Exemplo n.º 1
0
    def _helper(cons, traces):
        list_of_masks = _get_odor_masks(cons, chosen_odors, csp_odors, decode_style)
        data_trial_cell_time = utils.reshape_data(traces, trial_axis=0, cell_axis=1, time_axis=2,
                                                  nFrames=cons.TRIAL_FRAMES)
        if average_time:
            on = cons.DAQ_O_ON_F
            off = cons.DAQ_W_ON_F
            if decode_config.no_end_time:
                data_trial_cell_time = np.max(data_trial_cell_time[:, :, on:], axis=2, keepdims=True)
            else:
                data_trial_cell_time = np.max(data_trial_cell_time[:,:,on:off], axis=2, keepdims=True)

        licks = cons.DAQ_DATA[:,cons.DAQ_L,:] > 0.5
        start = np.round(cons.DAQ_O_ON * cons.DAQ_SAMP).astype(int)
        end = np.round(cons.DAQ_W_ON * cons.DAQ_SAMP).astype(int)
        lick_boolean = np.sum(licks[start:end], axis=0) > 0

        csp_lick = np.bitwise_and(list_of_masks[0], lick_boolean)
        csp_nolick = np.bitwise_and(list_of_masks[0], np.invert(lick_boolean))
        csm_lick = np.bitwise_and(list_of_masks[1], lick_boolean)
        csm_nolick = np.bitwise_and(list_of_masks[1], np.invert(lick_boolean))

        train_trials = np.bitwise_or(csp_lick, csm_nolick)
        train_labels = _assign_odor_labels([csp_lick, csm_nolick])[train_trials]
        train_data = data_trial_cell_time[train_trials]

        test_trials = np.bitwise_or(csp_nolick, csm_lick)
        test_labels = _assign_odor_labels([csp_nolick, csm_lick])[test_trials]
        test_data = data_trial_cell_time[test_trials]
        return train_data, train_labels, test_data, test_labels
Exemplo n.º 2
0
 def _helper(day):
     list_of_masks = _get_odor_masks(list_of_cons[day], chosen_odors, csp_odors, decode_style)
     data_trial_cell_time = utils.reshape_data(list_of_data[day], trial_axis=0, cell_axis=1, time_axis=2,
                                               nFrames=list_of_cons[day].TRIAL_FRAMES)
     good_trials = np.any(list_of_masks, axis=0)
     labels = _assign_odor_labels(list_of_masks)[good_trials]
     data = data_trial_cell_time[good_trials]
     if average_time:
         on = list_of_cons[day].DAQ_O_ON_F
         off = list_of_cons[day].DAQ_W_ON_F
         if decode_config.no_end_time:
             data = np.max(data[:, :, on:], axis=2, keepdims=True)
         else:
             data = np.max(data[:,:,on:off], axis=2, keepdims=True)
     return data, labels
Exemplo n.º 3
0
    def _helper(cons, traces):
        list_of_masks = _get_odor_masks(cons, chosen_odors, csp_odors, decode_style)
        data_trial_cell_time = utils.reshape_data(traces, trial_axis=0, cell_axis=1, time_axis=2,
                                                  nFrames=cons.TRIAL_FRAMES)
        if average_time:
            on = cons.DAQ_O_ON_F
            off = cons.DAQ_W_ON_F
            if decode_config.no_end_time:
                data_trial_cell_time = np.max(data_trial_cell_time[:, :, on:], axis=2, keepdims=True)
            else:
                data_trial_cell_time = np.max(data_trial_cell_time[:,:,on:off], axis=2, keepdims=True)

        start = np.round(cons.DAQ_O_ON * cons.DAQ_SAMP).astype(int)
        end = np.round(cons.DAQ_W_ON * cons.DAQ_SAMP).astype(int)
        licks = cons.DAQ_DATA[start:end,cons.DAQ_L,:] > 0.5
        licks = np.transpose(licks)

        if decode_config.split_style == 'onset':
            factor = []
            for l in licks:
                if np.any(l):
                    loc = np.where(l)[0][0]
                else:
                    loc = 1000
                factor.append(loc)
            factor = np.array(factor)
        elif decode_config.split_style == 'time':
            factor = np.arange(len(licks))
        elif decode_config.split_style == 'magnitude':
            on_off = np.diff(licks, n=1, axis=1)
            factor = np.sum(on_off > 0, axis=1)
        else:
            raise ValueError('split style {} not recognized'.format(decode_config.split_style))

        data = []
        labels = []
        for mask in list_of_masks:
            factor_current_odor = factor[mask]
            ixs = np.argsort(factor_current_odor)
            cutoff = len(ixs)//2

            current_data = data_trial_cell_time[mask][ixs]
            current_labels = np.ones_like(ixs)
            current_labels[cutoff:] = 2
            data.append(current_data)
            labels.append(current_labels)

        return data, labels
Exemplo n.º 4
0
def decode_day_labels(list_of_cons, list_of_data, chosen_odors, csp_odors, decode_config):
    #TODO: obsolete, need to fix before using
    '''

    :param cons:
    :param data:
    :param chosen_odors:
    :param csp_odors:
    :param decode_config:
    :return: decoding: returns CV scores in dimensions of Time X Cross-Folds X Repeats
    '''
    decode_style = decode_config.decode_style
    decode_neurons = decode_config.neurons
    decode_shuffle = decode_config.shuffle
    decode_repeat = decode_config.repeat

    day_odor_masks = []
    for i, cons in enumerate(list_of_cons):
        list_of_masks = _get_odor_masks(cons, chosen_odors, csp_odors, decode_style)
        day_odor_masks.append(list_of_masks)
    odor_day_masks = np.swapaxes(np.array(day_odor_masks), 0, 1)

    list_of_reshaped_data = []
    for data, cons in zip(list_of_data, list_of_cons):
        data_trial_cell_time = utils.reshape_data(data, trial_axis=0, cell_axis=1, time_axis=2,
                                              nFrames=cons.TRIAL_FRAMES)
        list_of_reshaped_data.append(data_trial_cell_time)

    list_of_scores = []
    for i, day_masks in enumerate(odor_day_masks):
        cur_data = []
        cur_label = []
        for j, day_mask in enumerate(day_masks):
            cur_data.append(list_of_reshaped_data[j][day_mask])
            cur_label.append(np.ones(np.sum(day_mask)) * j)
        cur_data = np.concatenate(cur_data, axis=0)
        cur_label = np.concatenate(cur_label, axis=0)

        for _ in range(decode_repeat):
            scores = decode_odors_time_bin(cur_data, cur_label,
                                           number_of_cells=decode_neurons,
                                           shuffle=decode_shuffle,
                                           cv=5)
            list_of_scores.append(scores)
    out = np.stack(list_of_scores, axis=2)
    return out
Exemplo n.º 5
0
def decode_odor_labels(cons, data, chosen_odors, csp_odors, decode_config):
    '''

    :param cons:
    :param data:
    :param chosen_odors:
    :param csp_odors:
    :param decode_config:
    :return: decoding: returns CV scores in dimensions of Time X Cross-Folds X Repeats
    '''

    decode_style = decode_config.decode_style
    decode_neurons = decode_config.neurons
    decode_shuffle = decode_config.shuffle
    decode_repeat = decode_config.repeat
    decode_average_time = decode_config.average_time
    data_trial_cell_time = utils.reshape_data(data, trial_axis=0, cell_axis=1, time_axis=2,
                                              nFrames=cons.TRIAL_FRAMES)

    list_of_masks= _get_odor_masks(cons, chosen_odors, csp_odors, decode_style)
    good_trials = np.any(list_of_masks, axis=0)
    decode_labels = _assign_odor_labels(list_of_masks)[good_trials]
    input = data_trial_cell_time[good_trials]
    if decode_average_time:
        on = cons.DAQ_O_ON_F
        if decode_config.no_end_time:
            input = np.max(input[:, :, on:], axis=2, keepdims=True)
        else:
            off = cons.DAQ_W_ON_F
            input = np.max(input[:, :, on:off], axis=2, keepdims=True)

    list_of_scores = []
    for _ in range(decode_repeat):
        scores = decode_odors_time_bin(input, decode_labels,
                                       number_of_cells=decode_neurons,
                                       shuffle=decode_shuffle,
                                       cv=5)
        list_of_scores.append(scores)
    out = np.stack(list_of_scores, axis=2)
    return out
Exemplo n.º 6
0
def convert(res, condition_config):
    d = defaultdict(list)
    toConvert = [
        'day', 'mouse', 'DAQ_O_ON_F', 'DAQ_O_OFF_F', 'DAQ_W_ON_F',
        'TRIAL_FRAMES'
    ]
    for i in range(len(res['mouse'])):
        data = res['data'][i]
        data = utils.reshape_data(data,
                                  nFrames=res['TRIAL_FRAMES'][i],
                                  cell_axis=0,
                                  trial_axis=1,
                                  time_axis=2)
        odor_trials = res['ODOR_TRIALS'][i]
        assert data.shape[1] == len(
            odor_trials
        ), 'number of trials in cons does not match trials in data'
        mouse = res['mouse'][i]

        condition = condition_config.condition
        if hasattr(condition, 'odors'):
            relevant_odors = copy.copy(condition.odors[mouse])
        else:
            relevant_odors = copy.copy(condition.pt_odors[mouse] +
                                       condition.dt_odors[mouse])
        if condition_config.include_water:
            relevant_odors.append('water')

        for odor in relevant_odors:
            ix = odor == odor_trials
            if np.any(ix):
                current_data = data[:, ix, :]
                d['data'].append(current_data)
                d['odor'].append(odor)
                for names in toConvert:
                    d[names].append(res[names][i])

    for key, val in d.items():
        d[key] = np.array(val)
    return d
Exemplo n.º 7
0
def helper(res, mouse, days, condition_config):
    res_mouse = filter.filter(res, filter_dict={'mouse': mouse, 'day': days})

    if hasattr(condition, 'odors'):
        odors = condition.odors[mouse]
    elif condition_config.period == 'pt':
        odors = condition.pt_csp[mouse]
    elif condition_config.period == 'dt':
        odors = condition.dt_odors[mouse]
    else:
        raise ValueError('odor condition not recognized')

    # sorting step
    if not condition_config.independent_sort and condition_config.sort_individually:
        odors_copy = copy.copy(odors)
        i = condition_config.sort_day_ix
        if condition_config.include_water and days[
                i] >= condition.training_start_day[mouse]:
            odors_copy.append('water')
        odor_on = res_mouse['DAQ_O_ON_F'][i]
        odor_off = res_mouse['DAQ_O_OFF_F'][i]
        water_on = res_mouse['DAQ_W_ON_F'][i]
        odor_trials = res_mouse['ODOR_TRIALS'][i]
        frames_per_trial = res_mouse['TRIAL_FRAMES'][i]

        data = utils.reshape_data(res_mouse['data'][i],
                                  nFrames=frames_per_trial,
                                  cell_axis=0,
                                  trial_axis=1,
                                  time_axis=2)
        list_of_psths = []
        for j, odor in enumerate(odors):
            ix = odor == odor_trials
            cur_data = data[:, ix, :]
            for k, cell in enumerate(cur_data):
                cur_data[k, :, :] = subtract_baseline(
                    cell, config.baseline_start, odor_on - config.baseline_end)
            mean = np.mean(cur_data, axis=1)
            list_of_psths.append(mean)

        if condition_config.sort_method == 'selectivity':
            ixs = sort.sort_by_selectivity(
                list_of_psths,
                odor_on,
                water_on,
                condition_config,
                delete_nonselective=condition_config.delete_nonselective)
        elif condition_config.sort_method == 'onset':
            ixs = sort.sort_by_onset(list_of_psths, odor_on, water_on,
                                     condition_config)
        elif condition_config.sort_method == 'plus_minus':
            ixs = sort.sort_by_plus_minus(list_of_psths, odor_on, water_on,
                                          condition_config)
        else:
            print('sorting method is not recognized')

    # plotting step
    images = []
    odor_on_times = []
    odor_off_times = []
    water_on_times = []
    list_of_odor_names = []
    for i, _ in enumerate(days):
        odors_copy = copy.copy(odors)
        if condition_config.include_water and days[
                i] >= condition.training_start_day[mouse]:
            odors_copy.append('water')

        odor_on = res_mouse['DAQ_O_ON_F'][i]
        water_on = res_mouse['DAQ_W_ON_F'][i]
        odor_trials = res_mouse['ODOR_TRIALS'][i]
        frames_per_trial = res_mouse['TRIAL_FRAMES'][i]

        data = utils.reshape_data(res_mouse['data'][i],
                                  nFrames=frames_per_trial,
                                  cell_axis=0,
                                  trial_axis=1,
                                  time_axis=2)
        list_of_psths = []
        for odor in odors_copy:
            ix = odor == odor_trials
            cur_data = data[:, ix, :]
            for k, cell in enumerate(cur_data):
                cur_data[k, :, :] = subtract_baseline(
                    cell, config.baseline_start, odor_on - config.baseline_end)
            mean = np.mean(cur_data, axis=1)
            list_of_psths.append(mean)
        psth = np.concatenate(list_of_psths, axis=1)

        if condition_config.independent_sort and condition_config.sort_individually:
            if condition_config.sort_method == 'selectivity':
                ixs = sort.sort_by_selectivity(
                    list_of_psths[:4],
                    odor_on,
                    water_on,
                    condition_config,
                    delete_nonselective=condition_config.delete_nonselective)
            elif condition_config.sort_method == 'onset':
                ixs = sort.sort_by_onset(list_of_psths, odor_on, water_on,
                                         condition_config)
            elif condition_config.sort_method == 'plus_minus':
                ixs = sort.sort_by_plus_minus(list_of_psths, odor_on, water_on,
                                              condition_config)
            else:
                raise ValueError('sorting method is not recognized')
            sorted_list_of_psths = [x[ixs, :] for x in list_of_psths]
            psth = psth[ixs, :]
        else:
            sorted_list_of_psths = list_of_psths

        images.append(psth)
        odor_on_times.append(odor_on)
        water_on_times.append(water_on)
        list_of_odor_names.append(odors_copy)
    return images, odor_on_times, water_on_times, list_of_odor_names, sorted_list_of_psths
Exemplo n.º 8
0
        means = []
        for m in mouse:
            odor = condition.odors[m][o]
            res_mouse = filter.filter(res, filter_dict={'mouse': m, 'day': days})

            odor_on = res_mouse['DAQ_O_ON_F'][i]
            odor_off = res_mouse['DAQ_O_OFF_F'][i]
            water_on = res_mouse['DAQ_W_ON_F'][i]
            odor_trials = res_mouse['ODOR_TRIALS'][i]
            time_odor_on = 0
            time_odor_off = res_mouse['DAQ_O_OFF'][i] - res['DAQ_O_ON'][i]
            time_water_on = res_mouse['DAQ_W_ON'][i] - res['DAQ_O_ON'][i]
            time = res_mouse['time'][i]
            frames_per_trial = res_mouse['TRIAL_FRAMES'][i]

            data = utils.reshape_data(res_mouse['data'][i], nFrames= frames_per_trial,
                                                            cell_axis=0, trial_axis=1, time_axis=2)
            ix = odor == odor_trials
            cur_data = data[:, ix, :]
            for k, cell in enumerate(cur_data):
                cur_data[k,:,:] = subtract_baseline(cell, config.baseline_start, odor_on - config.baseline_end)
            mean = np.mean(cur_data, axis=1)
            means.append(mean)
        list_of_psths.append(np.concatenate(means,axis=0))

    ixs = sort_by_selectivity([list_of_psths[-1]], odor_on, water_on, condition_config)
    psth = np.concatenate(list_of_psths, axis=1)
    psth = psth[ixs,:]

    fig = plt.figure(figsize=(1.5, 3))
    rect = [.1, .1, .65, .7]
    rect_cb = [0.76, 0.1, 0.02, 0.7]
Exemplo n.º 9
0
analysis.add_indices(res)
analysis.add_time(res)
odors = condition.odors[mouse]
if condition_config.include_water:
    odors.append('water')

for j, cell in enumerate(cells):
    res_mouse = filter.filter(res,
                              filter_dict={
                                  'mouse': mouse,
                                  'day': days[j]
                              })
    for i in range(len(res_mouse['day'])):
        data = utils.reshape_data(res_mouse['data'][i],
                                  nFrames=res_mouse['TRIAL_FRAMES'][i],
                                  cell_axis=0,
                                  trial_axis=1,
                                  time_axis=2)
        odor_on = res_mouse['DAQ_O_ON_F'][i]
        odor_trials = res_mouse['ODOR_TRIALS'][i]
        time_odor_on = 0
        time_odor_off = res_mouse['DAQ_O_OFF'][i] - res['DAQ_O_ON'][i]
        time_water_on = res_mouse['DAQ_W_ON'][i] - res['DAQ_O_ON'][i]
        time = res_mouse['time'][i]

        fig = plt.figure(figsize=(2, 1.5))
        ax = fig.add_axes([.2, .25, .7, .65])

        for j, odor in enumerate(odors):
            ix = odor == odor_trials
            cur_data = data[cell, ix, :]
Exemplo n.º 10
0
    pretraining_odors = ['oct']
    discrimination_odors = ['pin', 'msy', 'euy', 'lim']
    csp = ['oct', 'pin', 'msy']


condition = OFC_SINGLE_PHASE()  #input your condition

res = analysis.load_data(condition.path)
analysis.add_indices(res)
analysis.add_time(res)

for i, data in enumerate(res['data']):
    frames_per_trial = res['TRIAL_FRAMES'][i]
    data_r = utils.reshape_data(data,
                                nFrames=frames_per_trial,
                                cell_axis=0,
                                trial_axis=1,
                                time_axis=2)
    res['data'][i] = data_r

print(res.keys())
print(res['day'])
day = 1
print('Imaging day = {}'.format(res['day'][day]))
print('corresponding folder name = {}'.format(res['DIR'][day]))
print('raw data. dimensions are cells X trials X frames = {}'.format(
    res['data'][day].shape))
print('frame number for when odor is on. not applicable for water trials = {}'.
      format(res['DAQ_O_ON_F'][day]))
print(
    'frame number for when odor is off. not applicable for water trials = {}'.
Exemplo n.º 11
0
def helper(res, mouse, day, condition_config):
    def _pad(data, diff):
        newp = np.zeros_like(data)
        if diff > 0:
            newp[:, :diff] = np.repeat(data[:, -1].reshape(-1, 1),
                                       diff,
                                       axis=1)
            newp[:, diff:] = data[:, :-diff]
            print('early odor time. mouse: {}, day: {}'.format(
                res_mouse['mouse'][0], res_mouse['day'][0]))
        else:
            newp[:, :diff] = data[:, -diff:]
            newp[:, diff:] = np.repeat(data[:, -1].reshape(-1, 1),
                                       -diff,
                                       axis=1)
            print('late odor time. mouse: {}, day: {}'.format(
                res_mouse['mouse'][0], res_mouse['day'][0]))
        return newp

    def _align(data, diff):
        newp = np.zeros([data.shape[0], data.shape[1] + diff])
        newp[:, :data.shape[1]] = data
        newp[:, data.shape[1]:] = np.repeat(data[:, -1].reshape(-1, 1),
                                            diff,
                                            axis=1)
        print('pad frames. mouse: {}, day: {}'.format(res_mouse['mouse'][0],
                                                      res_mouse['day'][0]))
        return newp

    right_frame = np.max(res['TRIAL_FRAMES'])
    right_on = np.median(res['DAQ_O_ON_F'])
    res_mouse = filter.filter(res, filter_dict={'mouse': mouse, 'day': day})

    if hasattr(condition, 'odors'):
        odors = condition.odors[mouse]
    elif condition_config.period == 'pt':
        odors = ['naive'] + condition.pt_csp[mouse]
    elif condition_config.period == 'dt':
        odors = condition.dt_odors[mouse]
    elif condition_config.period == 'ptdt':
        odors = ['naive'] + condition.pt_csp[mouse] + condition.dt_odors[mouse]
    else:
        raise ValueError('odor condition not recognized')

    odors_copy = copy.copy(odors)
    if condition_config.include_water and day >= condition.training_start_day[
            mouse]:
        odors_copy.append('water')

    odor_on = res_mouse['DAQ_O_ON_F'][0]
    water_on = res_mouse['DAQ_W_ON_F'][0]
    odor_trials = res_mouse['ODOR_TRIALS'][0]
    frames_per_trial = res_mouse['TRIAL_FRAMES'][0]

    data = utils.reshape_data(res_mouse['data'][0],
                              nFrames=frames_per_trial,
                              cell_axis=0,
                              trial_axis=1,
                              time_axis=2)
    list_of_psth = []
    odors_out = []
    for odor in odors_copy:
        ix = odor == odor_trials
        if np.any(ix):
            cur_data = data[:, ix, :]
            for k, cell in enumerate(cur_data):
                cur_data[k, :, :] = subtract_baseline(
                    cell, config.baseline_start, odor_on - config.baseline_end)
            mean = np.mean(cur_data, axis=1)

            if np.abs(odor_on - right_on) > 2:
                diff = (right_on - odor_on).astype(int)
                mean = _pad(mean, diff)
                odor_on = odor_on + diff
                water_on = water_on + diff

            if frames_per_trial < right_frame:
                diff = right_frame - frames_per_trial
                mean = _align(mean, diff)

            list_of_psth.append(mean)
            odors_out.append(odor)

    # if 'naive' in odors_out:
    #     ix = odors_out.index('oct')
    #     odors_out.pop(ix)
    #     list_of_psth.pop(ix)

    return list_of_psth, odor_on, water_on, odors_out
Exemplo n.º 12
0
def PCA(list_of_cons, list_of_data, odor, csp, pca_config):
    def _get_trial_index(cons, pca_style, odor, csp):
        if pca_style == 'all':
            chosen_odors = odor
        elif pca_style == 'csp':
            chosen_odors = csp
        elif pca_style == 'csm':
            chosen_odors = [x for x in odor if not np.isin(x, csp)]
        else:
            raise ValueError(
                'pca style is not recognized {}'.format(pca_style))
        labels = cons.ODOR_TRIALS
        list_of_ixs = []
        for o in chosen_odors:
            trial_ixs = np.isin(labels, o)
            list_of_ixs.append(trial_ixs)
        return list_of_ixs, chosen_odors

    pca_nPCs = pca_config.n_principal_components
    pca_style = pca_config.style
    pca_average = pca_config.average

    list_of_reshaped_data = []
    for cons, data in zip(list_of_cons, list_of_data):
        list_of_ixs, chosen_odors = _get_trial_index(cons, pca_style, odor,
                                                     csp)
        data_cell_trial_time = utils.reshape_data(data,
                                                  trial_axis=1,
                                                  cell_axis=0,
                                                  time_axis=2,
                                                  nFrames=cons.TRIAL_FRAMES)
        for ix in list_of_ixs:
            cur = data_cell_trial_time[:, ix, :]
            if pca_average:
                cur = np.mean(cur, axis=1, keepdims=True)
            cur_reshaped = cur.reshape(
                [cur.shape[0], cur.shape[1] * cur.shape[2]])
            list_of_reshaped_data.append(cur_reshaped.transpose())
    pca_data = np.concatenate(list_of_reshaped_data, axis=0)

    pca = skdecomp.PCA(n_components=pca_nPCs)
    pca.fit(pca_data)
    variance_explained = pca.explained_variance_ratio_
    components = pca.components_
    variance = pca.explained_variance_

    res = defaultdict(list)
    for cons, data in zip(list_of_cons, list_of_data):
        list_of_ixs, chosen_odors = _get_trial_index(cons, pca_style, odor,
                                                     csp)
        data_trial_time_cell = utils.reshape_data(data,
                                                  trial_axis=0,
                                                  cell_axis=2,
                                                  time_axis=1,
                                                  nFrames=cons.TRIAL_FRAMES)
        for i, ix in enumerate(list_of_ixs):
            if any(ix):
                o = chosen_odors[i]
                cur = data_trial_time_cell[ix]
                transformed_data = []
                for trial in range(cur.shape[0]):
                    transformed_data.append(pca.transform(cur[trial]))
                transformed_data = np.stack(transformed_data, axis=0)

                # data is in format of trials X time X cells
                res['data'].append(transformed_data)
                res['odor'].append(o)
                res['variance_explained'].append(variance_explained)
                # res['components'].append(components)
                # res['variance'].append(variance)
                for key, val in pca_config.__dict__.items():
                    res[key].append(val)
                for key, val in cons.__dict__.items():
                    if type(val) != list and type(val) != np.ndarray:
                        res[key].append(val)

    for key, val in res.items():
        res[key] = np.array(val)
    return res, variance_explained