Exemplo n.º 1
0
if __name__ == "__main__":
 
    # set filename and dataset name     
    #DIR = "/swissfel/photonics/data/2014-11-26_SACLA_ZnO/full_hdf5/256635-257499/"
    DIR = "/home/sala/Work/Data/SACLA/"
    #fname = "/home/sala/Work/Data/Sacla/ZnO/258706_roi.h5"
    fname = DIR + "259408_roi.h5"
    dataset_name = "/run_259408/detector_2d_1"
    
    # set up parameters for ROI and threshold
    roi = [[0, 1024], [0, 400]]
    thr = 65

    # create an AnalysisProcessor object
    an = ImagesProcessor(facility="SACLA")
    # if you want a flat dict as a result
    an.flatten_results = True
    
    # add analysis
    an.add_analysis("get_projection", args={'axis': 1, 'thr_low': thr,})
    an.add_analysis("get_mean_std", args={'thr_low': thr})
    bins = np.arange(-150, 300, 5)
    an.add_analysis("get_histo_counts", args={'bins': bins})
    an.add_analysis(get_line_histos, args={'axis': 0, 'bins': bins})

    # set the dataset
    an.set_dataset(dataset_name)
    # add preprocess steps
    #an.add_preprocess("image_set_roi", args={'roi': roi})
    #an.add_preprocess("image_set_thr", thr_low=thr)
Exemplo n.º 2
0
f = h5py.File(DIR + run + "_roi.h5")
if dark_fname is not None:
    f_calib = h5py.File(dark_fname, "r")
    corr = f_calib["/dark1"][:]
    f_calib.close()

# get DAQ quantities (only scalars)
df, filenames = ut.analysis.get_data_daq(fname, daq_labels, sacla_converter, t0=0, selection=sel)

# get laser on/off tags
is_laser_on_tags = df[df.is_laser == 1].index.tolist()
is_laser_off_tags = df[df.is_laser == 0].index.tolist()

# get spectra from Von Hamos, using laser on / off tags
#roi = [[0, 1024], [325, 335]]  # X, Y
ap = ImagesProcessor(facility="SACLA")
ap.add_analysis('get_projection', args={"axis": 1})
ap.add_analysis('get_mean_std')
ap.set_dataset('/run_%s/detector_2d_1' % run)
ap.add_preprocess("set_thr", args={"thr_low": 65})

# get the total spectra
results_on = ap.analyze_images(fname, tags=is_laser_on_tags)
spectrum_on = results_on["get_projection"]["spectra"].sum(axis=0)
results_off = ap.analyze_images(fname, tags=is_laser_off_tags)
spectrum_off = results_off["get_projection"]["spectra"].sum(axis=0)

spectrum_off = spectrum_off / spectrum_off.sum()
spectrum_on = spectrum_on / spectrum_on.sum()

# this is the average image from the Von Hamos
Exemplo n.º 3
0
def compute_rixs_spectra(dataset_name, df, thr_low=0, thr_hi=999999, ):
    # In principle, a single run can contain *multiple mono settings*, so we need to load data from all the runs, and the group them by mono energy. `Pandas` can help us with that...
    # We load all data from files, place it in a `DataFrame`, and then add some useful derived quantities. At last, we use `tags` as index for the `DataFrame`

    runs = sorted(df.run.unique())
    print runs

    # label for ascii output dump
    out_label = "rixs_" + runs[0] + "-" + runs[-1]

    delay = df.delay.unique()
    if len(delay) > 1:
        print "More than one delay settings in the selected run range, exiting"
        sys.exit(-1)

    print "\nAvailable energy settings"
    print df.photon_mono_energy.unique(), "\n"

    # Now we can run the analysis. For each energy value and each run, a *list of tags* is created, 
    # such that events have the same mono energy and they are part of the same run (as each run is in a separated file). 
    # For each of these lists, we run the `AnalysisProcessor` and create the required spectra, for laser on and off. 

    # the mono energies contained in the files
    energies_list = sorted(df.photon_mono_energy.unique().tolist())
    fnames = [DIR + str(run) +"_roi.h5" for run in runs]

    # The AnalysisProcessor
    an = ImagesProcessor(facility="SACLA")
    # if you want a flat dict as a result
    an.flatten_results = True

    # add analysis
    an.add_analysis("get_projection", args={'axis': 1, 'thr_low': thr_low, 'thr_hi': thr_hi})
    an.add_analysis("get_mean_std", args={'thr_low': thr_low})
    bins = np.arange(-150, 1000, 5)
    an.add_analysis("get_histo_counts", args={'bins': bins})
    an.set_dataset("/run_%s/%s" % (str(run), dataset_name))

    # run the analysis
    n_events = -1
    spectrum_on = None
    spectrum_off = None

    # multiprocessing import
    from multiprocessing import Pool
    from multiprocessing.pool import ApplyResult

    # initialization of the RIXS maps. Element 0 is laser_on_ element 1 is laser_off
    rixs_map = [np.zeros((len(energies_list), 1024)), np.zeros((len(energies_list), 1024))]
    rixs_map_std = [np.zeros((len(energies_list), 1024)), np.zeros((len(energies_list), 1024))]

    n_events = -1
    spectrum = [None, None]
    total_results = {}
    events_per_energy = [{}, {}]

    for i, energy in enumerate(energies_list):
        async_results = []  # list for results

        events_per_energy[0][energy] = 0
        events_per_energy[1][energy] = 0
        energy_masks = []
        # creating the pool
        pool = Pool(processes=8)
        # looping on the runs
        for j, run in enumerate(runs):
            df_run = df[df.run == run]
            energy_masks.append(df_run[df_run.photon_mono_energy == energy])
            # apply the analysis 
            async_results.append(pool.apply_async(an, (fnames[j], n_events, energy_masks[j].index.values)))

        # closing the pool
        pool.close()

        # waiting for all results
        results = [r.get() for r in async_results]
        print "Got results for energy", energy

        # producing the laser on/off maps
        for j, run in enumerate(runs):

            if not total_results.has_key(run):
                total_results[run] = {}

            if not results[j].has_key("spectra"):
                continue

            df_run = df[df.run == run]
            energy_mask = energy_masks[j]
            laser_masks = [None, None]
            if n_events != -1:
                laser_masks[0] = energy_mask.is_laser.values[:n_events]
            else:
                laser_masks[0] = energy_mask.is_laser.values
            laser_masks[1] = ~laser_masks[0]

            for laser in [0, 1]:
                norm = np.count_nonzero(~np.isnan(results[j]["spectra"][laser_masks[laser]][:, 0]))
                events_per_energy[laser][energy] += norm
                spectrum = np.nansum((results[j]["spectra"][laser_masks[laser]].T / df_run[laser_masks[laser]].I0.values).T, axis=0)
                spectrum_events = np.nansum(results[j]["spectra"][laser_masks[laser]], axis=0)
                rixs_map[laser][energies_list.index(energy)] += spectrum
                rixs_map_std[laser][energies_list.index(energy)] += spectrum_events
            
            total_results[run][energy] = {}
            total_results[run][energy]["results"] = results[j]
            total_results[run][energy]["laser_on"] = laser_masks[0]

    for laser in [0, 1]:
        for energy in events_per_energy[0].keys():
            rixs_map[laser][energies_list.index(energy)] /= events_per_energy[laser][energy]
    
        rixs_map_std[laser] = rixs_map[laser] / np.sqrt(rixs_map_std[laser])
        np.savetxt("%s_map_%s_%dps.txt" % (out_label, "on" if laser==0 else "off", delay), rixs_map[laser])

    #np.savetxt("%s_map_%dps_energies.txt" % (out_label, delay), sorted(events_per_energy[0].keys()))

    return rixs_map, rixs_map_std, total_results