'input_lens': batch[4]
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)

            outputs = model(**inputs)
            loss = outputs[
                0]  # model outputs are always tuple in pytorch-transformers (see doc)
            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
            # pbar(step, {'loss': loss.item()})
            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                if args.fp16:
                    torch.nn.utils.clip_grad_norm_(
                        amp.master_params(optimizer), args.max_grad_norm)
                else:
                    torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                   args.max_grad_norm)
                scheduler.step()  # Update learning rate schedule
                optimizer.step()
                model.zero_grad()
                global_step += 1
                # if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                #     # Log metrics
                #     print(" ")
                #     if args.local_rank == -1:
                #         # Only evaluate when single GPU otherwise metrics may not average well
                #         evaluate(args, model, tokenizer)
                # if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:
                #     # Save model checkpoint
                #     output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step))
                #     if not os.path.exists(output_dir):
                #         os.makedirs(output_dir)
                #     model_to_save = (
                #         model.module if hasattr(model, "module") else model
                #     )  # Take care of distributed/parallel training
                #     model_to_save.save_pretrained(output_dir)
                #     torch.save(args, os.path.join(output_dir, "training_args.bin"))
                #     logger.info("Saving model checkpoint to %s", output_dir)
                #     tokenizer.save_vocabulary(output_dir)
                #     torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                #     torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
                #     logger.info("Saving optimizer and scheduler states to %s", output_dir)

        # best eval
        results = evaluate(args, model, tokenizer)
        if results["f1"] > best_eval_f1:
            best_eval_p = results['acc']
            best_eval_r = results['recall']
            best_eval_f1 = results["f1"]

            ## 保存最好模型
            args.best_eval_output_dir = os.path.join(args.output_dir)
            if not os.path.exists(args.best_eval_output_dir):
                os.makedirs(args.best_eval_output_dir)
            model_to_save = (
                model.module if hasattr(model, "module") else model
            )  # Take care of distributed/parallel training
            model_to_save.save_pretrained(args.best_eval_output_dir)
            torch.save(
                args,
                os.path.join(args.best_eval_output_dir, "training_args.bin"))
            logger.info("eval results: p:{:.4f} r:{:.4f} f1:{:.4f}".format(
                best_eval_p, best_eval_r, best_eval_f1))
            logger.info("Saving step:{} as best model to {}".format(
                global_step, args.best_eval_output_dir))
            tokenizer.save_vocabulary(args.best_eval_output_dir)
            torch.save(optimizer.state_dict(),
                       os.path.join(args.best_eval_output_dir, "optimizer.pt"))
            torch.save(scheduler.state_dict(),
                       os.path.join(args.best_eval_output_dir, "scheduler.pt"))
            # logger.info("Saving optimizer and scheduler states to %s", args.best_eval_output_dir)
            # config_file = os.path.join(args.best_eval_output_dir, "best_config.json")
            # json.dump(config, config_file)

        logger.info("\n")
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
    if args.do_predict:
        config_class, model_class, tokenizer_class = MODEL_CLASSES[
            args.model_type]
        model = model_class.from_pretrained(args.best_eval_output_dir,
                                            config=config)
        model.to(args.device)
        predict(args, model, tokenizer)

    return global_step, tr_loss / global_step
Exemplo n.º 21
0
def evaluate(args, model, tokenizer, prefix=""):
    metric = SeqEntityScore(args.id2label, markup=args.markup)
    eval_output_dir = args.output_dir
    if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(eval_output_dir)
    eval_dataset = load_and_cache_examples(args,
                                           args.task_name,
                                           tokenizer,
                                           data_type='dev')
    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
    # Note that DistributedSampler samples randomly
    eval_sampler = SequentialSampler(
        eval_dataset) if args.local_rank == -1 else DistributedSampler(
            eval_dataset)
    eval_dataloader = DataLoader(eval_dataset,
                                 sampler=eval_sampler,
                                 batch_size=args.eval_batch_size,
                                 collate_fn=collate_fn)
    # Eval!
    logger.info("***** Running evaluation %s *****", prefix)
    logger.info("  Num examples = %d", len(eval_dataset))
    logger.info("  Batch size = %d", args.eval_batch_size)
    eval_loss = 0.0
    nb_eval_steps = 0
    # pbar = ProgressBar(n_total=len(eval_dataloader), desc="Evaluating")
    eval_iterator = tqdm(eval_dataloader,
                         desc="Iteration",
                         disable=args.local_rank not in [-1, 0])
    if isinstance(model, nn.DataParallel):
        model = model.module
    for step, batch in enumerate(eval_iterator):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "labels": batch[3],
                'input_lens': batch[4]
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
            tmp_eval_loss, logits = outputs[:2]
            tags = model.crf.decode(logits, inputs['attention_mask'])
        if args.n_gpu > 1:
            tmp_eval_loss = tmp_eval_loss.mean(
            )  # mean() to average on multi-gpu parallel evaluating
        eval_loss += tmp_eval_loss.item()
        nb_eval_steps += 1
        out_label_ids = inputs['labels'].cpu().numpy().tolist()
        input_lens = inputs['input_lens'].cpu().numpy().tolist()
        tags = tags.squeeze(0).cpu().numpy().tolist()
        for i, label in enumerate(out_label_ids):
            temp_1 = []
            temp_2 = []
            for j, m in enumerate(label):
                if j == 0:
                    continue
                elif j == input_lens[i] - 1:
                    metric.update(pred_paths=[temp_2], label_paths=[temp_1])
                    break
                else:
                    temp_1.append(args.id2label[out_label_ids[i][j]])
                    temp_2.append(args.id2label[tags[i][j]])
        # pbar(step)
    logger.info("\n")
    eval_loss = eval_loss / nb_eval_steps
    eval_info, entity_info = metric.result()
    results = {f'{key}': value for key, value in eval_info.items()}
    results['loss'] = eval_loss
    logger.info("***** Eval results %s *****", prefix)
    info = "-".join(
        [f' {key}: {value:.4f} ' for key, value in results.items()])
    logger.info(info)
    logger.info("***** Entity results %s *****", prefix)
    for key in sorted(entity_info.keys()):
        logger.info("******* %s results ********" % key)
        info = "-".join([
            f' {key}: {value:.4f} ' for key, value in entity_info[key].items()
        ])
        logger.info(info)
    return results
Exemplo n.º 22
0
def main():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " +
        ", ".join(processors.keys()))
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the training files for the CoNLL-2003 NER task.",
    )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " +
        ", ".join(MODEL_CLASSES.keys()),
    )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: "
        + ", ".join(ALL_MODELS),
    )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The output directory where the model predictions and checkpoints will be written.",
    )

    # Other parameters
    parser.add_argument('--markup',
                        default='bios',
                        type=str,
                        choices=['bios', 'bio'])
    parser.add_argument('--loss_type',
                        default='ce',
                        type=str,
                        choices=['lsr', 'focal', 'ce'])
    parser.add_argument(
        "--config_name",
        default="",
        type=str,
        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument(
        "--tokenizer_name",
        default="",
        type=str,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--cache_dir",
        default="",
        type=str,
        help=
        "Where do you want to store the pre-trained models downloaded from s3",
    )
    parser.add_argument(
        "--train_max_seq_length",
        default=128,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument(
        "--eval_max_seq_length",
        default=512,
        type=int,
        help=
        "The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.",
    )
    parser.add_argument("--do_train",
                        action="store_true",
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action="store_true",
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_predict",
                        action="store_true",
                        help="Whether to run predictions on the test set.")
    parser.add_argument(
        "--evaluate_during_training",
        action="store_true",
        help="Whether to run evaluation during training at each logging step.",
    )
    parser.add_argument(
        "--do_lower_case",
        action="store_true",
        help="Set this flag if you are using an uncased model.")
    parser.add_argument("--do_adv",
                        action="store_true",
                        help="Whether to adversarial training.")
    parser.add_argument('--adv_epsilon',
                        default=1.0,
                        type=float,
                        help="Epsilon for adversarial.")
    parser.add_argument('--adv_name',
                        default='word_embeddings',
                        type=str,
                        help="name for adversarial layer.")

    parser.add_argument("--per_gpu_train_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size",
                        default=8,
                        type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument("--learning_rate",
                        default=5e-5,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay",
                        default=0.01,
                        type=float,
                        help="Weight decay if we apply some.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm",
                        default=1.0,
                        type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs",
                        default=3.0,
                        type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help=
        "If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )

    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help=
        "Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training."
    )
    parser.add_argument("--logging_steps",
                        type=int,
                        default=50,
                        help="Log every X updates steps.")
    parser.add_argument("--save_steps",
                        type=int,
                        default=50,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--eval_all_checkpoints",
        action="store_true",
        help=
        "Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument(
        '--predict_checkpoints',
        action="store_true",
        help=
        "Predict checkpoints starting with the same prefix as model_name ending and ending with step number",
    )
    parser.add_argument("--no_cuda",
                        action="store_true",
                        help="Avoid using CUDA when available")
    parser.add_argument("--overwrite_output_dir",
                        action="store_true",
                        help="Overwrite the content of the output directory")
    parser.add_argument(
        "--overwrite_cache",
        action="store_true",
        help="Overwrite the cached training and evaluation sets")
    parser.add_argument("--seed",
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        "--fp16",
        action="store_true",
        help=
        "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit",
    )
    parser.add_argument(
        "--fp16_opt_level",
        type=str,
        default="O1",
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html",
    )
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument("--server_ip",
                        type=str,
                        default="",
                        help="For distant debugging.")
    parser.add_argument("--server_port",
                        type=str,
                        default="",
                        help="For distant debugging.")
    args = parser.parse_args()

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    args.output_dir = args.output_dir + '{}'.format(args.model_type)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    time_ = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())
    init_logger(log_file=args.output_dir +
                f'/{args.model_type}-{args.task_name}-{time_}.log')
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
            .format(args.output_dir))
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()
    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend="nccl")
        args.n_gpu = 1
    args.device = device
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
    # Set seed
    seed_everything(args.seed)
    # Prepare NER task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    label_list = processor.get_labels()
    args.id2label = {i: label for i, label in enumerate(label_list)}
    args.label2id = {label: i for i, label in enumerate(label_list)}
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab
    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        loss_type=args.loss_type,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name
        if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None,
    )
    if args.local_rank == 0:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)
    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                args.task_name,
                                                tokenizer,
                                                data_type='train')
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)
    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)
        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = (model.module if hasattr(model, "module") else model
                         )  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        tokenizer.save_vocabulary(args.output_dir)
        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, "training_args.bin"))
    # Evaluation
    results = {}
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME,
                              recursive=True)))
            logging.getLogger("pytorch_transformers.modeling_utils").setLevel(
                logging.WARN)  # Reduce logging
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            global_step = checkpoint.split(
                "-")[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            if global_step:
                result = {
                    "{}_{}".format(global_step, k): v
                    for k, v in result.items()
                }
            results.update(result)
        output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key in sorted(results.keys()):
                writer.write("{} = {}\n".format(key, str(results[key])))

    if args.do_predict and args.local_rank in [-1, 0]:
        tokenizer = tokenizer_class.from_pretrained(
            args.output_dir, do_lower_case=args.do_lower_case)
        checkpoints = [args.output_dir]
        if args.predict_checkpoints > 0:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            logging.getLogger("transformers.modeling_utils").setLevel(
                logging.WARN)  # Reduce logging
            checkpoints = [
                x for x in checkpoints
                if x.split('-')[-1] == str(args.predict_checkpoints)
            ]
        logger.info("Predict the following checkpoints: %s", checkpoints)
        for checkpoint in checkpoints:
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""
            model = model_class.from_pretrained(checkpoint)
            model.to(args.device)
            predict(args, model, tokenizer, prefix=prefix)
def main():
    args = deal_parser()
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    args.output_dir = args.output_dir + '{}'.format(args.model_type)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    init_logger(log_file=args.output_dir +
                '/{}-{}.log'.format(args.model_type, args.task_name))
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
            .format(args.output_dir))

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device
    # Setup logging
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank, device, args.n_gpu, bool(args.local_rank != -1),
        args.fp16)
    # Set seed
    seed_everything(args.seed)
    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels()
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()

    if args.local_rank == 0:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    config = BertConfig.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        finetuning_task=args.task_name)
    # albert model
    # tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case,spm_model_file=args.spm_model_file)
    # model = AlbertForSequenceClassification.from_pretrained(args.model_name_or_path,from_tf=bool('.ckpt' in args.model_name_or_path),config=config)
    # bert model
    tokenizer = tokenization_bert.BertTokenizer(
        vocab_file=args.vocab_file,
        do_lower_case=args.do_lower_case,
        spm_model_file=args.spm_model_file)
    model = BertForSequenceClassification.from_pretrained(
        args.model_name_or_path,
        from_tf=bool('.ckpt' in args.model_name_or_path),
        config=config)
    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                args.task_name,
                                                tokenizer,
                                                data_type='train')
        global_step, tr_loss = train(args, train_dataset, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1
                          or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(
            model,
            'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

    # Evaluation
    results = []
    if args.do_eval and args.local_rank in [-1, 0]:
        # albert model
        #tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file,do_lower_case=args.do_lower_case,spm_model_file=args.spm_model_file)
        # bert model
        tokenizer = tokenization_bert.BertTokenizer(
            vocab_file=args.vocab_file,
            do_lower_case=args.do_lower_case,
            spm_model_file=args.spm_model_file)
        checkpoints = [(0, args.output_dir)]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint)
                           for checkpoint in checkpoints
                           if checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints, key=lambda x: x[0])
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for _, checkpoint in checkpoints:
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            # albert model
            # model = AlbertForSequenceClassification.from_pretrained(checkpoint)
            # bert model
            model = BertForSequenceClassification.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, prefix=prefix)
            results.extend([(k + '_{}'.format(global_step), v)
                            for k, v in result.items()])
        output_eval_file = os.path.join(args.output_dir,
                                        "checkpoint_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key, value in results:
                writer.write("%s = %s\n" % (key, str(value)))
    # Test
    results = []
    if args.do_predict and args.local_rank in [-1, 0]:
        # albert model
        # tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file,do_lower_case=args.do_lower_case,spm_model_file=args.spm_model_file)
        # bert model
        tokenizer = tokenization_bert.BertTokenizer(
            vocab_file=args.vocab_file,
            do_lower_case=args.do_lower_case,
            spm_model_file=args.spm_model_file)
        checkpoints = [(0, args.output_dir)]
        if args.predict_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(
                    glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME,
                              recursive=True)))
            checkpoints = [(int(checkpoint.split('-')[-1]), checkpoint)
                           for checkpoint in checkpoints
                           if checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints, key=lambda x: x[0])
        logger.info("Test the following checkpoints: %s", checkpoints)
        for _, checkpoint in checkpoints:
            global_step = checkpoint.split(
                '-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split(
                '/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            # albert model
            # model = AlbertForSequenceClassification.from_pretrained(checkpoint)
            # bert model
            model = BertForSequenceClassification.from_pretrained(checkpoint)
            model.to(args.device)
            result = test(args, model, tokenizer, prefix=prefix)
            results.extend([(k + '_{}'.format(global_step), v)
                            for k, v in result.items()])
        output_test_file = os.path.join(args.output_dir,
                                        "checkpoint_test_results.txt")
        with open(output_test_file, "w") as writer:
            for key, value in results:
                writer.write("%s = %s\n" % (key, str(value)))
def train(args, train_dataset, model, tokenizer):
    """ Train the model """
    args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
    train_sampler = RandomSampler(
        train_dataset) if args.local_rank == -1 else DistributedSampler(
            train_dataset)
    train_dataloader = DataLoader(train_dataset,
                                  sampler=train_sampler,
                                  batch_size=args.train_batch_size,
                                  collate_fn=collate_fn)

    if args.max_steps > 0:
        num_training_steps = args.max_steps
        args.num_train_epochs = args.max_steps // (
            len(train_dataloader) // args.gradient_accumulation_steps) + 1
    else:
        num_training_steps = len(
            train_dataloader
        ) // args.gradient_accumulation_steps * args.num_train_epochs
    args.warmup_steps = int(num_training_steps * args.warmup_proportion)
    # Prepare optimizer and schedule (linear warmup and decay)
    no_decay = ['bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params': [
            p for n, p in model.named_parameters()
            if not any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        args.weight_decay
    }, {
        'params': [
            p for n, p in model.named_parameters()
            if any(nd in n for nd in no_decay)
        ],
        'weight_decay':
        0.0
    }]
    # optimizer = Lamb(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    optimizer = AdamW(params=optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=num_training_steps)
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    # multi-gpu training (should be after apex fp16 initialization)
    if args.n_gpu > 1:
        model = torch.nn.DataParallel(model)

    # Distributed training (should be after apex fp16 initialization)
    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model,
            device_ids=[args.local_rank],
            output_device=args.local_rank,
            find_unused_parameters=True)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = %d", len(train_dataset))
    logger.info("  Num Epochs = %d", args.num_train_epochs)
    logger.info("  Instantaneous batch size per GPU = %d",
                args.per_gpu_train_batch_size)
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = %d",
        args.train_batch_size * args.gradient_accumulation_steps *
        (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
    logger.info("  Gradient Accumulation steps = %d",
                args.gradient_accumulation_steps)
    logger.info("  Total optimization steps = %d", num_training_steps)

    global_step = 0
    tr_loss, logging_loss = 0.0, 0.0
    model.zero_grad()
    seed_everything(
        args.seed
    )  # Added here for reproductibility (even between python 2 and 3)
    for _ in range(int(args.num_train_epochs)):
        pbar = ProgressBar(n_total=len(train_dataloader), desc='Training')
        for step, batch in enumerate(train_dataloader):
            model.train()
            batch = tuple(t.to(args.device) for t in batch)
            inputs = {
                'input_ids': batch[0],
                'attention_mask': batch[1],
                'labels': batch[3],
                'token_type_ids': batch[2]
            }
            outputs = model(**inputs)
            loss = outputs[
                0]  # model outputs are always tuple in transformers (see doc)

            if args.n_gpu > 1:
                loss = loss.mean(
                )  # mean() to average on multi-gpu parallel training
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps

            if args.fp16:
                with amp.scale_loss(loss, optimizer) as scaled_loss:
                    scaled_loss.backward()
                torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer),
                                               args.max_grad_norm)
            else:
                loss.backward()
                torch.nn.utils.clip_grad_norm_(model.parameters(),
                                               args.max_grad_norm)

            tr_loss += loss.item()
            if (step + 1) % args.gradient_accumulation_steps == 0:
                optimizer.step()
                scheduler.step()  # Update learning rate schedule
                model.zero_grad()
                global_step += 1

            if args.local_rank in [
                    -1, 0
            ] and args.logging_steps > 0 and global_step % args.logging_steps == 0:
                # Log metrics
                if args.local_rank == -1:  # Only evaluate when single GPU otherwise metrics may not average well
                    evaluate(args, model, tokenizer)

            if args.local_rank in [
                    -1, 0
            ] and args.save_steps > 0 and global_step % args.save_steps == 0:
                # Save model checkpoint
                output_dir = os.path.join(args.output_dir,
                                          'checkpoint-{}'.format(global_step))
                if not os.path.exists(output_dir):
                    os.makedirs(output_dir)
                model_to_save = model.module if hasattr(
                    model, 'module'
                ) else model  # Take care of distributed/parallel training
                model_to_save.save_pretrained(output_dir)
                torch.save(args, os.path.join(output_dir, 'training_args.bin'))
                logger.info("Saving model checkpoint to %s", output_dir)
            pbar(step, {'loss': loss.item()})
        print(" ")
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
    return global_step, tr_loss / global_step
def test(args, model, tokenizer, prefix=""):
    # Loop to handle MNLI double evaluation (matched, mis-matched)
    test_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (
        args.task_name, )
    test_outputs_dirs = (args.output_dir, args.output_dir +
                         '-MM') if args.task_name == "mnli" else (
                             args.output_dir, )

    results = {}
    for test_task, test_output_dir in zip(test_task_names, test_outputs_dirs):
        test_dataset = load_and_cache_examples(args,
                                               test_task,
                                               tokenizer,
                                               data_type='test')
        if not os.path.exists(test_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(test_output_dir)

        args.eval_batch_size = args.per_gpu_eval_batch_size * max(
            1, args.n_gpu)
        # Note that DistributedSampler samples randomly
        test_sampler = SequentialSampler(
            test_dataset) if args.local_rank == -1 else DistributedSampler(
                test_dataset)
        test_dataloader = DataLoader(test_dataset,
                                     sampler=test_sampler,
                                     batch_size=args.eval_batch_size,
                                     collate_fn=collate_fn)

        # Test!
        logger.info("***** Running test {} *****".format(prefix))
        logger.info("  Num examples = %d", len(test_dataset))
        logger.info("  Batch size = %d", args.eval_batch_size)
        eval_loss = 0.0
        nb_eval_steps = 0
        preds = None
        out_label_ids = None
        pbar = ProgressBar(n_total=len(test_dataloader), desc="Testing")
        for step, batch in enumerate(test_dataloader):
            model.eval()
            batch = tuple(t.to(args.device) for t in batch)
            with torch.no_grad():
                inputs = {
                    'input_ids': batch[0],
                    'attention_mask': batch[1],
                    'labels': batch[3],
                    'token_type_ids': batch[2]
                }
                outputs = model(**inputs)
                tmp_eval_loss, logits = outputs[:2]
                eval_loss += tmp_eval_loss.mean().item()
            nb_eval_steps += 1
            if preds is None:
                preds = logits.detach().cpu().numpy()
                out_label_ids = inputs['labels'].detach().cpu().numpy()
            else:
                preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
                out_label_ids = np.append(
                    out_label_ids,
                    inputs['labels'].detach().cpu().numpy(),
                    axis=0)
            pbar(step)
        print(' ')
        if 'cuda' in str(args.device):
            torch.cuda.empty_cache()
        eval_loss = eval_loss / nb_eval_steps
        if args.output_mode == "classification":
            preds = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            preds = np.squeeze(preds)
        result = compute_metrics(test_task, preds, out_label_ids)
        results.update(result)
        logger.info("***** Test results {} *****".format(prefix))
        for key in sorted(result.keys()):
            logger.info("  %s = %s", key, str(result[key]))
        classreport = ClassReport([
            'Joint', 'Sequence', 'Progression', "Contrast", "Supplement",
            "Cause-Result", "Result-Cause", "Background", "Behavior-Purpose",
            "Purpose-Behavior", "Elaboration", "Summary", "Evaluation",
            "Statement-Illustration", "Illustration-Statement"
        ])
        classreport(preds, out_label_ids)
        logger.info("%s : %s", classreport.name(), classreport.value())

    return results
Exemplo n.º 26
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument("--data_dir", default=None, type=str, required=True,
                        help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
    parser.add_argument("--model_type", default=None, type=str, required=True,
                        help="Model type selected in the list: ")
    parser.add_argument("--model_name_or_path", default=None, type=str, required=True,
                        help="Path to pre-trained model or shortcut name selected in the list")
    parser.add_argument("--task_name", default=None, type=str, required=True,
                        help="The name of the task to train selected in the list: " + ", ".join(processors.keys()))
    parser.add_argument("--output_dir", default=None, type=str, required=True,
                        help="The output directory where the model predictions and checkpoints will be written.")
    parser.add_argument("--vocab_file",default='', type=str)
    parser.add_argument("--spm_model_file",default='',type=str)

    ## Other parameters
    parser.add_argument("--config_name", default="", type=str,
                        help="Pretrained config name or path if not the same as model_name")
    parser.add_argument("--tokenizer_name", default="", type=str,
                        help="Pretrained tokenizer name or path if not the same as model_name")
    parser.add_argument("--cache_dir", default="", type=str,
                        help="Where do you want to store the pre-trained models downloaded from s3")
    parser.add_argument("--max_seq_length", default=512, type=int,
                        help="The maximum total input sequence length after tokenization. Sequences longer "
                             "than this will be truncated, sequences shorter will be padded.")
    parser.add_argument("--do_train", action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval", action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--output_eval", action='store_true',
                        help="Whether to write output result.")
    parser.add_argument("--do_predict", action='store_true',
                        help="Whether to run the model in inference mode on the test set.")
    parser.add_argument("--do_lower_case", action='store_true',
                        help="Set this flag if you are using an uncased model.")

    parser.add_argument("--per_gpu_train_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
                        help="Batch size per GPU/CPU for evaluation.")
    parser.add_argument('--gradient_accumulation_steps', type=int, default=1,
                        help="Number of updates steps to accumulate before performing a backward/update pass.")
    parser.add_argument("--learning_rate", default=5e-5, type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--weight_decay", default=0.0, type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--adam_epsilon", default=1e-6, type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--max_grad_norm", default=1.0, type=float,
                        help="Max gradient norm.")
    parser.add_argument("--num_train_epochs", default=3.0, type=float,
                        help="Total number of training epochs to perform.")
    parser.add_argument("--max_steps", default=-1, type=int,
                        help="If > 0: set total number of training steps to perform. Override num_train_epochs.")
    parser.add_argument("--warmup_proportion", default=0.1, type=float,
                        help="Proportion of training to perform linear learning rate warmup for,E.g., 0.1 = 10% of training.")

    parser.add_argument('--logging_steps', type=int, default=10,
                        help="Log every X updates steps.")
    parser.add_argument('--save_steps', type=int, default=1000,
                        help="Save checkpoint every X updates steps.")
    parser.add_argument("--eval_all_checkpoints", action='store_true',
                        help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number")
    parser.add_argument("--no_cuda", action='store_true',
                        help="Avoid using CUDA when available")
    parser.add_argument('--overwrite_output_dir', action='store_true',
                        help="Overwrite the content of the output directory")
    parser.add_argument('--overwrite_cache', action='store_true',
                        help="Overwrite the cached training and evaluation sets")
    parser.add_argument('--seed', type=int, default=42,
                        help="random seed for initialization")

    parser.add_argument('--fp16', action='store_true',
                        help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")
    parser.add_argument('--fp16_opt_level', type=str, default='O1',
                        help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
                             "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument("--local_rank", type=int, default=-1,
                        help="For distributed training: local_rank")
    parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")
    parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")
    parser.add_argument("--label_with_bi", action='store_true', help="Label with B/I")
    args = parser.parse_args()

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    args.output_dir = args.output_dir + '{}'.format(args.model_type)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    init_logger(log_file=args.output_dir + '/{}-{}.log'.format(args.model_type, args.task_name))
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
                args.output_dir))

    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend='nccl')
        args.n_gpu = 1
    args.device = device
    # Setup logging
    logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
                   args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)
    # Set seed
    seed_everything(args.seed)
    # Prepare GLUE task
    args.task_name = args.task_name.lower()
    if args.task_name != "ner":
        raise ValueError("Task error: %s, must be ner" % (args.task_name))
    processor = processors[args.task_name]()
    args.output_mode = output_modes[args.task_name]
    label_list = processor.get_labels_ner(args.data_dir, args.label_with_bi)
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab

    args.model_type = args.model_type.lower()
    config = AlbertConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,
                                          num_labels=num_labels,
                                          finetuning_task=args.task_name)
    tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=args.do_lower_case,
                                                 spm_model_file=args.spm_model_file)
    model =AlbertFocalLossForNer.from_pretrained(args.model_name_or_path,
                                                        from_tf=bool('.ckpt' in args.model_name_or_path),
                                                        config=config)
    if args.local_rank == 0:
        torch.distributed.barrier()  # Make sure only the first process in distributed training will download model & vocab
    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)

    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, data_type='train')
        global_step, tr_loss = train(args, train_dataset, label_list, model, tokenizer)
        logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)

    # Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained()
    if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
        # Create output directory if needed
        if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(args.output_dir)

        logger.info("Saving model checkpoint to %s", args.output_dir)
        # Save a trained model, configuration and tokenizer using `save_pretrained()`.
        # They can then be reloaded using `from_pretrained()`
        model_to_save = model.module if hasattr(model,
                                                'module') else model  # Take care of distributed/parallel training
        model_to_save.save_pretrained(args.output_dir)
        # Good practice: save your training arguments together with the trained model
        torch.save(args, os.path.join(args.output_dir, 'training_args.bin'))

    # Evaluation
    results = []
    if args.do_eval and args.local_rank in [-1, 0]:
        tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file,
                                                      do_lower_case=args.do_lower_case,
                                                      spm_model_file=args.spm_model_file)
        checkpoints = [(0,args.output_dir)]
        if args.eval_all_checkpoints:
            checkpoints = list(
                os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True)))
            checkpoints = [(int(checkpoint.split('-')[-1]),checkpoint) for checkpoint in checkpoints if checkpoint.find('checkpoint') != -1]
            checkpoints = sorted(checkpoints,key =lambda x:x[0])
        logger.info("Evaluate the following checkpoints: %s", checkpoints)
        for _,checkpoint in checkpoints:
            global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else ""
            prefix = checkpoint.split('/')[-1] if checkpoint.find('checkpoint') != -1 else ""

            model = AlbertFocalLossForNer.from_pretrained(checkpoint)
            model.to(args.device)
            result = evaluate(args, model, tokenizer, label_list, prefix=prefix)
            results.extend([(k + '_{}'.format(global_step), v) for k, v in result.items()])
        output_eval_file = os.path.join(args.output_dir, "checkpoint_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key,value in results:
                writer.write("%s = %s\n" % (key, str(value)))
    if args.do_predict and args.local_rank in [-1, 0]:
        tokenizer = tokenization_albert.FullTokenizer(vocab_file=args.vocab_file,
                                                      do_lower_case=args.do_lower_case,
                                                      spm_model_file=args.spm_model_file)
        result = evaluate(args, model, tokenizer, label_list, prefix="")
        output_eval_file = os.path.join(args.output_dir, "checkpoint_eval_results.txt")
        with open(output_eval_file, "w") as writer:
            for key,value in result.items():
                writer.write("%s = %s\n" % (key, str(value)))
Exemplo n.º 27
0
def main():
    parser = ArgumentParser()
    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default="dataset",
        type=str,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--config_path",
                        default="prev_trained_model/electra_small/config.json",
                        type=str)
    parser.add_argument("--vocab_path",
                        default="prev_trained_model/electra_small/vocab.txt",
                        type=str)
    parser.add_argument(
        "--output_dir",
        default="outputs",
        type=str,
        help=
        "The output directory where the model predictions and checkpoints will be written."
    )
    parser.add_argument("--model_path",
                        default='prev_trained_model/electra_small',
                        type=str)
    parser.add_argument('--data_name', default='electra', type=str)
    parser.add_argument(
        "--file_num",
        type=int,
        default=10,
        help="Number of dynamic masking to pregenerate (with different masks)")
    parser.add_argument(
        "--reduce_memory",
        action="store_true",
        help=
        "Store training data as on-disc memmaps to massively reduce memory usage"
    )
    parser.add_argument("--epochs",
                        type=int,
                        default=4,
                        help="Number of epochs to train for")
    parser.add_argument(
        "--do_lower_case",
        action='store_true',
        help="Set this flag if you are using an uncased model.")

    parser.add_argument('--num_eval_steps', default=100)
    parser.add_argument('--num_save_steps', default=2000)
    parser.add_argument("--local_rank",
                        type=int,
                        default=-1,
                        help="local_rank for distributed training on gpus")
    parser.add_argument("--weight_decay",
                        default=0.01,
                        type=float,
                        help="Weight deay if we apply some.")
    parser.add_argument("--no_cuda",
                        action='store_true',
                        help="Whether not to use CUDA when available")
    parser.add_argument(
        '--gradient_accumulation_steps',
        type=int,
        default=1,
        help=
        "Number of updates steps to accumulate before performing a backward/update pass."
    )
    parser.add_argument("--train_batch_size",
                        default=128,
                        type=int,
                        help="Total batch size for training.")
    parser.add_argument("--gen_weight",
                        default=1.0,
                        type=float,
                        help='masked language modeling / generator loss')
    parser.add_argument("--disc_weight",
                        default=50,
                        type=float,
                        help='discriminator loss')
    parser.add_argument('--untied_generator',
                        action='store_true',
                        help='tie all generator/discriminator weights?')
    parser.add_argument('--temperature',
                        default=0,
                        type=float,
                        help='temperature for sampling from generator')
    parser.add_argument(
        '--loss_scale',
        type=float,
        default=0,
        help=
        "Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
        "0 (default value): dynamic loss scaling.\n"
        "Positive power of 2: static loss scaling value.\n")
    parser.add_argument("--warmup_proportion",
                        default=0.1,
                        type=float,
                        help="Linear warmup over warmup_steps.")
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument('--max_grad_norm', default=1.0, type=float)
    parser.add_argument("--learning_rate",
                        default=0.000176,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument('--seed',
                        type=int,
                        default=42,
                        help="random seed for initialization")
    parser.add_argument(
        '--fp16_opt_level',
        type=str,
        default='O2',
        help=
        "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']."
        "See details at https://nvidia.github.io/apex/amp.html")
    parser.add_argument(
        '--fp16',
        action='store_true',
        help="Whether to use 16-bit float precision instead of 32-bit")
    parser.add_argument('--continue_train',
                        default='',
                        help="continue train path")
    args = parser.parse_args()

    args.data_dir = Path(args.data_dir)
    args.output_dir = Path(args.output_dir)

    pregenerated_data = args.data_dir / "corpus/train"
    init_logger(log_file=str(args.output_dir / "train_albert_model.log"))
    assert pregenerated_data.is_dir(), \
        "--pregenerated_data should point to the folder of files made by prepare_lm_data_mask.py!"

    samples_per_epoch = 0
    for i in range(args.file_num):
        data_file = pregenerated_data / f"{args.data_name}_file_{i}.json"
        metrics_file = pregenerated_data / f"{args.data_name}_file_{i}_metrics.json"
        if data_file.is_file() and metrics_file.is_file():
            metrics = json.loads(metrics_file.read_text())
            samples_per_epoch += metrics['num_training_examples']
        else:
            if i == 0:
                exit("No training data was found!")
            print(
                f"Warning! There are fewer epochs of pregenerated data ({i}) than training epochs ({args.epochs})."
            )
            print(
                "This script will loop over the available data, but training diversity may be negatively impacted."
            )
            break
    logger.info(f"samples_per_epoch: {samples_per_epoch}")
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device(f"cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        args.n_gpu = 1
        # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.distributed.init_process_group(backend='nccl')
    logger.info(
        f"device: {device} , distributed training: {bool(args.local_rank != -1)}, 16-bits training: {args.fp16}"
    )

    if args.gradient_accumulation_steps < 1:
        raise ValueError(
            f"Invalid gradient_accumulation_steps parameter: {args.gradient_accumulation_steps}, should be >= 1"
        )
    args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps

    seed_everything(args.seed)
    tokenizer = BertTokenizer.from_pretrained(args.vocab_path,
                                              do_lower_case=args.do_lower_case)
    total_train_examples = samples_per_epoch * args.epochs

    num_train_optimization_steps = int(total_train_examples /
                                       args.train_batch_size /
                                       args.gradient_accumulation_steps)
    if args.local_rank != -1:
        num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size(
        )
    args.warmup_steps = int(num_train_optimization_steps *
                            args.warmup_proportion)

    bert_config = ElectraConfig.from_pretrained(args.config_path,
                                                gen_weight=args.gen_weight,
                                                temperature=args.temperature,
                                                disc_weight=args.disc_weight)
    model = ElectraForPreTraining(config=bert_config)

    if args.continue_train:
        print(f"Continue train from {args.continue_train}")
        model = model.from_pretrained(args.continue_train)
    elif args.model_path:
        print("载入预训练模型")
        model.generator = AutoModel.from_pretrained(args.model_path + "/G")
        model.electra = AutoModel.from_pretrained(args.model_path + "/D")

    # print(model)
    model.to(device)
    # Prepare optimizer
    param_optimizer = list(model.named_parameters())
    no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
    optimizer_grouped_parameters = [{
        'params':
        [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
        'weight_decay':
        args.weight_decay
    }, {
        'params':
        [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
        'weight_decay':
        0.0
    }]
    optimizer = AdamW(params=optimizer_grouped_parameters,
                      lr=args.learning_rate,
                      eps=args.adam_epsilon)
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=args.warmup_steps,
        num_training_steps=num_train_optimization_steps)
    # optimizer = Lamb(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
    # if args.model_path:
    #     optimizer.load_state_dict(torch.load(args.model_path + "/optimizer.bin"))
    if args.fp16:
        try:
            from apex import amp
        except ImportError:
            raise ImportError(
                "Please install apex from https://www.github.com/nvidia/apex to use fp16 training."
            )
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level=args.fp16_opt_level)

    if args.n_gpu > 1:
        # model = BalancedDataParallel(gpu0_bsz=32,dim=0,model).to(device)
        model = torch.nn.DataParallel(model)

    if args.local_rank != -1:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.local_rank], output_device=args.local_rank)
    global_step = 0
    g_metric = LMAccuracy()
    d_metric = AccuracyThresh()
    tr_g_acc = AverageMeter()
    tr_d_acc = AverageMeter()
    tr_loss = AverageMeter()
    tr_g_loss = AverageMeter()
    tr_d_loss = AverageMeter()

    train_logs = {}
    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {total_train_examples}")
    logger.info(f"  Batch size = {args.train_batch_size}")
    logger.info(f"  Num steps = {num_train_optimization_steps}")
    logger.info(f"  warmup_steps = {args.warmup_steps}")
    logger.info(f"  Num workable gpus = {args.n_gpu}")

    start_time = time.time()
    seed_everything(args.seed)  # Added here for reproducibility
    for epoch in range(args.epochs):
        for idx in range(args.file_num):
            epoch_dataset = PregeneratedDataset(
                file_id=idx,
                training_path=pregenerated_data,
                tokenizer=tokenizer,
                reduce_memory=args.reduce_memory,
                data_name=args.data_name)
            if args.local_rank == -1:
                train_sampler = RandomSampler(epoch_dataset)
            else:
                train_sampler = DistributedSampler(epoch_dataset)
            train_dataloader = DataLoader(epoch_dataset,
                                          sampler=train_sampler,
                                          batch_size=args.train_batch_size)
            model.train()
            nb_tr_examples, nb_tr_steps = 0, 0
            for step, batch in enumerate(train_dataloader):
                batch = tuple(t.to(device) for t in batch)
                input_ids, input_mask, segment_ids, lm_label_ids = batch
                outputs = model(input_ids=input_ids,
                                token_type_ids=segment_ids,
                                attention_mask=input_mask,
                                masked_lm_labels=lm_label_ids)
                loss, g_loss, d_loss, d_logits, g_logits, is_replaced_label = outputs

                active_indices = input_mask.view(-1) == 1
                active_logits = d_logits.view(-1)[active_indices]
                active_labels = is_replaced_label.view(-1)[active_indices]

                g_metric(logits=g_logits.view(-1, bert_config.vocab_size),
                         target=lm_label_ids.view(-1))
                d_metric(logits=active_logits.view(-1, 1),
                         target=active_labels)

                if args.n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu.
                    g_loss = g_loss.mean()
                    d_loss = d_loss.mean()

                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps
                if args.fp16:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()

                nb_tr_steps += 1
                tr_g_acc.update(g_metric.value(), n=input_ids.size(0))
                tr_d_acc.update(d_metric.value(), n=input_ids.size(0))

                tr_loss.update(loss.item(), n=1)
                tr_g_loss.update(g_loss.item(), n=1)
                tr_d_loss.update(d_loss.item(), n=1)

                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        torch.nn.utils.clip_grad_norm_(
                            amp.master_params(optimizer), args.max_grad_norm)
                    else:
                        torch.nn.utils.clip_grad_norm_(model.parameters(),
                                                       args.max_grad_norm)
                    scheduler.step()
                    optimizer.step()
                    optimizer.zero_grad()
                    global_step += 1

                if global_step % args.num_eval_steps == 0:
                    now = time.time()
                    eta = now - start_time
                    if eta > 3600:
                        eta_format = ('%d:%02d:%02d' %
                                      (eta // 3600,
                                       (eta % 3600) // 60, eta % 60))
                    elif eta > 60:
                        eta_format = '%d:%02d' % (eta // 60, eta % 60)
                    else:
                        eta_format = '%ds' % eta
                    train_logs['loss'] = tr_loss.avg
                    train_logs['g_acc'] = tr_g_acc.avg
                    train_logs['d_acc'] = tr_d_acc.avg
                    train_logs['g_loss'] = tr_g_loss.avg
                    train_logs['d_loss'] = tr_d_loss.avg
                    show_info = f'[Training]:[{epoch}/{args.epochs}]{global_step}/{num_train_optimization_steps} ' \
                                f'- ETA: {eta_format}' + "-".join(
                        [f' {key}: {value:.4f} ' for key, value in train_logs.items()])
                    logger.info(show_info)
                    tr_g_acc.reset()
                    tr_d_acc.reset()
                    tr_loss.reset()
                    tr_g_loss.reset()
                    tr_d_loss.reset()
                    start_time = now

                if global_step % args.num_save_steps == 0:
                    if args.local_rank in [-1, 0] and args.num_save_steps > 0:
                        # Save model checkpoint
                        output_dir = args.output_dir / f'lm-checkpoint-{global_step}'
                        if not output_dir.exists():
                            output_dir.mkdir()
                        # save model
                        model_to_save = model.module if hasattr(
                            model, 'module'
                        ) else model  # Take care of distributed/parallel training
                        model_to_save.save_pretrained(str(output_dir))
                        torch.save(args, str(output_dir / 'training_args.bin'))
                        logger.info("Saving model checkpoint to %s",
                                    output_dir)

                        model.module.generator.save_pretrained(
                            str(output_dir / "G"))
                        logger.info("Saving generator model checkpoint to %s",
                                    output_dir / "G")
                        model.module.electra.save_pretrained(
                            str(output_dir / "D"))
                        logger.info("Saving electra model checkpoint to %s",
                                    output_dir / "D")

                        torch.save(optimizer.state_dict(),
                                   str(output_dir / "optimizer.bin"))

                        # save config
                        output_config_file = output_dir / CONFIG_NAME
                        output_config_file_D = output_dir / "D" / CONFIG_NAME
                        output_config_file_G = output_dir / "G" / CONFIG_NAME

                        with open(str(output_config_file), 'w') as f:
                            f.write(model_to_save.config.to_json_string())
                        with open(str(output_config_file_D), 'w') as f:
                            f.write(
                                model.module.electra.config.to_json_string())
                        with open(str(output_config_file_G), 'w') as f:
                            f.write(
                                model.module.generator.config.to_json_string())
                        # save vocab
                        tokenizer.save_vocabulary(output_dir)
Exemplo n.º 28
0
def predict(args, model, tokenizer, prefix=""):
    metric = SeqEntityScore(args.id2label, markup=args.markup)
    pred_output_dir = args.output_dir
    if not os.path.exists(pred_output_dir) and args.local_rank in [-1, 0]:
        os.makedirs(pred_output_dir)
    test_dataset = load_and_cache_examples(args,
                                           args.task_name,
                                           tokenizer,
                                           data_type='test')
    # Note that DistributedSampler samples randomly
    test_sampler = SequentialSampler(
        test_dataset) if args.local_rank == -1 else DistributedSampler(
            test_dataset)
    test_dataloader = DataLoader(test_dataset,
                                 sampler=test_sampler,
                                 batch_size=1,
                                 collate_fn=collate_fn)
    # Eval!
    logger.info("***** Running prediction %s *****", prefix)
    logger.info("  Num examples = %d", len(test_dataset))
    logger.info("  Batch size = %d", 1)
    f_results = []
    output_predict_file = os.path.join(pred_output_dir, prefix,
                                       "crf_test_prediction.json")
    # pbar = ProgressBar(n_total=len(test_dataloader), desc="Predicting")
    test_iterator = tqdm(test_dataloader,
                         desc="Iteration",
                         disable=args.local_rank not in [-1, 0])
    if isinstance(model, nn.DataParallel):
        model = model.module

    test_loss = 0.0
    nb_test_steps = 0
    for step, batch in enumerate(test_iterator):
        model.eval()
        batch = tuple(t.to(args.device) for t in batch)
        with torch.no_grad():
            inputs = {
                "input_ids": batch[0],
                "attention_mask": batch[1],
                "labels": batch[3],
                'input_lens': batch[4]
            }
            if args.model_type != "distilbert":
                # XLM and RoBERTa don"t use segment_ids
                inputs["token_type_ids"] = (batch[2] if args.model_type
                                            in ["bert", "xlnet"] else None)
            outputs = model(**inputs)
            tmp_test_loss, logits = outputs[:2]
            if args.n_gpu > 1:
                tmp_eval_loss = tmp_test_loss.mean()
            # print(logits.shape)
            # print(logits)
            tags = model.crf.decode(logits, inputs['attention_mask'])
            tags = tags.squeeze(0).cpu().numpy().tolist()

            ###  测试集结果保存到文件
        preds = tags[0][1:-1]  # [CLS]XXXX[SEP]
        label_entities = get_entities(preds, args.id2label, args.markup)
        json_d = {}
        json_d['id'] = step
        json_d['tag_seq'] = " ".join([args.id2label[x] for x in preds])
        json_d['entities'] = label_entities
        f_results.append(json_d)

        test_loss += tmp_test_loss
        nb_test_steps += 1
        out_label_ids = inputs['labels'].cpu().numpy().tolist()
        input_lens = inputs['input_lens'].cpu().numpy().tolist()

        for i, label in enumerate(out_label_ids):
            temp_1 = []
            temp_2 = []
            for j, m in enumerate(label):
                if j == 0:
                    continue
                elif j == input_lens[i] - 1:
                    metric.update(pred_paths=[temp_2], label_paths=[temp_1])
                    break
                else:
                    temp_1.append(args.id2label[out_label_ids[i][j]])
                    temp_2.append(args.id2label[tags[i][j]])

    ###  打印测试集的最终结果 ###
    logger.info("\n")
    test_loss = test_loss / nb_test_steps
    test_info, entity_info = metric.result()
    results = {f'{key}': value for key, value in test_info.items()}
    results['loss'] = test_loss
    logger.info("***** Test results %s *****", prefix)
    info = "-".join(
        [f' {key}: {value:.4f} ' for key, value in results.items()])
    logger.info(info)
    logger.info("\n")
    logger.info("***** Entity results %s *****", prefix)
    for key in sorted(entity_info.keys()):
        logger.info("******* %s results ********" % key)
        info = "-".join([
            f' {key}: {value:.4f} ' for key, value in entity_info[key].items()
        ])
        logger.info(info)

    # pbar(step)

    logger.info("\n")
    with open(output_predict_file, "w") as writer:
        for record in f_results:
            writer.write(json.dumps(record) + '\n')

    if args.task_name == 'cluener':
        output_submit_file = os.path.join(pred_output_dir, prefix,
                                          "test_submit.json")
        test_text = []
        with open(os.path.join(args.data_dir, "test.json"), 'r') as fr:
            for line in fr:
                test_text.append(json.loads(line))
        test_submit = []
        for x, y in zip(test_text, results):
            json_d = {}
            json_d['id'] = x['id']
            json_d['label'] = {}
            entities = y['entities']
            words = list(x['text'])
            if len(entities) != 0:
                for subject in entities:
                    tag = subject[0]
                    start = subject[1]
                    end = subject[2]
                    word = "".join(words[start:end + 1])
                    if tag in json_d['label']:
                        if word in json_d['label'][tag]:
                            json_d['label'][tag][word].append([start, end])
                        else:
                            json_d['label'][tag][word] = [[start, end]]
                    else:
                        json_d['label'][tag] = {}
                        json_d['label'][tag][word] = [[start, end]]
            test_submit.append(json_d)
        json_to_text(output_submit_file, test_submit)
Exemplo n.º 29
0
def main():
    args = get_argparse().parse_args()

    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    args.output_dir = args.output_dir + '{}'.format(args.model_type)
    if not os.path.exists(args.output_dir):
        os.mkdir(args.output_dir)
    time_ = time.strftime("%Y-%m-%d-%H:%M:%S", time.localtime())
    init_logger(log_file=args.output_dir +
                f'/{args.model_type}-{args.task_name}-{time_}.log')
    if os.path.exists(args.output_dir) and os.listdir(
            args.output_dir
    ) and args.do_train and not args.overwrite_output_dir:
        raise ValueError(
            "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome."
            .format(args.output_dir))
    # Setup distant debugging if needed
    if args.server_ip and args.server_port:
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
        print("Waiting for debugger attach")
        ptvsd.enable_attach(address=(args.server_ip, args.server_port),
                            redirect_output=True)
        ptvsd.wait_for_attach()

    # Setup CUDA, GPU & distributed training
    if args.local_rank == -1 or args.no_cuda:
        device = torch.device("cuda" if torch.cuda.is_available()
                              and not args.no_cuda else "cpu")
        args.n_gpu = torch.cuda.device_count()
    else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUs
        torch.cuda.set_device(args.local_rank)
        device = torch.device("cuda", args.local_rank)
        torch.distributed.init_process_group(backend="nccl")
        args.n_gpu = 1
    args.device = device
    logger.warning(
        "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",
        args.local_rank,
        device,
        args.n_gpu,
        bool(args.local_rank != -1),
        args.fp16,
    )
    # Set seed
    seed_everything(args.seed)
    # Prepare NER task
    args.task_name = args.task_name.lower()
    if args.task_name not in processors:
        raise ValueError("Task not found: %s" % (args.task_name))
    processor = processors[args.task_name]()
    label_list = processor.get_labels()
    args.id2label = {i: label for i, label in enumerate(label_list)}
    args.label2id = {label: i for i, label in enumerate(label_list)}
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
    if args.local_rank not in [-1, 0]:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab
    args.model_type = args.model_type.lower()
    config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
    config = config_class.from_pretrained(
        args.config_name if args.config_name else args.model_name_or_path,
        num_labels=num_labels,
        cache_dir=args.cache_dir if args.cache_dir else None)
    tokenizer = tokenizer_class.from_pretrained(
        args.tokenizer_name
        if args.tokenizer_name else args.model_name_or_path,
        do_lower_case=args.do_lower_case,
        cache_dir=args.cache_dir if args.cache_dir else None)
    model = model_class.from_pretrained(
        args.model_name_or_path,
        from_tf=bool(".ckpt" in args.model_name_or_path),
        config=config,
        cache_dir=args.cache_dir if args.cache_dir else None)
    if args.local_rank == 0:
        torch.distributed.barrier(
        )  # Make sure only the first process in distributed training will download model & vocab

    model.to(args.device)
    logger.info("Training/evaluation parameters %s", args)
    # Training
    if args.do_train:
        train_dataset = load_and_cache_examples(args,
                                                args.task_name,
                                                tokenizer,
                                                data_type='train')
        global_step, tr_loss = train(args, train_dataset, model, tokenizer,
                                     config)
        logger.info(" global_step = %s, average loss = %s", global_step,
                    tr_loss)
Exemplo n.º 30
0
def predict(args, model, tokenizer, label_list, prefix=""):
    pred_task_names = (args.task_name, )
    pred_outputs_dirs = (args.output_dir, )
    label_map = {i: label for i, label in enumerate(label_list)}

    for pred_task, pred_output_dir in zip(pred_task_names, pred_outputs_dirs):
        pred_dataset = load_and_cache_examples(args,
                                               pred_task,
                                               tokenizer,
                                               data_type='test')
        if not os.path.exists(pred_output_dir) and args.local_rank in [-1, 0]:
            os.makedirs(pred_output_dir)

        args.pred_batch_size = args.per_gpu_eval_batch_size * max(
            1, args.n_gpu)
        # Note that DistributedSampler samples randomly
        pred_sampler = SequentialSampler(
            pred_dataset) if args.local_rank == -1 else DistributedSampler(
                pred_dataset)
        pred_dataloader = DataLoader(
            pred_dataset,
            sampler=pred_sampler,
            batch_size=args.pred_batch_size,
            collate_fn=xlnet_collate_fn
            if args.model_type in ['xlnet'] else collate_fn)

        logger.info("******** Running prediction {} ********".format(prefix))
        logger.info("  Num examples = %d", len(pred_dataset))
        logger.info("  Batch size = %d", args.pred_batch_size)
        nb_pred_steps = 0
        preds = None
        pbar = ProgressBar(n_total=len(pred_dataloader), desc="Predicting")
        for step, batch in enumerate(pred_dataloader):
            model.eval()
            batch = tuple(t.to(args.device) for t in batch)
            with torch.no_grad():
                inputs = {
                    'input_ids': batch[0],
                    'attention_mask': batch[1],
                    'labels': batch[3]
                }
                if args.model_type != 'distilbert':
                    inputs['token_type_ids'] = batch[2] if (
                        'bert' in args.model_type or 'xlnet' in args.model_type
                    ) else None  # XLM, DistilBERT and RoBERTa don't use segment_ids
                outputs = model(**inputs)
                _, logits = outputs[:2]
            nb_pred_steps += 1
            if preds is None:
                if pred_task == 'copa':
                    preds = logits.softmax(-1).detach().cpu().numpy()
                else:
                    preds = logits.detach().cpu().numpy()
            else:
                if pred_task == 'copa':
                    preds = np.append(
                        preds,
                        logits.softmax(-1).detach().cpu().numpy(),
                        axis=0)
                else:
                    preds = np.append(preds,
                                      logits.detach().cpu().numpy(),
                                      axis=0)
            pbar(step)
        print(' ')
        if args.output_mode == "classification":
            predict_label = np.argmax(preds, axis=1)
        elif args.output_mode == "regression":
            predict_label = np.squeeze(preds)
        if pred_task == 'copa':
            predict_label = []
            pred_logits = preds[:, 1]
            i = 0
            while (i < len(pred_logits) - 1):
                if pred_logits[i] >= pred_logits[i + 1]:
                    predict_label.append(0)
                else:
                    predict_label.append(1)
                i += 2
        output_submit_file = os.path.join(pred_output_dir, prefix,
                                          "test_prediction.json")
        output_logits_file = os.path.join(pred_output_dir, prefix,
                                          "test_logits")
        # 保存标签结果
        with open(output_submit_file, "w") as writer:
            for i, pred in enumerate(predict_label):
                json_d = {}
                json_d['id'] = i
                json_d['label'] = str(label_map[pred])
                writer.write(json.dumps(json_d) + '\n')
        # 保存中间预测结果
        save_numpy(file_path=output_logits_file, data=preds)