Exemplo n.º 1
0
def train_generator(batch_size,
                    train_path,
                    image_folder,
                    mask_folder,
                    target_size,
                    image_color_mode='grayscale',
                    mask_color_mode='grayscale'):
    """ Image Data Generator
    Function that generates batches of data (img, mask) for training
    from specified folder. Returns images with specified pixel size
    Does preprocessing (normalization to 0-1)
    """
    # no augmentation, only rescaling
    image_datagen = ImageDataGenerator(rescale=1. / 255)
    mask_datagen = ImageDataGenerator(rescale=1. / 255)
    image_generator = image_datagen.flow_from_directory(
        train_path,
        classes=[image_folder],
        class_mode=None,
        color_mode=image_color_mode,
        target_size=target_size,
        batch_size=batch_size,
        seed=1)
    mask_generator = mask_datagen.flow_from_directory(
        train_path,
        classes=[mask_folder],
        class_mode=None,
        color_mode=mask_color_mode,
        target_size=target_size,
        batch_size=batch_size,
        seed=1)
    train_generator = zip(image_generator, mask_generator)
    for (img, mask) in train_generator:
        mask = normalize_mask(mask)
        yield (img, mask)
Exemplo n.º 2
0
def save_results(save_path, npyfile):
    """ Save Results
    Function that takes predictions from U-Net model
    and saves them to specified folder.
    """
    for i, item in enumerate(npyfile):
        img = normalize_mask(item)
        img = (img * 255).astype('uint8')
        # io.imsave(os.path.join(save_path,"%d_predict.png"%(i+1)),img)
        cv2.imwrite(os.path.join(save_path, "%d_predict.png" % (i + 1)),
                    train_img)
KERNEL = np.ones((15, 15), np.uint8)

#total prediction
for index, test_image_name in enumerate(test_image_names):
    sys.stdout.write("Predicting: {}/{} ...\r".format(index + 1,
                                                      len(test_image_names)))
    sys.stdout.flush()

    img = io.imread(os.path.join(path_to_test_images, test_image_name),
                    as_gray=True)
    img = img / 255.
    img = reshape_image(img, unet_size)

    result = unet.predict_on_batch(img)
    result = result[0]
    new_img = normalize_mask(result)
    new_img = (new_img * 255).astype('uint8')

    new_img = cv2.erode(new_img, KERNEL, iterations=2)
    new_img = cv2.dilate(new_img, KERNEL, iterations=3)
    new_img = np.expand_dims(new_img, axis=2)

    new_img = cv2.bitwise_not(new_img)

    img = img[0]
    img = (img * 255).astype('uint8')

    img = cv2.add(img, new_img)
    img[img == new_img] = 0

    test_image = Image.fromarray(img).convert('RGB')
Exemplo n.º 4
0
#HeatMap Processing
DILATE_KERNEL = np.ones((15, 15), np.uint8)

for img_path in os.listdir(SETTINGS_JSON['TEST_IMAGES_DIR']):
    orig_img = cv2.imread(
        os.path.join(SETTINGS_JSON['TEST_IMAGES_DIR'], img_path),
        cv2.IMREAD_COLOR)
    img = io.imread(os.path.join(SETTINGS_JSON['TEST_IMAGES_DIR'], img_path),
                    as_gray=True)
    img = img / 255.
    img = reshape_image(img, unet_size)

    result = unet.predict_on_batch(img)
    result = result[0]
    result = normalize_mask(result)
    result = (result * 255).astype('uint8')

    result = cv2.dilate(result, DILATE_KERNEL, iterations=3)
    result = np.expand_dims(result, axis=2)

    result = cv2.bitwise_not(result)

    img = img[0]
    img = (img * 255).astype('uint8')

    result = cv2.add(img, result)
    result = cv2.bitwise_not(result)

    result = cv2.cvtColor(result, cv2.COLOR_GRAY2BGR)