def model_evaluate(loaded_model, folderName='./rtt_series/valid_data'):
    # evaluate loaded model on test data
    SAMPLE_LEN = 100
    file_csv = os.listdir(folderName)
    N_SAMPLE = len(file_csv)
    X = np.array([])
    Y = np.array([])
    for f in file_csv:
        fileName = folderName + '/' + f
        test = csvio.csv2list(fileName, "rtt", sep=';', decimal='.')
        cp = csvio.csv2list(fileName, "cp", sep=';', decimal='.')

        # Pre-Treatment
        min_test = min(test)
        for i in range(len(test)):
            test[i] = test[i] - min_test

        X = np.concatenate([X, test])
        Y = np.concatenate([Y, cp])
    X = X.reshape(N_SAMPLE, SAMPLE_LEN, 1)
    Y = Y.reshape(N_SAMPLE, SAMPLE_LEN, 1)
    loaded_model.compile(loss='binary_crossentropy',
                         optimizer='adam',
                         metrics=['accuracy'])
    score = loaded_model.evaluate(X, Y, verbose=1)
    print("%s: %.2f%%" % (loaded_model.metrics_names[1], score[1] * 100))
    print("%s: %.2f" % (loaded_model.metrics_names[0], score[0] * 100))
def single_test(loaded_model, fileName='rtt_series/valid_data/5021.csv'):
    # Test for an input
    #test = np.array([189.21973,189.105955,189.0866,189.19152,189.18938,189.21477,189.363065,189.060735,189.018825,189.497595,189.460615,194.76307,196.72467,189.280095,189.014585,189.02478,189.03338,189.087215,88.99757,189.041955])
    #test = csvio.csv2list("rtt_series/real_trace_labelled/11119.csv", "rtt")
    test = csvio.csv2list(fileName, "rtt", sep=';', decimal='.')
    l = max(test)
    plt.plot(test)

    testLen = len(test)
    min_test = min(test)

    # Pre-Treatment
    test = test.reshape(1, testLen, 1)

    # Prediction
    temp = loaded_model.predict(test)
    temp = temp.reshape(testLen)
    #print("temp =")
    #print(temp)
    res = np.zeros(testLen)
    for i in range(testLen):
        if temp[i] >= 0.5:
            res[i] = 1
    cp = csvio.csv2list(fileName, "cp", sep=';', decimal='.')
    print("cp =")
    np.set_printoptions(threshold=np.nan)
    print(cp)
    print(sum(cp))

    print("res =")
    np.set_printoptions(threshold=np.nan)
    print(res)
    print(sum(res))
    '''
    for i in range(len(cp)):
        if (cp[i]==1):
            print('position cp: ')
            print(i)
    for i in range(len(res)):
        if(res[i]==1):
            print('position res')
            print(i)
    '''

    print("evaluation = ")
    a = eval.evaluation(cp, res)
    for i in range(len(res)):
        if (res[i] > 0):
            res[i] = l

    plt.plot(res, 'r')
    plt.show()
    print(a)
    return a
def model_evaluate2precision_recall(
        loaded_model,
        folderName='./rtt_series/valid_data',
        resultName='./results/resultNeuroNet_w.csv'):
    # generate precision and recall for every test file
    file_csv = os.listdir(folderName)
    precision = []
    recall = []
    for f in file_csv:
        fileName = folderName + '/' + f
        test = csvio.csv2list(fileName, "rtt", sep=';', decimal='.')
        cp = csvio.csv2list(fileName, "cp", sep=';', decimal='.')

        # Pre-Treatment
        min_test = min(test)
        for i in range(len(test)):
            test[i] = test[i] - min_test

        testLen = len(test)
        test = test.reshape(1, testLen, 1)
        temp = loaded_model.predict(test)
        temp = temp.reshape(testLen)
        res = np.zeros(testLen)

        for i in range(testLen):
            if temp[i] >= 0.5:
                res[i] = 1
        ''' Binary to index
        temp = []
        for i in range(len(res)):
            if(res[i] == 1):
                temp.append(i)
        res = temp
        temp = []
        for i in range(len(cp)):
            if(cp[i] - 1 < 0.001):
                temp.append(i)
        cp = temp
        '''
        cp = cp.astype(int)
        res = res.astype(int)

        if sum(res) > sum(cp):
            print('res=')
            print(res)
            print('cp=')
            print(cp)
            print(f)
        #temp = eval.evaluation(cp, res)
        #precision.append(temp["precision"])
        #recall.append(temp["recall"])
    #csvio.list2csv(resultName, [file_csv, precision, recall], ['fileName', 'precision', 'recall'])
    print("Prediction & Recall saved.")
def comparison_recall():
    recallC = csv.csv2list('./results/resultCUSUM_w.csv', 'recall')
    recallB = csv.csv2list('./results/resultBayesian_w.csv', 'recall')
    cdf = [float(k + 1) / len(recallC) for k in range(len(recallC))]
    recallC.sort()
    recallB.sort()
    plt.plot(recallC, cdf, "r", label="recall of cusum method")
    plt.plot(recallB, cdf, "b", label="recall of bayesian method")
    plt.legend()
    plt.xlabel("recall")
    plt.ylabel("cdf")
    plt.title("comparison of cdf (recall)")
    plt.show()
    return
def fetch_data(folder):
    file_csv = os.listdir(folder)
    x = []
    y = []
    for f in file_csv:
        f = folder + '/' + f
        # Attention for the column name, separator and decimal
        temp = csvio.csv2list(f, 'trace', sep=',', decimal='.')
        x.append(temp)
        y.append(csvio.csv2list(f, 'cpt', sep=',', decimal='.'))
    inputs=[[x[i][j]-min(x[i]) for j in range(len(x[i]))] for i in range(len(x))]
    outputs=[1 if sum(y[i])>0 else 0 for i in range(len(y))]
    inputs=np.array(inputs)
    outputs=np.array(outputs)
    inputs=inputs.reshape(N_SAMPLE,SAMPLE_LEN,1)
    outputs=outputs.reshape(N_SAMPLE,1)
    return (inputs,outputs)
def cdf_recall_baysian():
    recall = csv.csv2list('./results/resultBayesian_w.csv', 'recall')
    cdf = [float(k + 1) / len(recall) for k in range(len(recall))]
    recall.sort()
    plt.plot(recall, cdf)
    plt.xlabel("recall")
    plt.ylabel("cdf")
    plt.title("cdf of recall for Bayesian method")
    plt.show()
    return
def cdf_precision_baysian():
    precision = csv.csv2list('./results/resultBayesian_w.csv', 'precision')
    cdf = [float(k + 1) / len(precision) for k in range(len(precision))]
    precision.sort()
    plt.plot(precision, cdf)
    plt.xlabel("precision")
    plt.ylabel("cdf")
    plt.title("cdf of precision for Bayesian method")
    plt.show()
    return
def comparison_precision():
    precisionC = csv.csv2list('./results/resultCUSUM_w.csv', 'precision')
    precisionB = csv.csv2list('./results/resultBayesian_w.csv', 'precision')
    precisionN = csv.csv2list(
        './results/resultNeuroNet_w.csv',
        'precision',
    )
    cdf = [float(k + 1) / len(precisionC) for k in range(len(precisionC))]
    precisionC.sort()
    precisionB.sort()
    precisionN.sort()
    plt.plot(precisionC, cdf, "r", label="precision of cusum method")
    plt.plot(precisionB, cdf, "b", label="precision of bayesian method")
    plt.plot(precisionN, cdf, "g", label="precision of NeuroNet")
    plt.legend()
    plt.xlabel("precision")
    plt.ylabel("cdf")
    plt.title("comparison of cdf (precision)")
    plt.show()
    return
def evaluationDataSet(folder):
    # Use CUSUM and Bayesian to detect change point
    file_csv = os.listdir(folder)
    precisionB = []
    recallB = []
    precisionC = []
    recallC = []

    for f in file_csv:
        f = folder + '/' + f
        reality = csv.csv2list(f, 'rtt', sep=';', decimal='.')

        detectionB = baycpd.baysiancpt(reality)
        detectionC = cusum.cusum_var(reality)
        fact = csv.csv2list(f, 'cp', sep=';', decimal='.')

        # Change the binary array to index array
        detectionB = binary2index(detectionB)
        detectionC = binary2index(detectionC)
        fact = binary2index(fact)

        #print(fact)

        temp = eval.evaluation_window_adp(fact, detectionB, 2)
        precisionB.append(temp["precision"])
        recallB.append(temp["recall"])

        temp = eval.evaluation_window_adp(fact, detectionC, 2)
        precisionC.append(temp["precision"])
        recallC.append(temp["recall"])

    csv.list2csv('./results/resultBayesian_w.csv',
                 [file_csv, precisionB, recallB],
                 ['fileName', 'precision', 'recall'])
    csv.list2csv('./results/resultCUSUM_w.csv',
                 [file_csv, precisionC, recallC],
                 ['fileName', 'precision', 'recall'])
def Fn_score(n):
    recallBayesian = csv.csv2list('./results/resultBayesian_w.csv', 'recall')
    precisionBayesian = csv.csv2list('./results/resultBayesian_w.csv',
                                     'precision')

    Fn_bayesian = []
    for i in range(len(recallBayesian)):
        if (recallBayesian[i] != 0 or precisionBayesian[i] != 0):
            Fn_bayesian.append(
                (1 + n * n) * (precisionBayesian[i] * recallBayesian[i]) /
                (n * n * (precisionBayesian[i] + recallBayesian[i])))

        else:
            Fn_bayesian.append(0)

    recallCusum = csv.csv2list('./results/resultCUSUM_w.csv', 'recall')
    precisionCusum = csv.csv2list('./results/resultCUSUM_w.csv', 'precision')

    Fn_cusum = []
    for i in range(len(recallCusum)):
        if (recallCusum[i] != 0 or precisionCusum[i] != 0):
            Fn_cusum.append(
                (1 + n * n) * (precisionCusum[i] * recallCusum[i]) /
                (n * n * precisionCusum[i] + recallCusum[i]))

        else:
            Fn_cusum.append(0)

    plt.plot(Fn_bayesian, "x", label="Bayesian method")
    plt.plot(Fn_cusum, "x", label="Cusum method")
    plt.legend()
    plt.xlabel("Index of datasets")
    plt.ylabel("Fn_measure")
    plt.title("F Score for n=" + str(n) +
              " applied to the results of Bayesian and Cusum methods")
    plt.show()
    return
def recall_precision():
    precisionC = csv.csv2list('./results/resultCUSUM_w.csv', 'precision')
    precisionB = csv.csv2list('./results/resultBayesian_w.csv', 'precision')
    precisionN = csv.csv2list('./results/resultNeuroNet_w.csv', 'precision')
    recallC = csv.csv2list('./results/resultCUSUM_w.csv', 'recall')
    recallB = csv.csv2list('./results/resultBayesian_w.csv', 'recall')
    recallN = csv.csv2list('./results/resultNeuroNet_w.csv', 'recall')
    plt.plot(precisionC, recallC, "rx", label="cusum method")
    plt.plot(precisionB, recallB, "bx", label="bayesian method")
    plt.plot(precisionN, recallN, "gx", label="NeuroNet method")
    plt.legend()
    plt.xlabel("precision")
    plt.ylabel("recall")
    plt.title("scatterplot (precision,recall)")
    plt.show()
    return
Exemplo n.º 12
0
'''
Run only once
to create the fichier of series split with number_x.csv and number_y.csv
to use this fonction 1. you have to create a folder name "dataset_split"
2. you have to take all the fichier.csv to the folder "dataset_original". For example 11017.csv.
'''

length = 500
path_original = './tools/dataset_original/'
path_generate = "./dataset_split/"
flag = 0
for (path_original, dirs, files) in os.walk(path_original):
    for filename in files:

        print(filename)
        data_rtt_test = csv_t.csv2list(path_original + str(filename), "rtt")
        data_cp_test = csv_t.csv2list(path_original + str(filename), "cp")
        #write data x and y in nx.csv and ny.csv

        for i in range(int(len(data_rtt_test) / length)):
            val_cp = []
            val_rtt = []
            header = ["rtt", "cp"]
            filename_x = str(flag + i) + "xy" + ".csv"
            with open(path_generate + filename_x, 'wt') as f:
                writer = csv.writer(f)
                begin = i * length
                end = (i + 1) * length
                for val in data_rtt_test[begin:end]:
                    val_rtt.append(val)
                for val in data_cp_test[begin:end]:
Exemplo n.º 13
0
import tools.csvio as csvio
import ANNTool as md

# global config
SAMPLE_LEN = 100
N_EPOCH = 200
MTX = ['acc']
folderName = './rtt_series/artificial_dataset'

# Read data from the folder
file_csv = os.listdir(folderName)
x = []
y = []
for f in file_csv:
    f = folderName + '/' + f
    temp = csvio.csv2list(f, 'trace', sep=',', decimal='.')
    x.append(temp)
    y.append(csvio.csv2list(f, 'cpt', sep=',', decimal='.'))

# add some zeros at the end
data_x = []
data_y = []

for i in range(len(x)):
    data_x.extend(x[i].tolist())
    data_y.extend(y[i].tolist())

N_SAMPLE = len(data_x) / SAMPLE_LEN
reste = len(data_x) % SAMPLE_LEN
if (reste != 0):
    N_SAMPLE += 1