Exemplo n.º 1
0
def train(train_source_iter: ForeverDataIterator,
          train_target_iter: ForeverDataIterator, model: ImageClassifier,
          domain_adv: DomainAdversarialLoss, optimizer: SGD,
          lr_scheduler: StepwiseLR, epoch: int, args: argparse.Namespace):
    batch_time = AverageMeter('Time', ':5.2f')
    data_time = AverageMeter('Data', ':5.2f')
    losses = AverageMeter('Loss', ':6.2f')
    cls_accs = AverageMeter('Cls Acc', ':3.1f')
    domain_accs = AverageMeter('Domain Acc', ':3.1f')
    progress = ProgressMeter(
        args.iters_per_epoch,
        [batch_time, data_time, losses, cls_accs, domain_accs],
        prefix="Epoch: [{}]".format(epoch))

    # switch to train mode
    model.train()
    domain_adv.train()

    end = time.time()
    for i in range(args.iters_per_epoch):
        lr_scheduler.step()

        # measure data loading time
        data_time.update(time.time() - end)

        x_s, labels_s = next(train_source_iter)
        x_t, _ = next(train_target_iter)

        x_s = x_s.to(device)
        x_t = x_t.to(device)
        labels_s = labels_s.to(device)

        # compute output
        x = torch.cat((x_s, x_t), dim=0)
        y, f = model(x)
        y_s, y_t = y.chunk(2, dim=0)
        f_s, f_t = f.chunk(2, dim=0)

        cls_loss = F.cross_entropy(y_s, labels_s)
        transfer_loss = domain_adv(f_s, f_t)
        domain_acc = domain_adv.domain_discriminator_accuracy
        loss = cls_loss + transfer_loss * args.trade_off

        cls_acc = accuracy(y_s, labels_s)[0]

        losses.update(loss.item(), x_s.size(0))
        cls_accs.update(cls_acc.item(), x_s.size(0))
        domain_accs.update(domain_acc.item(), x_s.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            progress.display(i)
def train(train_source_iter: ForeverDataIterator, model: Classifier,
          optimizer: SGD, lr_sheduler: StepwiseLR, epoch: int,
          args: argparse.Namespace):
    batch_time = AverageMeter('Time', ':4.2f')
    data_time = AverageMeter('Data', ':3.1f')
    losses = AverageMeter('Loss', ':3.2f')
    cls_accs = AverageMeter('Cls Acc', ':3.1f')

    progress = ProgressMeter(args.iters_per_epoch,
                             [batch_time, data_time, losses, cls_accs],
                             prefix="Epoch: [{}]".format(epoch))

    # switch to train mode
    model.train()

    end = time.time()
    for i in range(args.iters_per_epoch):
        if lr_sheduler is not None:
            lr_sheduler.step()

        # measure data loading time
        data_time.update(time.time() - end)

        x_s, labels_s = next(train_source_iter)
        x_s = x_s.to(device)
        labels_s = labels_s.to(device)

        # compute output
        y_s, f_s = model(x_s)

        cls_loss = F.cross_entropy(y_s, labels_s)
        loss = cls_loss

        cls_acc = accuracy(y_s, labels_s)[0]

        losses.update(loss.item(), x_s.size(0))
        cls_accs.update(cls_acc.item(), x_s.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            progress.display(i)
Exemplo n.º 3
0
def train_ssl(inferred_dataloader: DataLoader, model: ImageClassifier,
              optimizer: SGD, lr_scheduler: StepwiseLR, epoch: int,
              args: argparse.Namespace):
    batch_time = AverageMeter('Time', ':6.3f')
    losses = AverageMeter('Loss', ':.4e')
    top1 = AverageMeter('Acc@1', ':6.2f')
    top5 = AverageMeter('Acc@5', ':6.2f')
    progress = ProgressMeter(len(inferred_dataloader),
                             [batch_time, losses, top1, top5],
                             prefix="Epoch: [{}]".format(epoch))

    # switch to train mode
    model.train()

    end = time.time()
    for i, (x, labels) in enumerate(inferred_dataloader):
        lr_scheduler.step()

        x = x.to(device)
        labels = labels.to(device)

        # compute output
        output, _ = model(x)
        loss = F.cross_entropy(output, labels)

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, labels, topk=(1, 5))
        losses.update(loss.item(), x.size(0))
        top1.update(acc1[0], x.size(0))
        top5.update(acc5[0], x.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            progress.display(i)
Exemplo n.º 4
0
def train(train_source_iter: ForeverDataIterator,
          train_target_iter: ForeverDataIterator, model: nn.Module, jmmd_loss,
          optimizer: SGD, lr_sheduler: StepwiseLR,
          pseudo_labels: PseudoLabeling, epoch: int, args: argparse.Namespace):
    losses = AverageMeter('Loss', ':3.2f')
    cls_losses = AverageMeter('Cls Loss', ':3.2f')
    trans_losses = AverageMeter('Trans Loss', ':5.2f')
    joint_losses = AverageMeter('Joint Loss', ':3.2f')
    cls_accs = AverageMeter('Cls Acc', ':3.1f')
    tgt_accs = AverageMeter('Tgt Acc', ':3.1f')

    progress = ProgressMeter(
        args.iters_per_epoch,
        [losses, cls_losses, trans_losses, joint_losses, cls_accs, tgt_accs],
        prefix="Epoch: [{}]".format(epoch))

    model.train()
    if args.freeze_bn:
        for m in model.backbone.modules():
            if isinstance(m, nn.BatchNorm2d):
                m.eval()
    # jmmd_loss.train()

    for i in range(args.iters_per_epoch):
        lr_sheduler.step()

        x_s, labels_s, index_s = next(train_source_iter)
        x_t, labels_t, index_t = next(train_target_iter)

        x_s = x_s.to(device)
        x_t = x_t.to(device)
        labels_s = labels_s.to(device)
        labels_t = labels_t.to(device)

        # compute output
        x = torch.cat((x_s, x_t), dim=0)
        h = model.backbone_forward(x)
        y, f = model.head_forward(h)
        y_s, y_t = y.chunk(2, dim=0)
        f_s, f_t = f.chunk(2, dim=0)

        loss = 0.0

        cls_loss = F.cross_entropy(y_s, labels_s)
        loss += cls_loss

        transfer_loss = jmmd_loss((f_s, F.softmax(y_s, dim=1)),
                                  (f_t, F.softmax(y_t, dim=1)))
        loss += transfer_loss * args.lambda1

        if epoch >= args.start_epoch:
            with torch.no_grad():
                pseudo_labels_t = pseudo_labels.get_hard_pseudo_label(index_t)
                weights_t = pseudo_labels.get_weight(index_t)

            # print(F.softmax(weights_t, dim=0), F.softmax(weights_t/0.1, dim=0))

            weights_t = F.softmax(weights_t / args.temperature, dim=0)

            joint_loss = 0.0
            for j in range(args.loss_sample_num):
                y_1, _ = model.head_forward(h)
                y1_s, y1_t = y_1.chunk(2, dim=0)
                y_2, _ = model.head_forward(h)
                y2_s, y2_t = y_2.chunk(2, dim=0)

                joint_loss += CE_disagreement(y1_s, y1_t, y2_s, y2_t, labels_s,
                                              pseudo_labels_t, weights_t)

            joint_loss = joint_loss / args.loss_sample_num
            loss += joint_loss * args.lambda2

        cls_acc = accuracy(y_s, labels_s)[0]
        tgt_acc = accuracy(y_t, labels_t)[0]

        losses.update(loss.item(), x_s.size(0))
        cls_accs.update(cls_acc.item(), x_s.size(0))
        tgt_accs.update(tgt_acc.item(), x_t.size(0))
        cls_losses.update(cls_loss.item(), x_s.size(0))
        trans_losses.update(transfer_loss.item(), x_s.size(0))
        # trans_losses.update(0.0, x_s.size(0))
        try:
            joint_losses.update(joint_loss.item(), x_s.size(0))
        except:
            joint_losses.update(0.0, x_s.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        if args.gradclip > 0:
            torch.nn.utils.clip_grad_norm_(model.parameters(), args.gradclip)
        optimizer.step()

        if i % args.print_freq == 0:
            progress.display(i)
def train(train_source_iter: ForeverDataIterator,
          train_target_iter: ForeverDataIterator, classifier: ImageClassifier,
          mdd: MarginDisparityDiscrepancy, optimizer: SGD,
          lr_scheduler: StepwiseLR, epoch: int, args: argparse.Namespace):
    batch_time = AverageMeter('Time', ':3.1f')
    data_time = AverageMeter('Data', ':3.1f')
    losses = AverageMeter('Loss', ':3.2f')
    trans_losses = AverageMeter('Trans Loss', ':3.2f')
    cls_accs = AverageMeter('Cls Acc', ':3.1f')
    tgt_accs = AverageMeter('Tgt Acc', ':3.1f')

    progress = ProgressMeter(
        args.iters_per_epoch,
        [batch_time, data_time, losses, trans_losses, cls_accs, tgt_accs],
        prefix="Epoch: [{}]".format(epoch))

    # switch to train mode
    classifier.train()
    mdd.train()

    criterion = nn.CrossEntropyLoss().to(device)

    end = time.time()
    for i in range(args.iters_per_epoch):
        lr_scheduler.step()
        optimizer.zero_grad()

        # measure data loading time
        data_time.update(time.time() - end)

        x_s, labels_s = next(train_source_iter)
        x_t, labels_t = next(train_target_iter)

        x_s = x_s.to(device)
        x_t = x_t.to(device)
        labels_s = labels_s.to(device)
        labels_t = labels_t.to(device)

        # compute output
        x = torch.cat((x_s, x_t), dim=0)
        outputs, outputs_adv = classifier(x)
        y_s, y_t = outputs.chunk(2, dim=0)
        y_s_adv, y_t_adv = outputs_adv.chunk(2, dim=0)

        # compute cross entropy loss on source domain
        cls_loss = criterion(y_s, labels_s)
        # compute margin disparity discrepancy between domains
        transfer_loss = mdd(y_s, y_s_adv, y_t, y_t_adv)
        loss = cls_loss + transfer_loss * args.trade_off
        classifier.step()

        cls_acc = accuracy(y_s, labels_s)[0]
        tgt_acc = accuracy(y_t, labels_t)[0]

        losses.update(loss.item(), x_s.size(0))
        cls_accs.update(cls_acc.item(), x_s.size(0))
        tgt_accs.update(tgt_acc.item(), x_t.size(0))
        trans_losses.update(transfer_loss.item(), x_s.size(0))

        # compute gradient and do SGD step
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            progress.display(i)
Exemplo n.º 6
0
def train(train_source_iter: ForeverDataIterator,
          train_target_iter: ForeverDataIterator, model: ImageClassifier,
          jmmd_loss: JointMultipleKernelMaximumMeanDiscrepancy, optimizer: SGD,
          lr_sheduler: StepwiseLR, epoch: int, args: argparse.Namespace):
    batch_time = AverageMeter('Time', ':4.2f')
    data_time = AverageMeter('Data', ':3.1f')
    losses = AverageMeter('Loss', ':3.2f')
    trans_losses = AverageMeter('Trans Loss', ':5.4f')
    cls_accs = AverageMeter('Cls Acc', ':3.1f')
    tgt_accs = AverageMeter('Tgt Acc', ':3.1f')

    progress = ProgressMeter(
        args.iters_per_epoch,
        [batch_time, data_time, losses, trans_losses, cls_accs, tgt_accs],
        prefix="Epoch: [{}]".format(epoch))

    # switch to train mode
    model.train()
    jmmd_loss.train()

    end = time.time()
    for i in range(args.iters_per_epoch):
        lr_sheduler.step()

        # measure data loading time
        data_time.update(time.time() - end)

        x_s, labels_s = next(train_source_iter)
        x_t, labels_t = next(train_target_iter)

        x_s = x_s.to(device)
        x_t = x_t.to(device)
        labels_s = labels_s.to(device)
        labels_t = labels_t.to(device)

        # compute output
        x = torch.cat((x_s, x_t), dim=0)
        y, f = model(x)
        y_s, y_t = y.chunk(2, dim=0)
        f_s, f_t = f.chunk(2, dim=0)

        cls_loss = F.cross_entropy(y_s, labels_s)
        transfer_loss = jmmd_loss((f_s, F.softmax(y_s, dim=1)),
                                  (f_t, F.softmax(y_t, dim=1)))
        loss = cls_loss + transfer_loss * args.trade_off

        cls_acc = accuracy(y_s, labels_s)[0]
        tgt_acc = accuracy(y_t, labels_t)[0]

        losses.update(loss.item(), x_s.size(0))
        cls_accs.update(cls_acc.item(), x_s.size(0))
        tgt_accs.update(tgt_acc.item(), x_t.size(0))
        trans_losses.update(transfer_loss.item(), x_s.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            progress.display(i)