Exemplo n.º 1
0
def get_fullsizedims_from_kwargs(kwargs):
    '''fullsizedims of vols is incorrect when using terastitcher...this fixes that
    '''
    vol = [xx for xx in kwargs['volumes'] if xx.ch_type == 'cellch'][0]
    zf = len(listdirfull(vol.full_sizedatafld_vol, '.tif'))
    yf, xf = tifffile.imread(listdirfull(vol.full_sizedatafld_vol,
                                         'tif')[0]).shape
    return tuple((zf, yf, xf))
Exemplo n.º 2
0
def apply_classifier(classifier, raw_src, cnn_src, collect_cnn = False, size = (3,12,12), pad=False, cores=10, numZSlicesPerSplit=50, overlapping_planes = 15, verbose=True, save=True, maxip=0):
    '''
    classifier = pretrained random forest or path to pretrained random forest
    raw_src = folder of tiffs of raw input data
    cnn_src = folder of tiffs from cnn output
    size
    pad = if True, pad the edges of objects determined. False: remove edge cases, usually better since they will be few in number
    cores = number of cores for parallelization, larger the number the less memory efficient
    numZSlicesPerSplit: chunk of zplanes to process at once. Adjust this and cores based on memory constraints.
    overlapping_planes: number of planes on each side to overlap by, this should be a comfortable amount larger than the maximum z distances of a single object
    save (optional): #optional save to prevent rerun of jobs
    collect_cnn = optional to include cnn data for random forest input
    
    Returns
    ----------------
    a dictionary consisting of k=centers, v=[corresponding pixel indices determine by CNN, maximum intensity, list of maximum radius/plane]
    
    '''
    #handle inputs
    threshold = 1
    zyx_search_range = (2,10,10)
    zdim = len(listdirfull(cnn_src, keyword='.tif'))
    
    #optional save to prevent rerun of jobs
    if save: 
        save = cnn_src+'_apply_classifier_tmp'
        makedir(save)
    
    #run
    if verbose: sys.stdout.write('\n   Thesholding, determining connected pixels, identifying center of masses, applying classifier\n\n'); sys.stdout.flush(); st = time.time()
    rng = range(0, zdim, numZSlicesPerSplit); jobs = len(rng);
    iterlst=[(cnn_src, raw_src, collect_cnn, z, zdim, numZSlicesPerSplit, overlapping_planes, threshold, classifier, size, zyx_search_range, pad, job, jobs, verbose, save, maxip) for job, z in enumerate(rng)]
    #par vs not par
    if cores > 1:
        p = mp.Pool(cores)
        center_pixels_intensity_radius_lst = p.starmap(apply_classifier_helper, iterlst)
        p.terminate()
    else:
        center_pixels_intensity_radius_lst = []
        for i in iterlst:
            center_pixels_intensity_radius_lst.append(apply_classifier_helper(i))
    #optional reload:
    if save:
        center_pixels_intensity_radius_lst = [load_dictionary(xx) for xx in listdirfull(save)]
        shutil.rmtree(save)

    #unpack
    if verbose: sys.stdout.write('\n...finished, formatting dictionary...'); sys.stdout.flush()
    center_pixels_intensity_radius_dct = {}; [center_pixels_intensity_radius_dct.update(xx) for xx in center_pixels_intensity_radius_lst]
    if 'None' in center_pixels_intensity_radius_dct: del center_pixels_intensity_radius_dct['None']
        
    if verbose: print ('Total time {} minutes'.format(round((time.time() - st) / 60)))
    if verbose: print('{} centers found.'.format(len(center_pixels_intensity_radius_dct)))

    return center_pixels_intensity_radius_dct
Exemplo n.º 3
0
def bin_data(cnn_output, training_data_src, size = (3, 12, 12), cutoff = 15, pad = True, verbose = False, collect_cnn = False, maxip=0):
    '''collect connected components from CNN and bin into True positives and false positives based on labels

    cnn_output = pth/list of folders containing CNN output
    training_data_src = pth/list of folders containing numpy arrays [c,z,y,x]
                    c = 0: raw data, c=1: nonzeropixels representing ground truth centers, requiring same naming as src_cnn
    size = used in get_pixels_around_center; distance from point in zyx.
        Note: this is effectively a radius (NOT DIAMETER).
        note:
    cutoff = allowable distance (IN PIXELS) for a True positive when considering ground truth centers with centers of mass of cnn-labelled connected components
    pad = (optional) important for edge cases in training set (i.e. points that don't have sufficient border around them)
        True if pnt is on edge of image, function pads evenly
        Flase if pnt is on edge of image, drop
    collect_cnn (optional): if true keep these data for training as well
    maxip = int, number of maxips to ravel into data
    return:
        {'true_positives': tps, 'false_positives': fps, 'ground_truths': gts}

    '''
    cnn_output = listdirfull(cnn_output) if type(cnn_output) == str else cnn_output
    training_data_src = listdirfull(training_data_src) if type(training_data_src) == str else training_data_src
    intersection = list(set([os.path.basename(xx[:-4]) for xx in training_data_src]).intersection(set([os.path.basename(xx) for xx in cnn_output])))
    if verbose: print('Collect cnn == {}'.format(collect_cnn))
    tps=[]; fps=[]; gts = []
    for pth in intersection:
        if verbose: sys.stdout.write('Starting {}'.format(pth))

        #load raw and gts
        data = load_np(os.path.join(os.path.dirname(training_data_src[0]), pth+'.npy'))
        raw = data[0]
        ground_truth = data[1]
        gt = np.asarray(np.nonzero(ground_truth)).T

        #get labels and pair based on distance
        centers = probabilitymap_to_centers_thresh(os.path.join(os.path.dirname(cnn_output[0]), pth), threshold = 1, numZSlicesPerSplit=250, overlapping_planes = 40, cores = 4, verbose = verbose)
        try:
            paired, tp, fp, fn = pairwise_distance_metrics_multiple_cutoffs(gt, centers, verbose=False, return_paired=True, cutoffs=[cutoff])[0]
    
            #optional
            cnn_src = os.path.join(os.path.dirname(cnn_output[0]), pth) if collect_cnn == True else False
            TP = [centers[xx[1]] for xx in paired]
            TPS = get_pixels_around_center(np.asarray(TP).astype('int'), raw, cnn_src=cnn_src, size=size, pad=pad, maxip=maxip)
            FP = np.asarray(list(set(centers).difference(set(TP))))
            FPS = get_pixels_around_center(np.asarray(FP).astype('int'), raw, cnn_src=cnn_src, size=size, pad=pad, maxip=maxip)
            
            #append
            tps.append(TPS); fps.append(FPS); gts.append(gt)
        except Exception, e:
            break
            print ('\n\n\nSkipping {}, due to error: {}\n\n\n'.format(pth, e))
Exemplo n.º 4
0
def get_fullsizedimensions(dct):
    """ works around param dict in case paths were missaved """    
    try:
        kwargs = load_kwargs(dct)
        vol = [xx for xx in kwargs["volumes"] if xx.ch_type =="cellch"][0]
        zf = len(listdirfull(vol.full_sizedatafld_vol, ".tif"))
        yf,xf = tifffile.imread(listdirfull(vol.full_sizedatafld_vol, "tif")[0]).shape
        fullsizedimensions = tuple((zf, yf, xf))
    except: #if param dict is messed up
        fsz = os.path.join(os.path.dirname(dct), "full_sizedatafld")
        vols = os.listdir(fsz); vols.sort()
        src = os.path.join(fsz, vols[len(vols)-1]) #hack - try to load param_dict instead?
        if not os.path.isdir(src): src = os.path.join(fsz, vols[len(vols)-2])     
        zf = len(listdirfull(src, ".tif"))
        yf,xf = tifffile.imread(listdirfull(src, "tif")[0]).shape
        fullsizedimensions = tuple((zf, yf, xf))
    
    return fullsizedimensions
Exemplo n.º 5
0
def get_resampledvol_n_dimensions(dct):
    """ works around param dict in case paths were missaved """
    try:
        kwargs = load_kwargs(dct)
        vol = [xx for xx in kwargs["volumes"] if xx.ch_type =="cellch"][0]
        resampled_vol = vol.resampled_for_elastix_vol
        resampled_dims = tifffile.imread(resampled_vol).shape        
    except FileNotFoundError:
        fls = listdirfull(os.path.dirname(dct), ".tif"); fls.sort()
        resampled_vol = fls[-1] #will be the last one, bc of the 647 channel
        resampled_dims = tifffile.imread(resampled_vol).shape
        
    return resampled_dims, resampled_vol
def check_registration_cross_sections(out):
    for z in [100, 200, 300, 400, 500]:
        print(z)
        nm_im = {}
        for fld in lst:
            kwargs = load_kwargs(fld)
            vol = [xx for xx in kwargs["volumes"] if xx.ch_type == "cellch"][0]
            fl = [
                fl for fl in listdirfull(vol.full_sizedatafld_vol)
                if str(z).zfill(4) in fl
            ][0]
            nm_im[os.path.basename(fld)] = fl

        dst = os.path.join(out, "cell_ch_z{}.png".format(str(z).zfill(4)))
        tile(src=[
            adjust_gamma(tifffile.imread(xx), gamma=.6, gain=3)
            for xx in nm_im.values()
        ],
             subtitles=[xx for xx in nm_im.keys()],
             dst=dst)

    #check reg
    nm_im = {}
    for fld in lst:
        kwargs = load_kwargs(fld)
        fl = os.path.join(fld, "clearmap_cluster_output",
                          "elastix_auto_to_atlas", "result.1.tif")
        if os.path.exists(fl):
            nm_im[os.path.basename(fld)] = fl

    #read once
    ims = [equalize_hist(tifffile.imread(xx)) for xx in nm_im.values()]
    for z in [50, 100, 150, 200, 250, 300, 350, 400]:
        print(z)
        dst = os.path.join(out, "regqc_z{}.png".format(str(z).zfill(4)))
        tile(src=[i[z] for i in ims],
             subtitles=[xx for xx in nm_im.keys()],
             dst=dst)

    print("saved in : {}".format(out))
            f1 = 2*( (precision*recall)/(precision+recall) ) #calculating f1 score
        except Exception as e:
            print(e)
            f1 = np.nan #if tp, fn, etc. are 0                
            
        df.loc[df.parameters == os.path.basename(fl), "f1"] = f1
        df.loc[df.parameters == os.path.basename(fl), "tp"] = tp
        df.loc[df.parameters == os.path.basename(fl), "fp"] = fp
        df.loc[df.parameters == os.path.basename(fl), "fn"] = fn

    #export csv per brain/volume                
    df.to_csv(os.path.join(dst, "%s.csv" % os.path.basename(brain)))
    
#%%

dfs = listdirfull(dst)
dfs = [pd.read_csv(xx).sort_values(by = ["parameters"]) for xx in dfs if ".csv" in xx]
tps = np.array([df.tp.values for df in dfs]).sum(axis = 0)
fps = np.array([df.fp.values for df in dfs]).sum(axis = 0)
fns = np.array([df.fn.values for df in dfs]).sum(axis = 0)
precisions_cm = [(tp/(tp+fps[i])) for i, tp in enumerate(tps)]
#add 1 for plot
precisions_cm.append(1); precisions_cm = np.array(precisions_cm)
recalls_cm = [(tp/(tp+fns[i])) for i, tp in enumerate(tps)]
#add 0 for plot
recalls_cm.append(0); recalls_cm = np.array(recalls_cm)

src = "/jukebox/wang/zahra/conv_net/training/h129/experiment_dirs/20181115_zd_train/precision_recall_curve_295590.csv"
df = pd.read_csv(src)
precisions_cn = df["precision"].values
recalls_cn = df["recall"].values
Exemplo n.º 8
0
def overlay_qc(args):  
    #unpacking this way for multiprocessing
    fld, folder_suffix, output_folder, verbose, doubletransform, make_volumes = args
    try:
        #get 3dunet cell dataframe csv file
        input_csv = listdirfull(os.path.join(fld, folder_suffix), ".csv")
        assert len(input_csv) == 1, "multiple csv files"
        dataframe = pd.read_csv(input_csv[0])
        
        #location to save out
        dst = os.path.join(output_folder, os.path.basename(fld)); makedir(dst)
    
        #EXAMPLE USING LIGHTSHEET - assumes marking centers in the "raw" full sized cell channel. This will transform those 
        #centers into "atlas" space (in this case the moving image)
        #in this case the "inverse transform has the atlas as the moving image in the first step, 
        #and the autofluorescence channel as the moving image in the second step 
        #NOTE - it seems that the registration of cell to auto is failing on occasion....thus get new files...
        ################################
        cell_inverse_folder = listdirfull(os.path.join(fld, "elastix_inverse_transform"), "cellch")[0]
        a2r = listall(cell_inverse_folder, "atlas2reg_TransformParameters"); a2r.sort()
        r2s = listall(cell_inverse_folder, "reg2sig_TransformParameters"); r2s.sort() #possibly remove

        #IMPORTANT. the idea is to apply cfos->auto->atlas
        transformfiles = r2s + a2r if doubletransform else a2r #might get rid of r2s
    
        lightsheet_parameter_dictionary = os.path.join(fld, "param_dict.p")
            
        converted_points = generate_transformed_cellcount(dataframe, dst, transformfiles, 
                                                          lightsheet_parameter_dictionary, verbose=verbose)
    
        #load and convert to single voxel loc
        zyx = np.asarray([str((int(xx[0]), int(xx[1]), int(xx[2]))) for xx in np.nan_to_num(np.load(converted_points))])
        from collections import Counter
        zyx_cnt = Counter(zyx)
        
        #check...
        if make_volumes:
            #manually call transformix
            kwargs = load_dictionary(lightsheet_parameter_dictionary)
            vol = [xx for xx in kwargs["volumes"] if xx.ch_type == "cellch"][0].resampled_for_elastix_vol
            transformed_vol = os.path.join(dst, "transformed_volume"); makedir(transformed_vol)
            if not doubletransform:
                transformfiles = [os.path.join(fld, "elastix/TransformParameters.0.txt"), os.path.join(fld, 
                                  "elastix/TransformParameters.1.txt")]
                transformfiles = modify_transform_files(transformfiles, transformed_vol) #copy over elastix files
                transformix_command_line_call(vol, transformed_vol, transformfiles[-1])
            else:
                v=[xx for xx in kwargs["volumes"] if xx.ch_type == "cellch"][0]
                #sig to reg
                tps = [listall(os.path.dirname(v.ch_to_reg_to_atlas), "/TransformParameters.0")[0], 
                       listall(os.path.dirname(v.ch_to_reg_to_atlas), "/TransformParameters.1")[0]]
                #reg to atlas
                transformfiles = tps+[os.path.join(fld, "elastix/TransformParameters.0.txt"), 
                                      os.path.join(fld, "elastix/TransformParameters.1.txt")]
                transformfiles = modify_transform_files(transformfiles, transformed_vol) #copy over elastix files
                transformix_command_line_call(vol, transformed_vol, transformfiles[-1])
            

            #cell_registered channel
            cell_reg = tifffile.imread(os.path.join(transformed_vol, "result.tif"))
            tifffile.imsave(os.path.join(transformed_vol, "result.tif"), cell_reg, compress=1)
            cell_cnn = np.zeros_like(cell_reg)
            tarr = []; badlist=[]
            for zyx,v in zyx_cnt.items():
                z,y,x = [int(xx) for xx in zyx.replace("(","",).replace(")","").split(",")]
                tarr.append([z,y,x])
                try:
                    cell_cnn[z,y,x] = v*100
                except:
                    badlist.append([z,y,x])
                    
            #apply x y dilation
            r = 2
            selem = ball(r)[int(r/2)]
            cell_cnn = cell_cnn.astype("uint8")
            cell_cnn = np.asarray([cv2.dilate(cell_cnn[i], selem, iterations = 1) for i in range(cell_cnn.shape[0])])
            
            tarr=np.asarray(tarr)
            if len(badlist)>0: 
                print("{} errors in mapping with cell_cnn shape {}, each max dim {}, \npossibly due to a registration overshoot \
                      or not using double transform\n\n{}".format(len(badlist), cell_cnn.shape, np.max(tarr,0), badlist))
            merged = np.stack([cell_cnn, cell_reg, np.zeros_like(cell_reg)], -1)
            tifffile.imsave(os.path.join(transformed_vol, "merged.tif"), merged)#, compress=1)
            #out = np.concatenate([cell_cnn, cell_reg, ], 0)
        
        #####check at the resampled for elastix phase before transform...this mapping looks good...
        if make_volumes:
            #make zyx numpy arry
            zyx = dataframe[["z","y","x"]].values
            kwargs = load_dictionary(lightsheet_parameter_dictionary)
            vol = [xx for xx in kwargs["volumes"] if xx.ch_type =="cellch"][0]
            fullsizedimensions = get_fullsizedims_from_kwargs(kwargs) #don"t get from kwargs["volumes"][0].fullsizedimensions it"s bad! use this instead
            zyx = fix_contour_orientation(zyx, verbose=verbose, **kwargs) #now in orientation of resample
            zyx = points_resample(zyx, original_dims = fix_dimension_orientation(fullsizedimensions, **kwargs), 
                                  resample_dims = tifffile.imread(vol.resampled_for_elastix_vol).shape, verbose = verbose)[:, :3]
            
            #cell channel
            cell_ch = tifffile.imread(vol.resampled_for_elastix_vol)
            cell_cnn = np.zeros_like(cell_ch)
            tarr = []; badlist=[]
            for _zyx in zyx:
                z,y,x = [int(xx) for xx in _zyx]
                tarr.append([z,y,x])
                try:
                    cell_cnn[z,y,x] = 100
                except:
                    badlist.append([z,y,x])
            tarr=np.asarray(tarr)        
            merged = np.stack([cell_cnn, cell_ch, np.zeros_like(cell_ch)], -1)
            tifffile.imsave(os.path.join(transformed_vol, "resampled_merged.tif"), merged)#, compress=1)
            
    except Exception as e:
        print(e)
        with open(error_file, "a") as err_fl:
            err_fl.write("\n\n{} {}\n\n".format(fld, e))
Exemplo n.º 9
0
    training_data_src = '/home/wanglab/wang/pisano/conv_net/annotations/better_res/h129_memmap_arrays'

    #parse
    dct = bin_data(cnn_output, training_data_src, size=size, cutoff = cutoff, pad = pad, verbose=verbose, maxip=maxip)
    tps = dct['true_positives']; fps = dct['false_positives']; gts = dct['ground_truths']

    #train
    kwargs = train_random_forest(tps, fps, n_estimator = n_estimator, max_depth = max_depth, balance = balance, cores = cores, kfold_splits = kfold_splits, dst = dst, average=precision_score)

    #plot
    #%matplotlib inline
    save = '/home/wanglab/Downloads/rf'
    plot_roc(save=save, **kwargs)

    #apply
    cnn_src = listdirfull(cnn_output); cnn_src.sort(); cnn_src = cnn_src[0]
    inn = listdirfull(training_data_src); inn.sort();
    raw_src = load_np(inn[0])[0]
    gt = load_np(inn[0])[1]
    centers = apply_random_forest(kwargs['classifier'], raw_src, cnn_src, size = (7,25,25))

    #show
    from tools.conv_net.functions.dilation import dilate_with_element, ball
    gt = dilate_with_element(gt, ball(5))
    src = np.zeros_like(gt)
    for c in centers.astype('int'):
        src[c[0],c[1],c[2]] = 1
    src = dilate_with_element(src, ball(5))

    #Sweep: <-- usually performance is not affected that much by this
    for n_estimator in (10,20,50,100):
Exemplo n.º 10
0
from skimage.external import tifffile
import skimage
from tools.utils.directorydeterminer import directorydeterminer
from scipy.ndimage.interpolation import zoom
from tools.registration.transform_cell_counts import generate_transformed_cellcount, get_fullsizedims_from_kwargs, points_resample
from tools.registration.transform_list_of_points import modify_transform_files
from tools.imageprocessing.orientation import fix_contour_orientation, fix_dimension_orientation
import matplotlib.gridspec as gridspec
from tools.conv_net.functions.dilation import dilate_with_element
from skimage.morphology import ball

if __name__ == '__main__':

    #set up
    dst = '/home/wanglab/wang/pisano/tracing_output/qc/antero_no_jg'; makedir(dst)
    lst = [xx for xx in listdirfull('/home/wanglab/wang/pisano/tracing_output/antero_4x') if 'jg' not in os.path.basename(xx)]
    
    dst = '/home/wanglab/wang/pisano/tracing_output/qc/antero_only_jg'; makedir(dst)
    lst = [xx for xx in listdirfull('/home/wanglab/wang/pisano/tracing_output/antero_4x') if 'jg' in os.path.basename(xx)]
    
    cnn_transform_type = 'affine_only_reg_to_sig';#both for regwatlas, and only affine for sig adn reg #'all', 'single': don't consider reg with sig at all
    volume_transform_type = 'single';#both for regwatlas, and only affine for sig adn reg #'all', 'single': don't consider reg with sig at all
    verbose = True
    generate_registered_overlay = False #this looks bad
    generate_downsized_overlay = True #this looks better
    #fld = '/home/wanglab/wang/pisano/tracing_output/antero_4x/20170130_tp_bl6_sim_1750r_03'    
    #loop
    for fld in lst:
        try:
            print fld
            kwargs = load_kwargs(fld)
                        transparent=True)
            plt.close()

    return parent_list


#%%
if __name__ == "__main__":

    ann_pth = "/jukebox/LightSheetTransfer/atlas/allen_atlas/annotation_2017_25um_sagittal_forDVscans_16bit.tif"
    atl_pth = "/jukebox/LightSheetTransfer/atlas/allen_atlas/average_template_25_sagittal_forDVscans.tif"

    pth = "/jukebox/LightSheetTransfer/kelly/201908_cfos"
    subdir = "cell_region_assignment_99percentile_no_erosion_20190909"
    #combine to get all paths
    pths = listdirfull(pth, "647")
    pths.sort()
    #%%
    #make clearmap style heatmaps
    for pth in pths:
        dst = make_heatmaps(
            pth,
            subdir)  #subdir = directory in which cell coordinates are stored
        print("made heat map for: {}".format(pth))

#%%
#analysis for dorsal up brains
##############################################################################MAKE P-VALUE MAPS############################################################
#make destination directory
    dst = "/jukebox/wang/seagravesk/lightsheet/cfos_raw_images/pooled_analysis/2019"
    pvaldst = "/jukebox/wang/seagravesk/lightsheet/cfos_raw_images/pooled_analysis/2019/pvalue_maps/"
Exemplo n.º 12
0
@author: wanglab
"""

import os, subprocess as sp, tifffile, numpy as np, shutil, matplotlib.pyplot as plt, matplotlib as mpl
from tools.analysis.analyze_injection_inverse_transform import pool_injections_inversetransform
from tools.utils.io import makedir, load_kwargs, listdirfull
from tools.imageprocessing.orientation import fix_orientation

data = "/jukebox/wang/pisano/tracing_output/eaat4"
src = "/jukebox/wang/zahra/eaat4_screening/201910_analysis/transformed_volumes"
atl_pth = "/jukebox/LightSheetTransfer/atlas/sagittal_atlas_20um_iso.tif"
ann_pth = "/jukebox/LightSheetTransfer/atlas/annotation_sagittal_atlas_20um_iso.tif"
dst = "/jukebox/wang/zahra/eaat4_screening/201910_analysis/merged_volumes"
makedir(dst)

imgs = listdirfull(src, "trnsfm2atl")
imgs.sort()

sites = np.array([tifffile.imread(xx)
                  for xx in imgs])  #the y-axis cutoff for visualization

ann_raw = tifffile.imread(ann_pth)  #apparent cutoff
anns = np.unique(ann_raw).astype(int)
print(ann_raw.shape)

#annotation IDs of the cerebellum ONLY that are actually represented in annotation file
iids = {
    "Lingula (I)": 912,
    "Lobule II": 976,
    "Lobule III": 984,
    "Lobule IV-V": 1091,
Exemplo n.º 13
0
from skimage.util import view_as_windows
from skimage.external import tifffile

if __name__ == '__main__':
    #make 200,350,350
    zrng = range(200, 600, 200)  #at least a delta of 100
    yrng = range(1000, 5000, 350)
    xrng = range(1000, 5000, 350)
    src = '/home/wanglab/wang/pisano/tracing_output/antero_4x/20170204_tp_bl6_cri_1000r_02/full_sizedatafld/20170204_tp_bl6_cri_1000r_02_1hfds_647_0010na_25msec_z7d5um_10povlap_ch00'
    src = '/home/wanglab/wang/pisano/tracing_output/antero_4x/20170116_tp_bl6_lob7_500r_09/full_sizedatafld/20170116_tp_bl6_lob7_500r_09_647_010na_z7d5um_75msec_10povlp_ch00'
    src = '/home/wanglab/wang/pisano/tracing_output/antero_4x/20170130_tp_bl6_sim_1750r_03/full_sizedatafld/20170130_tp_bl6_sim_1750r_03_647_010na_1hfds_z7d5um_50msec_10povlp_ch00'
    src = '/home/wanglab/wang/pisano/tracing_output/retro_4x/20180215_jg_bl6f_prv_10/full_sizedatafld/20180215_jg_bl6f_prv_10_647_010na_z7d5um_250msec_10povlap_ch00'
    src = '/home/wanglab/wang/pisano/tracing_output/retro_4x/20180215_jg_bl6f_prv_07/full_sizedatafld/20180215_jg_bl6f_prv_07_647_010na_z7d5um_250msec_10povlap_ch00'
    dst = os.path.join('/home/wanglab/Downloads/', os.path.basename(src))
    makedir(dst)
    lst = listdirfull(src, keyword='.tif')
    lst.sort()
    make_memmap_from_tiff_list(lst, dst + '.npy')

    arr = load_np(dst + '.npy')
    makedir(dst)
    dst = os.path.join(
        '/home/wanglab/wang/pisano/conv_net/annotations/better_res',
        os.path.basename(src))
    makedir(dst)
    for i in range(len(zrng) - 1):
        for ii in range(len(yrng) - 1):
            for iii in range(len(xrng) - 1):
                z, zz = zrng[i], zrng[i + 1]
                y, yy = yrng[ii], yrng[ii + 1]
                x, xx = xrng[iii], xrng[iii + 1]
Exemplo n.º 14
0
    for i, comp in enumerate(comparisons):
        print(conds[i])
        ttest_stats(
            comp[0], comp[1],
            os.path.join(final_dst, conds[i] + "/multiple_comparisons_output"),
            conds[i])

    #%%
    #2019 dataset
    ann_pth = "/jukebox/LightSheetTransfer/atlas/allen_atlas/annotation_2017_25um_sagittal_forDVscans_16bit.tif"
    atl_pth = "/jukebox/LightSheetTransfer/atlas/allen_atlas/average_template_25_sagittal_forDVscans.tif"

    pth = "/jukebox/LightSheetTransfer/kelly/201908_cfos"
    subdir = "cell_region_assignment_99percentile_no_erosion_20190909"
    #combine to get all paths
    pths = listdirfull(pth, "647")
    pths.sort()

    #analysis for dorsal up brains
    #make destination directory
    dst = "/jukebox/wang/seagravesk/lightsheet/cfos_raw_images/pooled_analysis/2019"
    pvaldst = "/jukebox/wang/seagravesk/lightsheet/cfos_raw_images/pooled_analysis/2019/pvalue_maps/"

    if not os.path.exists(dst): os.mkdir(dst)
    if not os.path.exists(pvaldst): os.mkdir(pvaldst)
    if not os.path.exists(pvaldst + "/dorsal_up"):
        os.mkdir(pvaldst + "/dorsal_up")

    ctrl_du_heatmaps = [
        os.path.join(pth, os.path.join(xx, subdir + "/cells_heatmap.tif"))
        for xx in os.listdir(pth) if "647" in xx and "mouse" in xx
def pool_injections_inversetransform(**kwargs):
    """Function to pool several injection sites. 
    Assumes that the basic registration AND inverse transform using elastix has been run. 
    If not, runs inverse transform. Additions to analyze_injection.py and pool_injections_for_analysis().

    Inputs
    -----------
    kwargs:
      "inputlist": inputlist, #list of folders generated previously from software
      "channel": "01", 
      "channel_type": "injch",
      "filter_kernel": (5,5,5), #gaussian blur in pixels (if registered to ABA then 1px likely is 25um)
      "threshold": 10 (int, value to use for thresholding, this value represents the number of stand devs above the mean of the gblurred image)
      "num_sites_to_keep": #int, number of injection sites to keep, useful if multiple distinct sites
      "injectionscale": 45000, #use to increase intensity of injection site visualizations generated - DOES NOT AFFECT DATA
      "imagescale": 2, #use to increase intensity of background  site visualizations generated - DOES NOT AFFECT DATA
      "reorientation": ("2","0","1"), #use to change image orientation for visualization only
      "crop": #use to crop volume, values below assume horizontal imaging and sagittal atlas
                False
                cerebellum: "[:,390:,:]"
                caudal midbrain: "[:,300:415,:]"
                midbrain: "[:,215:415,:]"
                thalamus: "[:,215:345,:]"
                anterior cortex: "[:,:250,:]"
      
      "dst": "/home/wanglab/Downloads/test", #save location
      "save_individual": True, #optional to save individual images, useful to inspect brains, which you can then remove bad brains from list and rerun function
      "colormap": "plasma", 
      "atlas": "/jukebox/LightSheetTransfer/atlas/sagittal_atlas_20um_iso.tif", #whole brain atlas
      
      Optional:
          ----------
          "save_array": path to folder to save out numpy array per brain of binarized detected site
          "save_tif": saves out tif volume per brain of binarized detected site
          "dpi": dots per square inch to save at

      Returns
      ----------------count_threshold
      a pooled image consisting of max IP of reorientations provide in kwargs.
      a list of structures (csv file) with pixel counts, pooling across brains.
      if save individual will save individual images, useful for inspection and/or visualization
    """

    inputlist = kwargs["inputlist"]
    dst = kwargs["dst"]
    makedir(dst)
    injscale = kwargs["injectionscale"] if "injectionscale" in kwargs else 1
    imagescale = kwargs["imagescale"] if "imagescale" in kwargs else 1
    axes = kwargs["reorientation"] if "reorientation" in kwargs else ("0", "1",
                                                                      "2")
    cmap = kwargs["colormap"] if "colormap" in kwargs else "plasma"
    save_array = kwargs["save_array"] if "save_array" in kwargs else False
    save_tif = kwargs["save_tif"] if "save_tif" in kwargs else False
    num_sites_to_keep = kwargs[
        "num_sites_to_keep"] if "num_sites_to_keep" in kwargs else 1
    ann = sitk.GetArrayFromImage(sitk.ReadImage(kwargs["annotation"]))
    #if kwargs["crop"]: (from original analyze injection function, no functionality here if points file exist)
    #    ann = eval("ann{}".format(kwargs["crop"]))
    nonzeros = []
    #not needed as mapped points from point_transformix used
    #id_table = kwargs["id_table"] if "id_table" in kwargs else "/jukebox/temp_wang/pisano/Python/lightsheet/supp_files/allen_id_table.xlsx"
    #allen_id_table = pd.read_excel(id_table)

    for i in range(len(inputlist)):  #to iteratre through brains
        pth = inputlist[i]  #path of each processed brain
        print("  loading:\n     {}".format(pth))

        dct = load_kwargs(pth)  #load kwargs of brain as dct

        try:
            inj_vol = [xx for xx in dct["volumes"] if xx.ch_type == "injch"
                       ][0]  #set injection channel volume
            im = tifffile.imread(inj_vol.resampled_for_elastix_vol
                                 )  #load inj_vol as numpy array
            if kwargs["crop"]:
                im = eval("im{}".format(kwargs["crop"]))  #; print im.shape

            #run find site function to segment inj site using non-registered resampled for elastix volume - pulled directly from tools.registration.register.py and tools.analysis.analyze_injection.py
            array = find_site(im,
                              thresh=kwargs["threshold"],
                              filter_kernel=kwargs["filter_kernel"],
                              num_sites_to_keep=num_sites_to_keep) * injscale
            if save_array:
                np.save(
                    os.path.join(dst,
                                 "{}".format(os.path.basename(pth)) + ".npy"),
                    array.astype("uint16"))
            if save_tif:
                tifffile.imsave(
                    os.path.join(dst,
                                 "{}".format(os.path.basename(pth)) + ".tif"),
                    array.astype("uint16"))

            #optional "save_individual"
            if kwargs["save_individual"]:
                im = im * imagescale
                a = np.concatenate((np.max(
                    im, axis=0), np.max(array.astype("uint16"), axis=0)),
                                   axis=1)
                b = np.concatenate((np.fliplr(
                    np.rot90(np.max(fix_orientation(im, axes=axes), axis=0),
                             k=3)),
                                    np.fliplr(
                                        np.rot90(np.max(fix_orientation(
                                            array.astype("uint16"), axes=axes),
                                                        axis=0),
                                                 k=3))),
                                   axis=1)
                plt.figure()
                plt.imshow(np.concatenate((b, a), axis=0), cmap=cmap, alpha=1)
                plt.axis("off")
                plt.savefig(os.path.join(
                    dst, "{}".format(os.path.basename(pth)) + ".pdf"),
                            dpi=300,
                            transparent=True)
                plt.close()

            #find all nonzero pixels in resampled for elastix volume
            print("   finding nonzero pixels for voxel counts...\n")
            nz = np.nonzero(array)
            nonzeros.append(zip(*nz))  #<-for pooled image

            #find transform file
            inverse_fld = inj_vol.inverse_elastixfld
            inj_fld = listdirfull(inverse_fld, "inj")[0]
            atlas2reg2sig_fld = listdirfull(inj_fld, "atlas2reg2sig")[0]
            transformfile = os.path.join(atlas2reg2sig_fld,
                                         "reg2sig_TransformParameters.1.txt")

            if not os.path.exists(transformfile):  #if transformed points exist
                print(
                    "Transform file file not found. Running elastix inverse transform... \n"
                )
                transformfile = make_inverse_transform(
                    [xx for xx in dct["volumes"] if xx.ch_type == "injch"][0],
                    cores=6,
                    **dct)
            else:
                print("Inverse transform exists. \n")

            #apply resizing point transform
            txtflnm = point_transform_due_to_resizing(array,
                                                      chtype="injch",
                                                      **dct)
            #run transformix on points
            points_file = point_transformix(txtflnm, transformfile)

            tdf = transformed_pnts_to_allen(points_file,
                                            ann,
                                            ch_type="injch",
                                            point_or_index=None,
                                            **dct)  #map to allen atlas
            if i == 0:
                df = tdf.copy()
                countcol = "count" if "count" in df.columns else "cell_count"
                df.drop([countcol], axis=1, inplace=True)
            df[os.path.basename(pth)] = tdf[countcol]

        except:
            print(
                "could not recover injection site, inspect manually for parameter dictionary errors or missing inj channel \n\n"
            )

    #cell counts to csv
    df.to_csv(os.path.join(dst, "voxel_counts.csv"))
    print("\n\nCSV file of cell counts, saved as {}\n\n\n".format(
        os.path.join(dst, "voxel_counts.csv")))

    #condense nonzero pixels
    nzs = [
        str(x) for xx in nonzeros for x in xx
    ]  #this list has duplicates if two brains had the same voxel w label
    c = Counter(nzs)
    arr = np.zeros(im.shape)
    print("Collecting nonzero pixels for pooled image...")
    tick = 0
    #generating pooled array where voxel value = total number of brains with that voxel as positive
    for k, v in c.items():
        k = [int(xx) for xx in k.replace("(", "").replace(")", "").split(",")]
        arr[k[0], k[1], k[2]] = int(v)
        tick += 1
        if tick % 50000 == 0: print("   {}".format(tick))

    #load atlas and generate final figure
    print("Generating final figure...")
    atlas = tifffile.imread(kwargs["atlas"])  #reads atlas
    print(
        "Zooming in atlas..."
    )  #necessary to have a representative heat map as these segmentations are done from the resized volume, diff dimensions than atlas
    zoomed_atlas = zoom(
        atlas, 1.3)  #zooms atlas; different than original analyze_injection.py
    sites = fix_orientation(arr, axes=axes)

    #cropping
    if kwargs["crop"]:
        zoomed_atlas = eval("zoomed_atlas{}".format(kwargs["crop"]))
    zoomed_atlas = fix_orientation(zoomed_atlas, axes=axes)

    my_cmap = eval("plt.cm.{}(np.arange(plt.cm.RdBu.N))".format(cmap))
    my_cmap[:1, :4] = 0.0
    my_cmap = mpl.colors.ListedColormap(my_cmap)
    my_cmap.set_under("w")
    plt.figure()
    plt.imshow(np.max(zoomed_atlas, axis=0), cmap="gray")
    plt.imshow(np.max(sites, axis=0), alpha=0.99, cmap=my_cmap)
    plt.colorbar()
    plt.axis("off")
    dpi = int(kwargs["dpi"]) if "dpi" in kwargs else 300
    plt.savefig(os.path.join(dst, "heatmap.pdf"), dpi=dpi, transparent=True)
    plt.close()

    print("Saved as {}".format(os.path.join(dst, "heatmap.pdf")))

    return df
    sp.call(
        ["transformix", "-in", invol, "-out", outpth, "-tp", transformfile])
    print(svlc, "\n   Transformix File Generated: {}".format(outpth))

    return outpth


if __name__ == "__main__":

    print(sys.argv)
    jobid = int(os.environ["SLURM_ARRAY_TASK_ID"])

    src = "/jukebox/wang/pisano/tracing_output/eaat4"
    dst = "/jukebox/wang/zahra/eaat4_screening/201910_analysis"

    brains = listdirfull(src)

    brain = brains[jobid]

    kwargs = load_kwargs(brain)
    cellvol = [
        vol for vol in kwargs["volumes"]
        if vol.ch_type == "cellch" or vol.ch_type == "injch"
    ][0]
    fullszfld = cellvol.full_sizedatafld_vol

    imgs = [os.path.join(fullszfld, xx) for xx in os.listdir(fullszfld)]
    imgs.sort()
    stk = np.array([tif.imread(img) for img in imgs])[:, 1700:, :]
    #stk = tif.imread(src).astype("uint16")
Exemplo n.º 17
0
def make_folder_heirarchy(image_dictionary, dst=False, transfertype='move', scalefactor=(1.63, 1.63, 7.5), percent_overlap=0.1, cores=False, **kwargs):
    '''Function to make folders for compatibility with Terastitcher
    
    Inputs:
    --------------
    image_dictionary: dctionary generated from make_image_dictionary
    dst (optional): to make folder structure somewhere else
    transfertype (optional): 'move': move files from current location to dst
                             'copy': copy files from current location to dst
                                     
    Returns:
    -----------------
    paths to each channel folder
    '''    
    #inputs
    if not dst: dst = image_dictionary['sourcefolder']
    makedir(dst)
    
    #image dims
    ypx,xpx = tifffile.imread(listdirfull(image_dictionary['sourcefolder'])[0]).shape
    
    #factor in percent overlap
    ypx = ypx * (1-percent_overlap)
    xpx = xpx * (1-percent_overlap)
    
    #tiles
    xtile = image_dictionary['xtile']
    ytile = image_dictionary['ytile']
    
    sys.stdout.write('\nMaking Folders,'); sys.stdout.flush()    
    
    #'''WORKED BUT NEED TO FLIP Z AND Y
    iterlst = []
    for ch in image_dictionary['channels']:
        chdst = dst+'/'+ch; makedir(chdst)
        for y in range(image_dictionary['ytile']):
            ynm = str(int(ypx*y*scalefactor[1])*10).zfill(6)
            ydst = chdst+'/'+ynm; makedir(ydst)
            for x in range(image_dictionary['xtile']):
                xnm = str(int(xpx*x*scalefactor[0])*10).zfill(6)
                xdst = ydst+'/'+ynm+'_'+xnm; makedir(xdst)
                for z in image_dictionary['zchanneldct']:
                    znm = str(int(int(z)*scalefactor[2])*10).zfill(6)
                    lst = image_dictionary['zchanneldct'][str(z).zfill(4)][ch]; lst.sort()
                    iterlst.append((lst[(y*(ytile)+x)], xdst+'/'+ynm+'_'+xnm+'_'+znm+'.tif', transfertype))
                    #print y,x,z,znm, (y*(ytile)+x), ynm, xnm, znm, os.path.basename(lst[(y*(ytile)+x)])[20:60]
                    
    #generate backup just in case
    #try:
    #    kwargs['terastitcher_dct'] = {xx[0]:xx[1] for xx in iterlst}
    #    save_kwargs(**kwargs)
    #except Exception, e:
    #    print ('Exception: {}...not saving terastitcher_dct'.format(e))
                    
    #move/copy files
    if cores >= 2:
        sys.stdout.write(' populating folders: {} files using {} cores...\n'.format(len(iterlst), cores)); sys.stdout.flush()
        p = mp.Pool(cores)
        p.starmap(make_folder_heirarchy_helper, iterlst)
        p.terminate()
        
    else:
        sys.stdout.write(' populating folders...'); sys.stdout.flush()
        [make_folder_heirarchy_helper(i) for i in iterlst]          
        
    sys.stdout.write('finished.\n'); sys.stdout.flush()        
    return