Exemplo n.º 1
0
def run_algorithms(list, algorithm):

    # Creating a sort object
    sort = Algorithms(list)

    if algorithm == 'insertionsort' or algorithm == 'insertsort':
        return sort.InsertSort()

    elif algorithm == 'selectionsort' or algorithm == 'selectsort':
        return sort.SelectSort()

    elif algorithm == 'countingsort' or algorithm == 'countsort':
        return sort.CountSort()

    elif algorithm == 'shellsort':
        return sort.ShellSort()

    elif algorithm == 'quicksort':
        return sort.QuickSort(list, 0, len(list))

    elif algorithm == 'mergesort':
        return sort.MergeSort(list)

    elif algorithm == 'heapsort':
        return sort.HeapSort(list)

    elif algorithm == 'radixsort':
        return sort.RadixSort()

    else:
        tools.error(algorithm)
        sys.exit(2)
Exemplo n.º 2
0
    def define_optimizer(self, opts):
        # Get graph:
        graph = tf.get_default_graph()

        # Define optimizer:
        if opts.optimizer == 'adam':
            optimizer = tf.train.AdamOptimizer(opts.initial_learning_rate)
        elif opts.optimizer == 'sgd':
            optimizer = tf.train.GradientDescentOptimizer(
                opts.initial_learning_rate)
        elif opts.optimizer == 'momentum':
            optimizer = tf.train.MomentumOptimizer(opts.initial_learning_rate,
                                                   opts.momentum)
        elif opts.optimizer == 'rmsprop':
            optimizer = tf.train.RMSPropOptimizer(opts.initial_learning_rate,
                                                  momentum=opts.momentum)
        else:
            tools.error('Optimizer not recognized.')

        # Operation to compute the gradients:
        L_comb = graph.get_tensor_by_name('L_comb:0')
        gradients = optimizer.compute_gradients(L_comb)

        # Operation to apply the gradietns:
        optimizer.apply_gradients(gradients, name='apply_grads_adam')

        return gradients
Exemplo n.º 3
0
def create_protocol(request):
    import hashlib
    if request.method == 'POST':
        protocol_form = CreateProtocolForm(request.POST)
        if protocol_form.is_valid():
            try:
                cd = protocol_form.cleaned_data
                if ProtocolList.objects.filter(
                        name=cd['name'], user_id=request.user.id).exists():
                    return error('Duplicate record!')
                protocol = ProtocolList(name=cd['name'],
                                        user_id=request.user.id)
                protocol.save()
                softwares = request.POST.getlist('software', '')
                parameters = request.POST.getlist('parameter', '')
                steps = []
                for index, software in enumerate(softwares):
                    if parameters[index]:
                        m = hashlib.md5()
                        m.update(software + ' ' + parameters[index].strip())
                        steps.append(
                            Protocol(software=software,
                                     parameter=parameters[index],
                                     parent=protocol.id,
                                     hash=m.hexdigest(),
                                     user_id=request.user.id))
                Protocol.objects.bulk_create(steps)
                return success('Your protocol have been created!')
            except Exception, e:
                return error(e)
        else:
            return error(str(protocol_form.errors))
Exemplo n.º 4
0
def status(ctx):
    """Display some informations and statistics"""
    title("Current status")

    section("Settings")
    click.echo("GEOZONES_HOME: {0}".format(ctx.obj["home"]))
    section("Levels")
    for level in ctx.obj["levels"]:
        click.echo("{id}: {label}".format(**level.__dict__))

    section("downloads")
    urls = (level.urls for level in ctx.obj["levels"] if level.urls)
    urls = set([url for lst in urls for url in lst])
    for url in urls:
        filename = basename(url).strip()
        click.echo("{0} ... ".format(filename), nl=False)
        if os.path.exists(os.path.join(DL_DIR, filename)):
            success("present")
        else:
            error("absent")

    section("coverage")
    zones = DB()
    total = 0
    properties = ("population", "area", "wikipedia")
    totals = dict((prop, 0) for prop in properties)

    def countprop(name):
        results = zones.aggregate(
            [
                {"$match": {name: {"$exists": True}, "level": {"$in": [l.id for l in ctx.obj["levels"]]}}},
                {"$group": {"_id": "$level", "value": {"$sum": 1}}},
            ]
        )
        return dict((r["_id"], r["value"]) for r in results)

    def display_prop(name, count, total):
        click.echo("\t{0}: ".format(name), nl=False)
        if count == 0:
            func = error
        elif count == total:
            func = success
        else:
            func = warning
        func("{0}/{1}".format(count, total))

    counts = dict((p, countprop(p)) for p in properties)
    for level in ctx.obj["levels"]:
        count = zones.count({"level": level.id})
        total += count
        click.echo("{0}: {1}".format(level.id, count))

        for prop in properties:
            prop_count = counts[prop].get(level.id, 0)
            totals[prop] += prop_count
            display_prop(prop, prop_count, count)
    click.secho("TOTAL: {0}".format(total), bold=True)
    for prop in properties:
        prop_total = totals[prop]
        display_prop(prop, prop_total, total)
Exemplo n.º 5
0
    def process_dataset(self, workdir, db, url, extractor):
        '''Extract territories from a given file for a given level with a given extractor function'''
        loaded = 0
        filename = join(workdir, basename(url))

        with fiona.open('/', vfs='zip://{0}'.format(filename), encoding='utf8') as collection:
            info('Extracting {0} elements from {1} ({2} {3})'.format(
                len(collection), basename(filename), collection.driver, to_string(collection.crs)
            ))

            for polygon in collection:
                try:
                    zone = extractor(polygon)
                    if not zone:
                        continue
                    zone['keys'] = dict((k, v) for k, v in zone.get('keys', {}).items() if v is not None)
                    geom = shape(polygon['geometry'])
                    if extractor.simplify:
                        geom = geom.simplify(extractor.simplify)
                    if geom.geom_type == 'Polygon':
                        geom = MultiPolygon([geom])
                    elif geom.geom_type != 'MultiPolygon':
                        warning('Unsupported geometry type "{0}" for "{1}"'.format(geom.geom_type, zone['name']))
                        continue
                    zoneid = '/'.join((self.id, zone['code']))
                    zone.update(_id=zoneid, level=self.id, geom=geom.__geo_interface__)
                    db.find_one_and_replace({'_id': zoneid}, zone, upsert=True)
                    loaded += 1
                except Exception as e:
                    error('Error extracting polygon {0}: {1}', polygon['properties'], str(e))

        info('Loaded {0} zones for level {1} from file {2}'.format(loaded, self.id, filename))
        return loaded
Exemplo n.º 6
0
def add_job(request):
    if request.method == 'POST':
        job_form = SingleJobForm(request.POST)
        if job_form.is_valid():
            cd = job_form.cleaned_data
            try:
                if cd['parameter'].find(';') == -1:
                    cd['parameter'] += ';'

                protocol = ProtocolList.objects.get(id=cd['protocol'])
                if protocol.check_owner(
                        request.user.id) or request.user.is_superuser:
                    job = Queue(
                        protocol_id=cd['protocol'],
                        parameter=cd['parameter'],
                        run_dir=get_config('env', 'workspace'),
                        user_id=request.user.id,
                        input_file=cd['input_files'],
                    )

                    if check_disk_quota_lock(request.user.id):
                        job.save()
                        return success('Successfully added job into queue.')
                    else:
                        return error(
                            'You have exceed the disk quota limit! Please delete some files!'
                        )
                else:
                    return error('You are not owner of the protocol.')

            except Exception, e:
                return error(e)
        return error(str(job_form.errors))
Exemplo n.º 7
0
def manage_reference(request):
    if request.method == 'POST':
        reference_form = CreateReferenceForm(request.POST)
        if reference_form.is_valid():
            cd = reference_form.cleaned_data
            if References.objects.filter(user_id=request.user.id,
                                         name=cd['name']).exists():
                return error('Duplicate record!')
            ref = References(
                name=cd['name'],
                path=cd['path'],
                user_id=request.user.id,
            )
            ref.save()
            return success(ref.id)
        else:
            return error(str(reference_form.errors))
    else:
        if request.user.is_superuser:
            reference_list = References.objects.all()
        else:
            reference_list = References.objects.filter(
                user_id=request.user.id).all()
        return render(request, 'ui/manage_reference.html',
                      {'references': reference_list})
Exemplo n.º 8
0
    def joint_path(self, p1_flat, p2_flat):

        # Parameters
        if self.load_torch:
            if self.dirmodel == None:
                tools.error('Missing dirmodel.')
            dirbase = self.dirmodel + 'tramo3/'
            [pj_dense_weight,
             pj_dense_bias] = read_weights_dense(dirbase + 'l1_dense.txt',
                                                 varname='pj_dense')
            [pj_bn_mean, pj_bn_variance, pj_bn_offset, pj_bn_scale] = \
                read_weights_bn(dirbase+'l2_bn.txt', varname='pj_bn')

        else:
            if self.xavier_init:
                pj_dense_weight = weight_variable_xavier(
                    [768, 256], 768, 256, name='pj_dense_weight')
                pj_dense_bias = bias_variable([256], name='pj_dense_bias')
#                 pj_bn_mean = bias_variable([256], name='pj_bn_mean')
#                 pj_bn_variance = weight_variable_xavier([256], 256, 256, name='pj_bn_variance')
#                 pj_bn_offset = bias_variable([256], name='pj_bn_offset')
#                 pj_bn_scale = weight_variable_xavier([256], 256, 256, name='pj_bn_scale')
            else:
                pj_dense_weight = weight_variable([768, 256],
                                                  name='pj_dense_weight')
                pj_dense_bias = bias_variable([256], name='pj_dense_bias')
#                 pj_bn_mean = weight_variable([256], name='pj_bn_mean')
#                 pj_bn_variance = weight_variable([256], name='pj_bn_variance')
#                 pj_bn_offset = weight_variable([256], name='pj_bn_offset')
#                 pj_bn_scale = weight_variable([256], name='pj_bn_scale')
            pj_bn_mean, \
                pj_bn_variance, \
                pj_bn_offset, \
                pj_bn_scale = self.bn_variables(256, basename='pj_bn_scale')

        # Probability of keeping units in the dropout layer:
        keep_prob = tf.placeholder(tf.float32, name='keep_prob')

        # Model
        pj_join = tf.concat([p1_flat, p2_flat], 1, name='pj_join')
        pj_dense = tf.add(tf.matmul(pj_join, pj_dense_weight),
                          pj_dense_bias,
                          name='pj_dense')
        pj_bn = tf.nn.batch_normalization(pj_dense,
                                          pj_bn_mean,
                                          pj_bn_variance,
                                          pj_bn_offset,
                                          pj_bn_scale,
                                          BN_EPS,
                                          name='pj_bn')
        pj_relu1 = tf.nn.relu(pj_bn, name='pj_relu1')
        pj_dropout = tf.nn.dropout(pj_relu1, keep_prob, name='pj_dropout')

        return pj_dropout
Exemplo n.º 9
0
    def process_dataset(self, workdir, db, url, extractor):
        '''Extract territories from a given file for a given level with a given extractor function'''
        loaded = 0
        filename = join(workdir, basename(url))

        # Identify the shapefile to avoid multiple file error on GDAL 2

        with ZipFile(filename) as z:
            candidates = [n for n in z.namelist() if n.endswith('.shp')]
            if len(candidates) != 1:
                raise ValueError(
                    'Unable to find a unique shpaefile into {0}'.format(
                        filename))
            shp = candidates[0]

        with fiona.open('/{0}'.format(shp),
                        vfs='zip://{0}'.format(filename),
                        encoding='utf8') as collection:
            info('Extracting {0} elements from {1} ({2} {3})'.format(
                len(collection), basename(filename), collection.driver,
                to_string(collection.crs)))

            for polygon in collection:
                try:
                    zone = extractor(polygon)
                    if not zone:
                        continue
                    zone['keys'] = dict(
                        (k, v) for k, v in zone.get('keys', {}).items()
                        if v is not None)
                    geom = shape(polygon['geometry'])
                    if extractor.simplify:
                        geom = geom.simplify(extractor.simplify)
                    if geom.geom_type == 'Polygon':
                        geom = MultiPolygon([geom])
                    elif geom.geom_type != 'MultiPolygon':
                        warning(
                            'Unsupported geometry type "{0}" for "{1}"'.format(
                                geom.geom_type, zone['name']))
                        continue
                    zoneid = '/'.join((self.id, zone['code']))
                    zone.update(_id=zoneid,
                                level=self.id,
                                geom=geom.__geo_interface__)
                    db.find_one_and_replace({'_id': zoneid}, zone, upsert=True)
                    loaded += 1
                except Exception as e:
                    error('Error extracting polygon {0}: {1}',
                          polygon['properties'], str(e))

        info('Loaded {0} zones for level {1} from file {2}'.format(
            loaded, self.id, filename))
        return loaded
Exemplo n.º 10
0
    def body_path(self):
        # Full image path:
        x_b = tf.placeholder(tf.float32, shape=[None, 128, 128, 3], name='x_b')

        # Check we are not applying any correction if loading the Torch model:
        if self.load_torch and (self.correct_block2 or self.correct_avgpool):
            tools.error(
                'Not posible to load Torch model and apply any correction.')

        # Parameters
        if self.load_torch:
            if self.dirmodel == None:
                tools.error('Missing dirmodel.')
            var_dict = self.load_weights_body()
        else:
            var_dict = self.random_weights_body()

        # Model
        block_configurations = [[2, 1, 1, 0], [2, 1, 1, 0], [2, 1, 1, 0]]
        # Loop adding all blocks:
        ini = 0
        x = x_b
        for block_idx in range(3):
            var_dict_block = tools.get_subdictionary(ini, 8, var_dict)
            strideW = block_configurations[block_idx][0]
            strideH = block_configurations[block_idx][1]
            padW = block_configurations[block_idx][2]
            padH = block_configurations[block_idx][3]
            if (not self.correct_block2) and block_idx == 1:
                x = add_block_v2(x, var_dict_block, strideW, strideH, padW,
                                 padH, 2, block_idx + 1)
            else:
                x = add_block(x, var_dict_block, strideW, strideH, padW, padH,
                              2, block_idx + 1)
            ini = ini + 8
        # average pooling
        if self.correct_avgpool:
            p2_avgpool = tf.layers.average_pooling2d(x,
                                                     pool_size=16,
                                                     strides=1,
                                                     padding="VALID",
                                                     name='p2_avgpool')
        else:
            p2_avgpool = tf.layers.average_pooling2d(x,
                                                     pool_size=3,
                                                     strides=16,
                                                     padding="VALID",
                                                     name='p2_avgpool')
        # flattening
        body_path_end = tf.reshape(p2_avgpool, [-1, 128], name='body_path_end')

        return body_path_end
Exemplo n.º 11
0
def delete_reference(request):
    if request.method == 'GET':
        if 'ref' in request.GET:
            ref = References.objects.get(id=request.GET['ref'])
            if ref.check_owner(request.user.id) or request.user.is_superuser:
                ref.delete()
                return success('Your reference has been deleted.')
            else:
                return error('You are not owner of the reference.')
        else:
            return error('Missing parameter.')
    else:
        return error('Error Method.')
Exemplo n.º 12
0
def evaluate(xvals, coeff, data, variance, spec):
  """
  Evaluate polynomial at xvals, repairing values where variance==0
  with data/spec.

  Parameters:
  -----------
     xvals:  1D float ndarray
         X values for data.
     coeff:  1D float ndarray
         The polynomial coefficients (highest to lowest power).
     data:  1D float ndarray
         The data vector to fit.
     variance:  1D float ndarray
         The variance vector.
     spec:  1D float ndarray
         The spectrum vector.
     deg:  Integer
         Degree of the polynomial.

  Returns:
  --------
     fiteval: 1D float ndarray
         The estimated spectrum

  Example:
  --------
    See example in polyfunc.fit()
  """

  # Check inputs:
  nx = np.size(xvals)
  nd = np.size(data)
  nv = np.size(variance)
  ns = np.size(spec)

  if nx != nd or nx != nv or nx != ns:
    tools.error("The length of data ({:d}), variance ({:d}), spec ({:d}), "
                "and/or xvals ({:d}) are incompatible.".format(nd, nv, ns, nx))
  # Find values with zero variance:
  zerov = (variance == 0.0)

  # Evaluate coefficients:
  fiteval = np.polyval(coeff, xvals)

  # Use actual data where varv is 0:
  fiteval[zerov] = data[zerov] / spec[zerov]

  return fiteval
Exemplo n.º 13
0
def delete_step(request):
    if request.method == 'GET':
        if 'id' in request.GET:
            try:
                step = Protocol.objects.get(id=int(request.GET['id']))
                if step.check_owner(
                        request.user.id) or request.user.is_superuser:
                    step.delete()
                    return success('Your step has been deleted.')
                else:
                    return error('You are not owner of the step.')
            except Exception, e:
                return error(e)
        else:
            return error('Unknown parameter.')
Exemplo n.º 14
0
def terminate_job(request):
    if request.method == 'POST':
        terminate_form = JobManipulateForm(request.POST)
        if terminate_form.is_valid() or request.user.is_superuser:
            cd = terminate_form.cleaned_data
            try:
                job = Queue.objects.get(id=cd['job'])
                if job.check_owner(request.user.id):
                    job.terminate_job()
                    return success('Your job will be terminated soon.')
                else:
                    return error('Your are not the owner of the job.')
            except Exception, e:
                return error(e)
        else:
            return error(str(terminate_form.errors))
Exemplo n.º 15
0
def import_learning(request):
    if request.session['learning']:
        if request.session['learning']['a'] != 'no records':
            learn = Prediction(
                step_hash=request.session['learning']['hash'],
                type=request.session['learning']['type'],
                a=request.session['learning']['a'],
                b=request.session['learning']['b'],
                r=request.session['learning']['r'],
            )
            learn.save()
            return success('Imported.')
        else:
            return error('Can not import records!')
    else:
        return error('Error')
Exemplo n.º 16
0
 def on_all_m_click(self, do=0):
     # 0 = get current memory or 1 = plus memory or 2 = minus memory or 3 = clear memory
     if do == 3:
         self.memory = 0.0
     elif not self.exp.is_error():
         self.update_expression()
         if do == 0:
             self.history.out()
             r = str(self.memory)
             if r.endswith('.0'):
                 r = r.replace('.0', '')
             self.exp.put_data_on_exp(r)
             self.update_monitor()
         elif do in (1, 2):
             res = get_result(self.exp.exp, self.ui.radio_bt_1.isChecked())
             if error(res):
                 self.history.out()
                 self.last_invalid_exp = self.exp.exp
                 self.exp.set_exp(res)
                 self.update_monitor()
             else:
                 try:
                     exp_float = float(res)
                     self.memory += exp_float if do == 1 else -exp_float
                 except:
                     self.history.out()
                     self.last_invalid_exp = self.exp.exp
                     self.exp.set_exp(ERRORS[2])
                     self.update_monitor()
Exemplo n.º 17
0
def fetch_learning(request):
    import urllib2, json
    query_string = request.GET['hash'] + ',' + request.GET['type'] + ',' + str(
        get_config('env', 'cpu')) + ',' + str(get_config(
            'env', 'memory')) + ',' + str(os_to_int())
    api_bus = get_config('ml', 'api') + '/Index/share/q/' + query_string
    try:
        req = urllib2.Request(api_bus)
        res_data = urllib2.urlopen(req)
        res = json.loads(res_data.read())
        session_dict = {
            'hash': request.GET['hash'],
            'type': request.GET['type'],
            'a': res['a'],
            'b': res['b'],
            'r': res['r'],
        }
        request.session['learning'] = session_dict
        template = loader.get_template('ui/fetch_learning.html')
        context = RequestContext(request, {
            'step': res,
        })
        return success(template.render(context))
    except Exception, e:
        return error(api_bus)
Exemplo n.º 18
0
 def save_score(self):
     """Saves the current score"""
     nick = nick_selection.get_nick()
     with open(self.SCORES_FILE, 'a') as fh:
         fh.write(nick+"\t"+str(self.score))
     # Send to remote server
     params = self.REMOTE_SCORES_PARAMS
     params["do"] = "add"
     params["nick"] = nick
     params["score"] = self.score
     try:
         r = requests.get(self.REMOTE_SCORES_URL, params=params)
         if r.status_code != 200 or 'ack' not in r.text:
             tools.error("Unable to post high score.")
     except requests.exceptions.ConnectionError as e:
         tools.error("Network error when submitting high score:"+str(e))
Exemplo n.º 19
0
def delete_protocol(request):
    if request.method == 'GET':
        if 'id' in request.GET:
            protocol_parent = ProtocolList.objects.get(
                id=int(request.GET['id']))
            if protocol_parent.check_owner(
                    request.user.id) or request.user.is_superuser:
                protocol_parent.delete()
                steps = Protocol.objects.filter(parent=int(request.GET['id']))
                steps.delete()
                return success('Your protocol has been deleted.')
            else:
                return error('You are not owner of the protocol.')
        else:
            return error('Unknown parameter.')
    else:
        return error('Method error.')
Exemplo n.º 20
0
def get_learning_result(request):
    if request.method == 'GET':
        learning_form = QueryLearningForm(request.GET)
        if learning_form.is_valid():
            cd = learning_form.cleaned_data
            try:
                train = Prediction.objects.get(step_hash=cd['stephash'],
                                               type=cd['type'])
                template = loader.get_template('ui/get_learning_result.html')
                context = RequestContext(request, {
                    'hit': train,
                })
                return success(template.render(context))
            except Exception, e:
                return error(e)
        else:
            return error(str(learning_form.errors))
Exemplo n.º 21
0
    def __init__(self, name, dict, ast_params):
        self.ast_params = ast_params
        self.attributes = []
        self.clone_by_ref = False
        self.cloner_prologue = ""
        # Is the class concrete? (Default is false.)
        self.concrete = False
        self.declAttribute = ""
        self.derived = []
        self.desc = ""
        self.hide = False
        self.includes = {}
        self.inline = {}
        self.name = name
        self.super = ""
        self.super_non_nodes = []

        for key in dict:
            # Catch duplicate keys.
            if isinstance(key, tuple):
                (realkey, value) = key
                error('duplicate key: ' + name + "::" + realkey)
            if key not in [
                    'attributes',
                    'concrete',
                    'declAttribute',
                    'default',
                    'desc',
                    'hide',
                    'inline',
                    'printer',
                    'super',
                    'cloner_prologue',
                    'clone_by_ref',
            ]:
                warning('unknown Node attribute: ' + name + "::" + key)
            self.__dict__[key] = dict[key]

        # If we have only one super-class, it has been parsed as a single
        # value, but we want a list.
        if (not isinstance(self.super, list)):
            self.super = [self.super]

        self.attributes = map(self.attribute_of_dict, self.attributes)
Exemplo n.º 22
0
Arquivo: ast.py Projeto: Werkov/urbi
    def __init__(self, name, dict, ast_params):
        self.ast_params = ast_params
        self.attributes = []
        self.clone_by_ref = False
        self.cloner_prologue = ""
        # Is the class concrete? (Default is false.)
        self.concrete = False
        self.declAttribute = ""
        self.derived = []
        self.desc = ""
        self.hide = False
        self.includes = {}
        self.inline = {}
        self.name = name
        self.super = ""
        self.super_non_nodes = []

        for key in dict:
            # Catch duplicate keys.
            if isinstance(key, tuple):
                (realkey, value) = key
                error("duplicate key: " + name + "::" + realkey)
            if key not in [
                "attributes",
                "concrete",
                "declAttribute",
                "default",
                "desc",
                "hide",
                "inline",
                "printer",
                "super",
                "cloner_prologue",
                "clone_by_ref",
            ]:
                warning("unknown Node attribute: " + name + "::" + key)
            self.__dict__[key] = dict[key]

        # If we have only one super-class, it has been parsed as a single
        # value, but we want a list.
        if not isinstance(self.super, list):
            self.super = [self.super]

        self.attributes = map(self.attribute_of_dict, self.attributes)
Exemplo n.º 23
0
def update_parameter(request):
    if request.method == 'GET':
        from urllib import unquote
        update_parameter_form = StepManipulateForm(request.GET)
        if update_parameter_form.is_valid():
            cd = update_parameter_form.cleaned_data
            step = Protocol.objects.get(id=cd['id'])
            if (step.check_owner(request.user.id)
                    or request.user.is_superuser) and step.check_parent(
                        cd['parent']):
                step.update_parameter(unquote(cd['parameter']))
                step.save()
                return success('Your step has been updated.')
            else:
                return error('Your are not owner of the step.')
        else:
            return error(str(update_parameter_form.errors))
    else:
        return error('Method error')
Exemplo n.º 24
0
    def load_batch_with_labels(self, opts):
        # Initialize arrays:
        im_prep_batch = np.zeros([opts.batch_size, 128, 128, 3],
                                 dtype=np.float32)
        true_labels = np.zeros((opts.batch_size, NDIM_DISC), dtype=np.float32)

        # Fill the batches:
        for idx_in_batch in range(opts.batch_size):
            # Corresponding image index:
            im_idx = self.curr_batch * opts.batch_size + idx_in_batch

            if im_idx >= self.n_images_per_epoch:
                tools.error('Image index over number of images per epoch')

            # Load images (full and body):
            im_full = tools.load_images_onepath(
                self.annotations[self.indexes[im_idx]], opts)

            # Add one dimension (for batch)
            im_prep_batch[idx_in_batch, :, :, :] = im_full

            # Build the batch with the true labels:
            # Discrete:
            for cat_idx in range(NCAT_IMAGENET):
                if tools.category_in_annotation(
                        self.annotations[self.indexes[im_idx]], cat_idx):
                    true_labels[idx_in_batch, cat_idx] = 1

        # Update batch index:
        self.curr_batch = self.curr_batch + 1

        # If we have completed a whole epoch, prepare a new one and restart the batch index:
        if self.curr_batch == self.n_batches_per_epoch:
            self.curr_batch = 0
            self.prepare_epoch(opts)

#         inputs = [im_full_prep_batch, im_body_prep_batch]
#         labels = [true_labels_cont, true_labels_disc]

        inputs = {'im_prep_batch': im_prep_batch}
        labels = {'true_labels': true_labels}

        return inputs, labels
Exemplo n.º 25
0
def show_step(request):
    if request.method == 'POST':
        query_protocol_form = ProtocolManipulateForm(request.POST)
        if query_protocol_form.is_valid():
            cd = query_protocol_form.cleaned_data
            if request.user.is_superuser:
                step_list = Protocol.objects.filter(parent=cd['parent']).all()
            else:
                step_list = Protocol.objects.filter(
                    parent=cd['parent']).filter(user_id=request.user.id).all()
            template = loader.get_template('ui/show_steps.html')
            context = RequestContext(request, {
                'step_list': step_list,
            })
            return success(template.render(context))
        else:
            return error(str(query_protocol_form.errors))
    else:
        return error('Method error.')
Exemplo n.º 26
0
def show_learning_steps(request):
    if request.method == 'GET':
        if 'parent' in request.GET:
            if request.user.is_superuser:
                step_list = Protocol.objects.filter(
                    parent=int(request.GET['parent'])).all()
            else:
                step_list = Protocol.objects.filter(
                    parent=int(request.GET['parent'])).filter(
                        user_id=request.user.id).all()
            template = loader.get_template('ui/show_learning_steps.html')
            context = RequestContext(request, {
                'step_list': step_list,
            })
            return success(template.render(context))
        else:
            return error('Wrong parameter.')
    else:
        return error('Method error.')
Exemplo n.º 27
0
def show_job_log(request):
    if request.method == 'POST':
        query_job_form = JobManipulateForm(request.POST)
        if query_job_form.is_valid():
            cd = query_job_form.cleaned_data
            log_path = os.path.join(get_config('env', 'log'), str(cd['job']))
            try:
                log_file = open(log_path, mode='r')
                log = log_file.readlines()
                log.reverse()
                log = log[:100]
                # log_content = [line+'<br />' for line in log]
                log_content = '<br />'.join(log)
                log_file.close()
                return success(log_content)
            except Exception, e:
                return error(e)
        else:
            return error(str(query_job_form.errors))
Exemplo n.º 28
0
 def call(self, x):
     prev_prediction = prev_reconstruction = x
     prev_code = self.code
     errors = []
     for n in range(self.n_loops):
         prediction = self.fn(self.decode(prev_code))
         code = self.fn(self.encode(prev_reconstruction))
         reconstruction = self.fn(self.decode(code))
         errors.extend([
             error(prev_prediction, prediction),
             error(x, prediction) * 420.,
             error(prev_reconstruction, reconstruction),
             error(x, reconstruction) * 420.,
             error(prev_code, code)
         ])
         prev_reconstruction = reconstruction
         prev_prediction = prediction
         prev_code = code
     y = self.out(errors)
     return y
Exemplo n.º 29
0
    def __init__(
        self, serial_port, nb_leds, corrections={"r": 1.0, "g": 1.0, "b": 1.0}, brightness=1.0, nb_steps_fading=25
    ):
        """Params:
            * ser is an open pySerial object
            * nb_leds is the total number of LEDs
            * corrections is used to correct the differences between colors
            intensity
            * brightness is used to reduce the global brightess
            * nb_steps_fading is the number of steps to use by default for
            fading
        """
        self.corrections = {k: float(brightness) * corrections[k] for k in corrections}

        self.serial_port = serial_port
        self.ser = serial.Serial(port=self.serial_port, baudrate=115200)
        if not self.ser.isOpen():
            try:
                self.ser.open()
            except Exception, e:
                tools.error("Error opening serial port: " + str(e))
Exemplo n.º 30
0
    def handle(self):
        self.data = self.rfile.readline().strip()

        print "Got from {}:".format(self.client_address[0])
        print self.data

        # ACK
        self.wfile.write(len(self.data))

        # Send to the LEDs
        try:
            self.data = json.loads(self.data)
            try:
                fading_duration = self.data["fading_duration"]
            except:
                fading_duration = 0
            self.control.send_colors(self.data["colors"],
                                     fading=self.data["fading"],
                                     fading_duration=fading_duration)
        except:
            tools.error("Invalid packet")
Exemplo n.º 31
0
def build_model(opts):
    
    if opts.modelname == 'cnn_emotic_1':
        cnn_builder = cnn_emotic_1.cnn_builder_class(opts.cnn_opts[opts.modelname], opts)
        
    else:
        tools.error('modelname not recognized.')

    # Define network:
    if opts.net_arch == 'orig':
        cnn_builder.define_network()
    elif opts.net_arch == 'fullpath':
        cnn_builder.define_fullpath()
    elif opts.net_arch == 'bodypath':
        cnn_builder.define_bodypath()
    else:
        tools.error('Network architecture not recognized.')
    
    # Define loss:
    if opts.loss_type == 'orig' or opts.loss_type == 'onlycont' or opts.loss_type == 'onlydisc':
        cnn_builder.define_loss_orig(opts)
    elif opts.loss_type == 'simple1':
        cnn_builder.define_loss_simple1()
    elif opts.loss_type == 'fullpath':
        cnn_builder.define_loss_fullpath()
    elif opts.loss_type == 'bodypath':
        cnn_builder.define_loss_bodypath()
    else:
        tools.error('Loss type not recognized.')
    
    # Define optimizer:
    gradients = cnn_builder.define_optimizer(opts)
    
    return gradients
Exemplo n.º 32
0
 def on_equal_click(self):
     self.update_expression()
     if not self.exp.is_error():
         self.history.out()
         res = get_result(self.exp.exp, self.ui.radio_bt_1.isChecked())
         if self.make_power_enabled:
             self.on_power_click()
         if error(res):
             self.last_invalid_exp = self.exp.exp
         else:
             self.history.history.append(self.exp.exp)
         self.exp.set_exp(res)
         self.update_monitor()
Exemplo n.º 33
0
def show_job_folder(request):
    import time, base64
    if request.method == 'POST':
        query_job_form = JobManipulateForm(request.POST)
        if query_job_form.is_valid():
            cd = query_job_form.cleaned_data
            try:
                job = Queue.objects.get(id=cd['job'])
                if job.check_owner(
                        request.user.id) or request.user.is_superuser:
                    result_folder = job.get_result()
                    user_path = os.path.join(get_config('env', 'workspace'),
                                             str(request.user.id),
                                             result_folder)
                    user_files = []
                    for root, dirs, files in os.walk(user_path):
                        for file_name in files:
                            file_full_path = os.path.join(root, file_name)
                            file_path = file_full_path.replace(user_path+'\\', '')\
                                .replace(user_path+'/', '').replace(user_path, '')
                            tmp = dict()
                            tmp['name'] = file_path
                            tmp['file_size'] = os.path.getsize(file_full_path)
                            tmp['file_create'] = time.ctime(
                                os.path.getctime(file_full_path))
                            tmp['trace'] = base64.b64encode(
                                os.path.join(result_folder, file_path))
                            user_files.append(tmp)
                    template = loader.get_template('ui/show_job_folder.html')
                    context = RequestContext(request, {
                        'user_files': user_files,
                    })
                    return success(template.render(context))
                else:
                    return error('Your are not the owner of the job.')
            except Exception, e:
                return error(e)
        else:
            return error(str(query_job_form.errors))
Exemplo n.º 34
0
    def full_path(self):
        # Full image path:
        x_f = tf.placeholder(tf.float32, shape=[None, 224, 224, 3], name='x_f')

        # Parameters
        if self.load_torch:
            if self.dirmodel == None:
                tools.error('Missing dirmodel.')
            var_dict = self.load_weights_full()
        else:
            var_dict = self.random_weights_full()

        # Model
        block_configurations = [[4, 1, 2, 0], [2, 1, 2, 0], [2, 1, 1, 0],
                                [1, 1, 1, 0], [2, 1, 1, 0], [1, 1, 1, 0],
                                [2, 1, 1, 0], [1, 1, 1, 0]]
        # Loop adding all blocks:
        ini = 0
        x = x_f
        for block_idx in range(8):
            var_dict_block = tools.get_subdictionary(ini, 8, var_dict)
            strideW = block_configurations[block_idx][0]
            strideH = block_configurations[block_idx][1]
            padW = block_configurations[block_idx][2]
            padH = block_configurations[block_idx][3]
            x = add_block(x, var_dict_block, strideW, strideH, padW, padH, 1,
                          block_idx + 1)
            ini = ini + 8
        # average pooling
        p1_avgpool = tf.layers.average_pooling2d(x,
                                                 pool_size=4,
                                                 strides=1,
                                                 padding="VALID",
                                                 name='p1_avgpool')
        # flattening
        full_path_end = tf.reshape(p1_avgpool, [-1, 640], name='full_path_end')

        return full_path_end
Exemplo n.º 35
0
def add_step(request):
    import hashlib
    if request.method == 'POST':
        step_form = CreateStepForm(request.POST)
        if step_form.is_valid():
            cd = step_form.cleaned_data
            try:
                protocol = ProtocolList.objects.get(id=cd['parent'])
                if protocol.check_owner(
                        request.user.id) or request.user.is_superuser:
                    m = hashlib.md5()
                    m.update(cd['software'] + ' ' + cd['parameter'].strip())
                    step = Protocol(software=cd['software'],
                                    parameter=cd['parameter'],
                                    parent=cd['parent'],
                                    user_id=request.user.id,
                                    hash=m.hexdigest())
                    step.save()
                    return success('Your step have been created.')
                else:
                    return error('You are not owner of the protocol.')
            except Exception, e:
                return error(str(e))
Exemplo n.º 36
0
def download_upload_file(request, f):
    import base64
    file_path = os.path.join(get_config('env', 'workspace'),
                             str(request.user.id), 'uploads',
                             base64.b64decode(f.replace('f/', '')))
    try:
        response = FileResponse(open(file_path, 'rb'))
        response['Content-Type'] = 'application/octet-stream'
        response['Content-Disposition'] = 'attachment;filename="{0}"'.format(
            os.path.basename(file_path))
        response['Content-Length'] = os.path.getsize(file_path)
        return response
    except Exception, e:
        return error(e)
Exemplo n.º 37
0
    def predictions_path(self, pj_dropout):

        # Parameters
        if self.load_torch:
            if self.dirmodel == None:
                tools.error('Missing dirmodel.')
            dirbase = self.dirmodel + 'tramo3/'
            [yc_weight, yc_bias] = read_weights_dense(dirbase + 'l6_dense.txt',
                                                      varname='yc')
            [yd_weight, yd_bias] = read_weights_dense(dirbase + 'l7_dense.txt',
                                                      varname='yd')

        else:
            if self.xavier_init:
                yc_weight = weight_variable_xavier([256, NDIM_CONT],
                                                   256,
                                                   NDIM_CONT,
                                                   name='yc_weight')
                yc_bias = bias_variable([NDIM_CONT], name='yc_bias')
                yd_weight = weight_variable_xavier([256, NDIM_DISC],
                                                   256,
                                                   NDIM_DISC,
                                                   name='yd_weight')
                yd_bias = bias_variable([NDIM_DISC], name='yd_bias')
            else:
                yc_weight = weight_variable([256, NDIM_CONT], name='yc_weight')
                yc_bias = bias_variable([NDIM_CONT], name='yc_bias')
                yd_weight = weight_variable([256, NDIM_DISC], name='yd_weight')
                yd_bias = bias_variable([NDIM_DISC], name='yd_bias')

        # Model
        yc = tf.add(tf.matmul(pj_dropout, yc_weight), yc_bias, name='yc')
        yd = tf.add(tf.matmul(pj_dropout, yd_weight), yd_bias, name='yd')
        #         yc = tf.sigmoid(tf.add(tf.matmul(pj_dropout, yc_weight), yc_bias), name='yc')
        #         yd = tf.sigmoid(tf.add(tf.matmul(pj_dropout, yd_weight), yd_bias), name='yd')

        return yc, yd
Exemplo n.º 38
0
    def send_instructions(self, data):
        """Sends instructions to the LEDs server to display the current
        configuration

        params:
            data is a dict {fading: bool, colors: {}}, cf get_diff
        """
        if len(data["colors"]) == 0:
            return

        sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

        try:
            sock.connect(self.server_address)
            data = json.dumps(data) + "\n"
            sock.sendall(data)
            received = sock.recv(1024)
            try:
                if int(received) != len(data.strip()):
                    tools.error("Error while sending instructions for LEDs")
            except:
                tools.error("Error while sending instructions for LEDs")
        finally:
            sock.close()
Exemplo n.º 39
0
def stdextr(data, x1, x2, variance=None, mask=None, interp=False):
  """
  Standard box extraction of spectrum.  Step 4 of Horne (1989).

  Parameters:
  -----------
    data:  2D float ndarray
        Sky-subtracted spectrum image of shape [nwavelength, nposition].
    x1:  Integer
        Left X boundary of region to extract the spectrum.
    x2:  Integer
        Right X boundary of region to extract the spectrum.
        Note that:  0 <= x1 <= x2 <= nx
    variance:  2D float ndarray
        Variance image from processed image.
    mask:  2D integer ndarray
        Mask of the data image (1 = good pixel, 0 = bad pixel).
    interp:  Bool
        If True, lineraly interpolate the data for bad pixels.

  Returns:
  --------
    stdspec:  1D float ndarray
        The extracted spectrum.
    stdvar:  1D float ndarray
        Variance of extracted spectrum.

  Example:
  --------
    >>> import sys
    >>> import astropy.io.fits as fits
    >>> import matplotlib.pyplot as plt
    
    >>> sys.path.append("./src/")
    >>> import stdextr as se
    
    >>> data = fits.getdata("./images/ex1.fits")
    >>> spec, sstd = se.stdextr(data, 230, 270)
    
    >>> plt.plot(spec)
  """

  # Check inputs:
  nwave, nx = np.shape(data)

  if variance is None:
    variance = np.ones((nwave, nx), np.double)
  if mask is None:
    mask = np.ones((nwave, nx), np.byte)

  if x1 < 0 or x2 <= x1 or nx < x2:
    tools.error("Invalid x1, x2 boundaries (={:d}, {:d}), the values must "
                "satisfy:\n   0 <= x1 < x2 <= nx (={:d}).".format(x1, x2, nx))
  if np.shape(variance) != (nwave, nx):
    tools.error("Incompatible shapes between data image ({:d}, {:d}) and "
          "variance image ({:d}, {:d}).".format(nwave, nx, *np.shape(variance)))
  if np.shape(mask) != (nwave, nx):
    tools.error("Incompatible shapes between data image ({:d}, {:d}) and "
                "mask image ({:d}, {:d}).".format(nwave, nx, *np.shape(mask)))

  # Interpolate over bad pixels:
  if interp:
    stdspec = np.zeros(nwave)
    for i in np.arange(nwave):
      bad  = np.where(mask[i, x1:x2] == 0)
      good = np.where(mask[i, x1:x2] == 1)
      datav = np.copy(data[i, x1:x2])
      if len(bad) != 0:
        interpol = si.interp1d(datav[good], good[0], kind="linear")
        datav[bad] = interpol(bad[0])
      stdspec[i] = np.sum(datav)
    return stdspec, np.zeros(nwave)

  # Standard extraction:
  stdspec = np.sum((data     * mask)[:, x1:x2], axis=1)
  stdvar  = np.sum((variance * mask)[:, x1:x2], axis=1)

  return stdspec, stdvar
Exemplo n.º 40
0
 def error(self, text):
     error(text)
     self.errors += 1
Exemplo n.º 41
0
        else:
            print('Game over')
            self.game_over_animation()
        self.save_score()
        return self.score

    def close(self):
        """Handle the cleaning, if necessary"""
        if hasattr(self.game_controller, 'close'):
            self.game_controller.close()

    def __exit__(self, type, value, traceback):
        self.close()


if __name__ == "__main__":
    if len(sys.argv) < 2:
        tools.error("Usage: "+sys.argv[0]+" SERVER_IP")
        sys.exit(1)
    HOST = sys.argv[1]
    PORT = 4242

    try:
        while True:
            print("Let's go !")
            with Game((HOST, PORT), ctrl.Controller) as game:
                print("Score " + str(game.loop()))
    except KeyboardInterrupt:
        print("\nExit…")
        sys.exit()
Exemplo n.º 42
0
def status(ctx):
    '''Display some informations and statistics'''
    title('Current status')

    section('Settings')
    click.echo('GEOZONES_HOME: {0}'.format(ctx.obj['home']))
    section('Levels')
    for level in ctx.obj['levels']:
        click.echo('{id}: {label}'.format(**level.__dict__))

    section('downloads')
    urls = (level.urls for level in ctx.obj['levels'] if level.urls)
    urls = set([url for lst in urls for url in lst])
    for url in urls:
        filename = basename(url).strip()
        click.echo('{0} ... '.format(filename), nl=False)
        if os.path.exists(os.path.join(DL_DIR, filename)):
            success('present')
        else:
            error('absent')

    section('coverage')
    zones = DB()
    total = 0
    properties = ('population', 'area', 'wikipedia')
    totals = dict((prop, 0) for prop in properties)

    def countprop(name):
        results = zones.aggregate([
            {'$match': {
                name: {'$exists': True},
                'level': {'$in': [l.id for l in ctx.obj['levels']]}
            }},
            {'$group': {'_id': '$level', 'value': {'$sum': 1}}}
        ])
        return dict((r['_id'], r['value']) for r in results)

    def display_prop(name, count, total):
        click.echo('\t{0}: '.format(name), nl=False)
        if count == 0:
            func = error
        elif count == total:
            func = success
        else:
            func = warning
        func('{0}/{1}'.format(count, total))

    counts = dict((p, countprop(p)) for p in properties)
    for level in ctx.obj['levels']:
        count = zones.count({'level': level.id})
        total += count
        click.echo('{0}: {1}'.format(level.id, count))

        for prop in properties:
            prop_count = counts[prop].get(level.id, 0)
            totals[prop] += prop_count
            display_prop(prop, prop_count, count)
    click.secho('TOTAL: {0}'.format(total), bold=True)
    for prop in properties:
        prop_total = totals[prop]
        display_prop(prop, prop_total, total)
Exemplo n.º 43
0
def fit(xvals, data, variance, spec, deg=2):
  """
  Fit data/spectrum using the variances as weights, using a polynomial
  function.

  Parameters:
  -----------
     xvals:  1D float ndarray
         X values for data.
     data:  1D float ndarray
         The data vector to fit.
     variance:  1D float ndarray
         The variance vector.
     spec:  1D float ndarray
         The spectrum vector.
     deg:  Integer
         Degree of the polynomial.

  Returns:
  --------
     est: 1D float ndarray
         The estimated spectrum.
     coeff: 1D float ndarray
         The polynomial coefficients (from highest to lowest power).

  Example:
  --------
     >>> nx = 100
     >>> xvals = np.arange(nx, dtype=np.double)
     >>> prof = ((-(xvals/nx*2 - 1)**2 + 1)*0.75)/nx*2
     >>> sbump = 10
     >>> spec = np.sin(xvals/nx * np.pi * 6) + sbump
     >>> gain = 10
     >>> basey = profv*specv
     >>> data = basey + basey * np.random.normal(0.0, 1.0, nx)/gain
     >>> variance = basey/gain
     >>> badloc = np.random.randint(0, 50, 4)
     >>> data[badloc] = np.random.uniform(0, 2*np.amax(data), 4)
     >>> prof[badloc] = 0
     >>> deg = 2
     >>> est, coeffv = pf.fit(xvals, data, variance, spec, deg)

     >>> plt.figure(1)
     >>> plt.clf()
     >>> plt.plot(data/spec, 'or')
     >>> plt.plot(xvals, est, 'b')

     >>> est = pf.evaluate(xvals, coeffv, data, variance, spec)
     >>> plot(xvals, est, 'ob')
  """
  # Check inputs:
  nd = np.size(data)
  nv = np.size(variance)
  ns = np.size(spec)
  nx = np.size(xvals)

  if nx != nd or nx != nv or nx != ns:
    tools.error("The length of data ({:d}), variance ({:d}), spec ({:d}), "
                "and/or xvals ({:d}) are incompatible.".format(nd, nv, ns, nx))
  if deg < 0 or nx <= deg:
    tools.error("Invalid polynomial degree ({:d}), must be: 0 < deg < nx-1 "
                "= {:d}.".format(deg, nx-1))

  # Initial estimate:
  est = data / spec

  # Find where the variance has non-zero values:
  nzerov = (variance != 0.0)

  # Fit polynomial where variance != 0:
  merrors = variance/spec**2
  # Use all pixels for estimation
  merrors = np.clip(merrors, 1e-8, np.amax(merrors))
  coeff = np.polyfit(xvals, data/spec, deg, w=merrors)
  est[nzerov] = np.polyval(coeff, xvals[nzerov])

  return est, coeff
Exemplo n.º 44
0
def run(env, start_response):
    """Main."""
    if 'PATH_INFO' not in env:
        env['PATH_INFO'] = '/'
    path = filter(None, os.path.normpath(env['PATH_INFO']).split('/'))

    if env['REQUEST_METHOD'] == 'GET':
        if len(path) == 0:
            path.append('_')
        
        dataset, path = path[0], path[1:]

        try:
            dataset = int(dataset)
            if not tools.exists(dataset):
                raise ValueError
        except ValueError:
            ret = tools.error(404, "Invalid dataset ID.")
        else:
            if len(path) == 0:
                path.append('json')
            handler, command = path[0], path[1:]
            if handler not in tools.get_handlers:
                ret = tools.error(501, "Didn't understand (sorry).")
            else:
                ret = tools.get_handlers[handler](dataset, command)

    elif env['REQUEST_METHOD'] == 'POST' or env['REQUEST_METHOD'] == 'PUT':
        if len(path) == 0:
            # Create new dataset
            ret = tools.post_handlers['create'](env)
        elif len(path) == 1 and path[0] == 'load':
            # Load from RDF
            ret = tools.post_handlers['load'](env)
        elif len(path) == 1:
            # Update existing dataset
            try:
                dataset = int(path[0])
                if not tools.exists(dataset):
                    raise ValueError
            except ValueError:
                ret = tools.error(404, "Invalid dataset ID.")
            else:
                ret = tools.post_handlers['update'](dataset, env)
        else:
            # Handlers
            dataset, handler, command = path[0], path[1], path[2:]
            try:
                dataset = int(path[0])
                if not tools.exists(dataset):
                    raise ValueError
            except ValueError:
                ret = tools.error(404, "Invalid dataset ID.")
            else:
                if handler in tools.post_handlers:
                    ret = tools.post_handlers[handler](dataset, env, command)
                else:
                    ret = tools.error(400, "Bad request.")

    else:
        # Unsupported action
        ret = tools.error(501, "Didn't understand (sorry).")

    status, headers, content = ret
    start_response(status, headers)
    return content