Exemplo n.º 1
0
    def run(self):
        self.isRunning = True

        self.camera.stream_on()
        #print(f'camera: {self.camera}')

        while self.isRunning:
            if self.exposure_changed == True:
                self.camera.ExposureTime.set(self.exposure)
                self.exposure_changed = False


            img = self.camera.data_stream[0].get_image()
            if img == None:
                continue

            self.lastFrame = img.get_numpy_array()

            self.frame_signal.emit(self.lastFrame)

            if self.isProfile or self.isCalcParams:
                proc = self.lastFrame[self.img_ranges[2]:self.img_ranges[3],\
                                      self.img_ranges[0]:self.img_ranges[1]]

                x, y = np.sum(proc, axis=0), np.sum(proc, axis=1)
                if self.isProfile:
                    self.distrs_signal.emit(x, y)

                if self.isCalcParams:
                    optx = fit(x)
                    opty = fit(y)
                    
                    self.params_signal.emit(x, y, optx, opty)

                    if self.drv is not None:
                        self.drv.update(self.pvs['pos_x'], 10*self.calibr[0]*optx[1])
                        self.drv.update(self.pvs['pos_y'], 10*self.calibr[1]*opty[1])

        self.camera.stream_off()
Exemplo n.º 2
0
def get_detector_image_generator(labels,
                                 width,
                                 height,
                                 augmenter=None,
                                 area_threshold=0.5):
    """Generated augmented (image, lines) tuples from a list
    of (filepath, lines, confidence) tuples. Confidence is
    not used right now but is included for a future release
    that uses semi-supervised data.

    Args:
        labels: A list of (image, lines, confience) tuples.
        augmenter: An augmenter to apply to the images.
        width: The width to use for output images
        height: The height to use for output images
        area_threshold: The area threshold to use to keep
            characters in augmented images.
    """
    labels = labels.copy()
    for index in itertools.cycle(range(len(labels))):
        if index == 0:
            random.shuffle(labels)
        image_filepath, lines = labels[index]
        image = tools.read(image_filepath)
        if augmenter is not None:
            image, lines = tools.augment(boxes=lines,
                                         boxes_format='lines',
                                         image=image,
                                         area_threshold=area_threshold,
                                         augmenter=augmenter)
        image, scale = tools.fit(image,
                                 width=width,
                                 height=height,
                                 mode='letterbox',
                                 return_scale=True)
        lines = tools.adjust_boxes(boxes=lines,
                                   boxes_format='lines',
                                   scale=scale)

        bboxes = [line[0] for line in lines]
        words = [line[1] for line in lines]
        words = ''.join(words)

        yield image[np.newaxis, ...], np.array(bboxes)[np.newaxis, ...],\
              np.array(words)[np.newaxis, ... ], np.ones((image.shape[0], image.shape[1]), np.float32)[np.newaxis, ...],\
              np.ones(len(words), np.float32)[np.newaxis, ...]
Exemplo n.º 3
0
def estimate_matrix(logits_matrix, model_save_dir):
    transition_matrix_group = np.empty(
        (args.basis, args.num_classes, args.num_classes))
    idx_matrix_group = np.empty((args.num_classes, args.basis))
    a = np.linspace(97, 99, args.basis)
    a = list(a)
    for i in range(len(a)):
        percentage = a[i]
        index = int(i)
        logits_matrix_ = copy.deepcopy(logits_matrix)
        transition_matrix, idx = tools.fit(logits_matrix_, args.num_classes,
                                           percentage, True)
        transition_matrix = norm(transition_matrix)
        idx_matrix_group[:, index] = np.array(idx)
        transition_matrix_group[index] = transition_matrix
    idx_group_save_dir = model_save_dir + '/' + 'idx_group.npy'
    group_save_dir = model_save_dir + '/' + 'T_group.npy'
    np.save(idx_group_save_dir, idx_matrix_group)
    np.save(group_save_dir, transition_matrix_group)
    return idx_matrix_group, transition_matrix_group
Exemplo n.º 4
0
            out = F.softmax(out, dim=1)
            out = out.cpu()
            if index <= index_num:
                A[epoch][index * args.batch_size:(index + 1) *
                         args.batch_size, :] = out
            else:
                A[epoch][index_num * args.batch_size, len(train_data), :] = out

val_acc_array = np.array(val_acc_list)
model_index = np.argmax(val_acc_array)

A_save_dir = prob_save_dir + '/' + 'prob.npy'
np.save(A_save_dir, A)
prob_ = np.load(A_save_dir)

transition_matrix_ = tools.fit(prob_[model_index, :, :], args.num_classes,
                               estimate_state)
transition_matrix = tools.norm(transition_matrix_)

matrix_path = matrix_save_dir + '/' + 'transition_matrix.npy'
np.save(matrix_path, transition_matrix)
T = torch.from_numpy(transition_matrix).float().cuda()

# initial parameters

estimate_model_path = model_save_dir + '/' + 'epoch_%s.pth' % (model_index + 1)
estimate_model_path = torch.load(estimate_model_path)
model.load_state_dict(estimate_model_path)

print('Estimate finish.....Training......')

for epoch in range(args.n_epoch):
Exemplo n.º 5
0
def get_detector_image_generator(labels,
                                 width,
                                 height,
                                 augmenter=None,
                                 area_threshold=0.5,
                                 focused=False,
                                 min_area=None):
    """Generated augmented (image, lines) tuples from a list
    of (filepath, lines, confidence) tuples. Confidence is
    not used right now but is included for a future release
    that uses semi-supervised data.

    Args:
        labels: A list of (image, lines, confience) tuples.
        augmenter: An augmenter to apply to the images.
        width: The width to use for output images
        height: The height to use for output images
        area_threshold: The area threshold to use to keep
            characters in augmented images.
        min_area: The minimum area for a character to be
            included.
        focused: Whether to pre-crop images to width/height containing
            a region containing text.
    """
    labels = labels.copy()
    for index in itertools.cycle(range(len(labels))):
        if index == 0:
            random.shuffle(labels)
        image_filepath, lines, confidence = labels[index]
        # print(image_filepath)
        image = tools.read(image_filepath)
        if augmenter is not None:
            image, lines = tools.augment(boxes=lines,
                                         boxes_format='lines',
                                         image=image,
                                         area_threshold=area_threshold,
                                         min_area=min_area,
                                         augmenter=augmenter)
        if focused:
            boxes = [tools.combine_line(line)[0] for line in lines]
            if boxes:
                selected = np.array(boxes[np.random.choice(len(boxes))])
                left, top = selected.min(axis=0).clip(0, np.inf).astype('int')
                if left > 0:
                    left -= np.random.randint(0, min(left, width / 2))
                if top > 0:
                    top -= np.random.randint(0, min(top, height / 2))
                image, lines = tools.augment(
                    boxes=lines,
                    augmenter=imgaug.augmenters.Sequential([
                        imgaug.augmenters.Crop(px=(int(top), 0, 0, int(left))),
                        imgaug.augmenters.CropToFixedSize(width=width,
                                                          height=height,
                                                          position='right-bottom')
                    ]),
                    boxes_format='lines',
                    image=image,
                    min_area=min_area,
                    area_threshold=area_threshold)
        image, scale = tools.fit(image,
                                 width=width,
                                 height=height,
                                 mode='letterbox',
                                 return_scale=True)
        lines = tools.adjust_boxes(boxes=lines, boxes_format='lines', scale=scale)
        yield image, lines, confidence
Exemplo n.º 6
0
def real_data_generator(labels,
                        width,
                        height,
                        augmenter=None,
                        area_threshold=0.5,
                        ):
    labels = labels.copy()

    for index in itertools.cycle(range(len(labels))):
        image_filepath, lines = labels[index]
        image = tools.read(image_filepath)

        if augmenter is not None:
            image, lines = tools.augment(boxes=lines,
                                         boxes_format='lines',
                                         image=image,
                                         area_threshold=area_threshold,

                                         augmenter=augmenter)

        image, scale = tools.fit(image,
                                width=width,
                                 height=height,
                                 mode='letterbox',
                                 return_scale=True)

        lines = tools.adjust_boxes(boxes=lines, boxes_format='lines', scale=scale)
        confidence_mask = np.zeros((image.shape[0], image.shape[1]), np.float32)

        confidences = []
        # character_bboxes = np.array([]).reshape(0, 4, 2)
        # new_words = []
        lines_label = []

        detector = Detector()
        if len(lines)==1:
            lines = lines[0]
        for i, line in enumerate(lines):
            word_label = []
            word_bbox, word = line[0], line[1]
            word = word.replace(',', '')
            word_bbox = np.float32(word_bbox)
            if len(word_bbox) > 0:
                for _ in range(len(word_bbox)):
                    if word == '###' or len(word.strip()) == 0:

                        cv2.fillPoly(confidence_mask, [np.int32(word_bbox)], (0))
            pursedo_bboxes, bbox_region_scores, confidence = inference_character_box(detector,
                                                                                     image,
                                                                                     word,
                                                                                     word_bbox)
            confidences.append(confidence)
            cv2.fillPoly(confidence_mask, [np.int32(word_bbox)], (confidence))
            for j in range(len(pursedo_bboxes)):
                if j>len(word)-1:
                    continue
                word_label.append((pursedo_bboxes[j], word[j]))
            lines_label.append(word_label)
            # new_words.append(word)
            # character_bboxes = np.concatenate((character_bboxes, pursedo_bboxes), 0)
            # character_bboxes.append(pursedo_bboxes)

        yield image, lines_label, 1
Exemplo n.º 7
0
    def __init__(self,obj,domain=None,N=None,rtol=None):
        """ Initilize the cheb

                obj can be one of
                    * a python callable
                    * a numpy ufunc
                    * a string (using the numpy namespace)
                    * a ndarray to use as the cheb coeffs
                    * an existing tools.ChebyshevPolynomial poly object

                domain is a tuple (low,high) of the bounds of the function

                if N is specified, use that number of points

                rtol is the relative tolerance in the coefficients,
                should be approximately the accuracy of the resulting cheb
        """
        self.mapper = lambda x: x
        self.imapper = lambda x: x
        self.domain = (-1,1)

        if domain is not None:
            #if we were passed a domain
            a,b = domain
            self.domain = (a,b)
            #mapper maps from (a,b) to (-1,1)
            self.mapper = tools.gen_mapper(a,b)
            #imapper maps from (-1,1) to (a,b)
            self.imapper = tools.gen_imapper(a,b)

        #by default use numpy float tolerance
        self.rtol = rtol or DEFAULT_TOL

        self._constructed = False

        #Here I have a somewhat inelegant casing out
        #    to allow initilization overloading
        if isinstance(obj, self.__class__):
            #if we have a chebfun, just copy it
            self._from_cheb(other_cheb=obj)
        elif isinstance(obj,tools.ChebyshevPolynomial):
            #we have a chebyshev poly
            self._from_poly(poly=obj)
        elif isinstance(obj,np.ndarray):
            #use the ndarray as our coefficients
            self._from_array(array=obj)
        elif isinstance(obj,str):
            #we have a string, eval it in the numpy namespace
            self._from_string(string=obj)
        elif isinstance(obj,(np.ufunc,np.vectorize)):
            # we're good to go
            self._from_ufunc(ufunc=obj)
        elif callable(obj):
            #try to vectorize a general callable
            self._from_func(func=obj)
        else:
            raise TypeError, "I don't understand your func: {}".format(obj)

        if N is not None:
            #if the user passed in an N, assume that's what he wants
            #we need the function on the interval (-1,1)
            func = lambda x: self.func(self.imapper(x))
            coeffs = tools.fit(func, N)
            self.poly = tools.ChebyshevPolynomial(coeffs,self.domain)
            self._constructed = True
Exemplo n.º 8
0
def main():

    print('Estimate transition matirx......Waiting......')

    for epoch in range(args.n_epoch_estimate):

        print('epoch {}'.format(epoch + 1))
        model.train()
        train_loss = 0.
        train_acc = 0.
        val_loss = 0.
        val_acc = 0.

        for batch_x, batch_y in train_loader:
            batch_x = batch_x.cuda()
            batch_y = batch_y.cuda()
            optimizer_es.zero_grad()
            out = model(batch_x, revision=False)
            loss = loss_func_ce(out, batch_y)
            train_loss += loss.item()
            pred = torch.max(out, 1)[1]
            train_correct = (pred == batch_y).sum()
            train_acc += train_correct.item()
            loss.backward()
            optimizer_es.step()

        torch.save(model.state_dict(),
                   model_save_dir + '/' + 'epoch_%d.pth' % (epoch + 1))
        print('Train Loss: {:.6f}, Acc: {:.6f}'.format(
            train_loss / (len(train_data)) * args.batch_size,
            train_acc / (len(train_data))))

        with torch.no_grad():
            model.eval()
            for batch_x, batch_y in val_loader:
                batch_x = batch_x.cuda()
                batch_y = batch_y.cuda()
                out = model(batch_x, revision=False)
                loss = loss_func_ce(out, batch_y)
                val_loss += loss.item()
                pred = torch.max(out, 1)[1]
                val_correct = (pred == batch_y).sum()
                val_acc += val_correct.item()

        print('Val Loss: {:.6f}, Acc: {:.6f}'.format(
            val_loss / (len(val_data)) * args.batch_size,
            val_acc / (len(val_data))))
        val_acc_list.append(val_acc / (len(val_data)))

        with torch.no_grad():
            model.eval()
            for index, (batch_x, batch_y) in enumerate(estimate_loader):
                batch_x = batch_x.cuda()
                out = model(batch_x, revision=False)
                out = F.softmax(out, dim=1)
                out = out.cpu()
                if index <= index_num:
                    A[epoch][index * args.batch_size:(index + 1) *
                             args.batch_size, :] = out
                else:
                    A[epoch][index_num * args.batch_size,
                             len(train_data), :] = out

    val_acc_array = np.array(val_acc_list)
    model_index = np.argmax(val_acc_array)

    A_save_dir = prob_save_dir + '/' + 'prob.npy'
    np.save(A_save_dir, A)
    prob_ = np.load(A_save_dir)

    transition_matrix_ = tools.fit(prob_[model_index, :, :], args.num_classes,
                                   estimate_state)
    transition_matrix = tools.norm(transition_matrix_)

    matrix_path = matrix_save_dir + '/' + 'transition_matrix.npy'
    np.save(matrix_path, transition_matrix)
    T = torch.from_numpy(transition_matrix).float().cuda()

    True_T = tools.transition_matrix_generate(noise_rate=args.noise_rate,
                                              num_classes=args.num_classes)
    estimate_error = tools.error(T.cpu().numpy(), True_T)
    print('The estimation error is %s' % (estimate_error))
    # initial parameters

    estimate_model_path = model_save_dir + '/' + 'epoch_%s.pth' % (
        model_index + 1)
    estimate_model_path = torch.load(estimate_model_path)
    model.load_state_dict(estimate_model_path)

    print('Estimate finish.....Training......')
    val_acc_list_r = []

    for epoch in range(args.n_epoch):
        print('epoch {}'.format(epoch + 1))
        # training-----------------------------
        train_loss = 0.
        train_acc = 0.
        val_loss = 0.
        val_acc = 0.
        eval_loss = 0.
        eval_acc = 0.
        scheduler.step()
        model.train()
        for batch_x, batch_y in train_loader:
            batch_x = batch_x.cuda()
            batch_y = batch_y.cuda()
            optimizer.zero_grad()
            out = model(batch_x, revision=False)
            prob = F.softmax(out, dim=1)
            prob = prob.t()
            loss = loss_func_reweight(out, T, batch_y)
            out_forward = torch.matmul(T.t(), prob)
            out_forward = out_forward.t()
            train_loss += loss.item()
            pred = torch.max(out_forward, 1)[1]
            train_correct = (pred == batch_y).sum()
            train_acc += train_correct.item()
            loss.backward()
            optimizer.step()
        with torch.no_grad():
            model.eval()
            for batch_x, batch_y in val_loader:
                model.eval()
                batch_x = batch_x.cuda()
                batch_y = batch_y.cuda()
                out = model(batch_x, revision=False)
                prob = F.softmax(out, dim=1)
                prob = prob.t()
                loss = loss_func_reweight(out, T, batch_y)
                out_forward = torch.matmul(T.t(), prob)
                out_forward = out_forward.t()
                val_loss += loss.item()
                pred = torch.max(out_forward, 1)[1]
                val_correct = (pred == batch_y).sum()
                val_acc += val_correct.item()

        torch.save(model.state_dict(),
                   model_save_dir + '/' + 'epoch_r%d.pth' % (epoch + 1))
        print('Train Loss: {:.6f}, Acc: {:.6f}'.format(
            train_loss / (len(train_data)) * args.batch_size,
            train_acc / (len(train_data))))
        print('Val Loss: {:.6f}, Acc: {:.6f}'.format(
            val_loss / (len(val_data)) * args.batch_size,
            val_acc / (len(val_data))))
        val_acc_list_r.append(val_acc / (len(val_data)))

        with torch.no_grad():
            model.eval()
            for batch_x, batch_y in test_loader:
                batch_x = batch_x.cuda()
                batch_y = batch_y.cuda()
                out = model(batch_x, revision=False)
                loss = loss_func_ce(out, batch_y)
                eval_loss += loss.item()
                pred = torch.max(out, 1)[1]
                eval_correct = (pred == batch_y).sum()
                eval_acc += eval_correct.item()

            print('Test Loss: {:.6f}, Acc: {:.6f}'.format(
                eval_loss / (len(test_data)) * args.batch_size,
                eval_acc / (len(test_data))))

    val_acc_array_r = np.array(val_acc_list_r)
    reweight_model_index = np.argmax(val_acc_array_r)

    reweight_model_path = model_save_dir + '/' + 'epoch_r%s.pth' % (
        reweight_model_index + 1)
    reweight_model_path = torch.load(reweight_model_path)
    model.load_state_dict(reweight_model_path)
    nn.init.constant_(model.T_revision.weight, 0.0)

    print('Revision......')

    for epoch in range(args.n_epoch_revision):

        print('epoch {}'.format(epoch + 1))
        # training-----------------------------
        train_loss = 0.
        train_acc = 0.
        val_loss = 0.
        val_acc = 0.
        eval_loss = 0.
        eval_acc = 0.
        model.train()
        for batch_x, batch_y in train_loader:
            batch_x = batch_x.cuda()
            batch_y = batch_y.cuda()
            optimizer_revision.zero_grad()
            out, correction = model(batch_x, revision=True)
            prob = F.softmax(out, dim=1)
            prob = prob.t()
            loss = loss_func_revision(out, T, correction, batch_y)
            out_forward = torch.matmul((T + correction).t(), prob)
            out_forward = out_forward.t()
            train_loss += loss.item()
            pred = torch.max(out_forward, 1)[1]
            train_correct = (pred == batch_y).sum()
            train_acc += train_correct.item()
            loss.backward()
            optimizer_revision.step()

        with torch.no_grad():
            model.eval()
            for batch_x, batch_y in val_loader:
                batch_x = batch_x.cuda()
                batch_y = batch_y.cuda()
                out, correction = model(batch_x, revision=True)
                prob = F.softmax(out, dim=1)
                prob = prob.t()
                loss = loss_func_revision(out, T, correction, batch_y)
                out_forward = torch.matmul((T + correction).t(), prob)
                out_forward = out_forward.t()
                val_loss += loss.item()
                pred = torch.max(out_forward, 1)[1]
                val_correct = (pred == batch_y).sum()
                val_acc += val_correct.item()

        estimate_error = tools.error(True_T,
                                     (T + correction).cpu().detach().numpy())
        print('Estimate error: {:.6f}'.format(estimate_error))
        print('Train Loss: {:.6f}, Acc: {:.6f}'.format(
            train_loss / (len(train_data)) * args.batch_size,
            train_acc / (len(train_data))))
        print('Val Loss: {:.6f}, Acc: {:.6f}'.format(
            val_loss / (len(val_data)) * args.batch_size,
            val_acc / (len(val_data))))

        with torch.no_grad():
            for batch_x, batch_y in test_loader:
                batch_x = batch_x.cuda()
                batch_y = batch_y.cuda()
                out, _ = model(batch_x, revision=True)
                loss = loss_func_ce(out, batch_y)
                eval_loss += loss.item()
                pred = torch.max(out, 1)[1]
                eval_correct = (pred == batch_y).sum()
                eval_acc += eval_correct.item()

            print('Test Loss: {:.6f}, Acc: {:.6f}'.format(
                eval_loss / (len(test_data)) * args.batch_size,
                eval_acc / (len(test_data))))