def report_func(epoch, batch, num_batches, progress_step, start_time, lr, report_stats): """ This is batch-level traing progress report function. Args: epoch(int): current epoch count. batch(int): current batch count. num_batches(int): total number of batches. progress_step(int): the progress step. start_time(float): last report time. lr(float): current learning rate. report_stats(Statistics): old Statistics instance. Returns: report_stats(Statistics): updated Statistics instance. """ if batch % opt.report_every == -1 % opt.report_every: report_stats.output(epoch, batch + 1, num_batches, start_time) if opt.exp_host: report_stats.log("progress", experiment, lr) if opt.tensorboard: # Log the progress using the number of batches on the x-axis. report_stats.log_tensorboard("progress", writer, lr, progress_step) report_stats = tools.Statistics() return report_stats
def test_pickle_logbook(self): stats = tools.Statistics() logbook = tools.Logbook() stats.register("mean", numpy.mean) record = stats.compile([1,2,3,4,5,6,8,9,10]) logbook.record(**record) stats_s = pickle.dumps(logbook) logbook_r = pickle.loads(stats_s) self.assertEqual(logbook, logbook_r, "Unpickled logbook != pickled logbook")
def _stats(self, xent, kl, scores, target): """ Args: loss (:obj:`FloatTensor`): the loss computed by the loss criterion. scores (:obj:`FloatTensor`): a score for each possible output target (:obj:`FloatTensor`): true targets Returns: :obj:`Statistics` : statistics for this batch. """ pred = scores.max(1)[1] non_padding = target.ne(self.padding_idx) num_correct = pred.eq(target) \ .masked_select(non_padding) \ .sum() return tools.Statistics(xent.item(), kl.item(), non_padding.sum().item(), num_correct.item())
def sharded_compute_loss(self, batch, output, attns, cur_trunc, trunc_size, shard_size, normalization, dist_info=None, output_baseline=None): """Compute the forward loss and backpropagate. Computation is done with shards and optionally truncation for memory efficiency. Also supports truncated BPTT for long sequences by taking a range in the decoder output sequence to back propagate in. Range is from `(cur_trunc, cur_trunc + trunc_size)`. Note sharding is an exact efficiency trick to relieve memory required for the generation buffers. Truncation is an approximate efficiency trick to relieve the memory required in the RNN buffers. Args: batch (batch) : batch of labeled examples output (:obj:`FloatTensor`) : output of decoder model `[tgt_len x batch x hidden]` attns (dict) : dictionary of attention distributions `[tgt_len x batch x src_len]` cur_trunc (int) : starting position of truncation window trunc_size (int) : length of truncation window shard_size (int) : maximum number of examples in a shard normalization (int) : Loss is divided by this number Returns: :obj:`tools.Statistics`: validation loss statistics """ batch_stats = tools.Statistics() range_ = (cur_trunc, cur_trunc + trunc_size) shard_state = self._make_shard_state(batch, output, range_, attns, dist_info=dist_info, output_baseline=output_baseline) if dist_info is not None: self.dist_type = dist_info.p.dist_type for shard in shards(shard_state, shard_size): loss, stats = self._compute_loss(batch, **shard) loss.div(normalization).backward() batch_stats.update(stats) return batch_stats