Exemplo n.º 1
0
def renumber_clusters(clusters, cluster_info):
    clusters_unique = get_array(get_indices(cluster_info))
    nclusters = len(clusters_unique)
    assert np.array_equal(clusters_unique, np.unique(clusters))
    clusters_array = get_array(clusters)
    groups = get_array(cluster_info['group'])
    colors = get_array(cluster_info['color'])
    groups_unique = np.unique(groups)
    # Reorder clusters according to the group.
    clusters_unique_reordered = np.hstack(
        [sorted(clusters_unique[groups == group]) for group in groups_unique])
    # WARNING: there's a +2 offset to avoid conflicts with the old convention
    # cluster 0 = noise, cluster 1 = MUA.
    clusters_renumbered = reorder(clusters_array,
                                  clusters_unique_reordered) + 2
    cluster_permutation = reorder(clusters_unique_reordered, clusters_unique)
    # Reorder cluster info.
    groups_reordered = groups[cluster_permutation]
    colors_reordered = colors[cluster_permutation]
    # Recreate new cluster info.
    cluster_info_reordered = pd.DataFrame(
        {
            'color': colors_reordered,
            'group': groups_reordered
        },
        dtype=np.int32,
        index=(np.arange(nclusters) + 2))
    return clusters_renumbered, cluster_info_reordered
Exemplo n.º 2
0
 def get_channel_colors(self, channels=None, can_override=True):
     if channels is None:
         channels = self.channels_selected
     if can_override and self.override_color:
         channel_group_colors = get_array(self.get_channel_group_colors("all"))
         channel_groups = get_array(self.get_channel_groups("all"))
         colors = pd.Series(channel_group_colors[channel_groups], index=self.channels)
     else:
         colors = self.channel_colors
     return select(colors, channels)
Exemplo n.º 3
0
 def get_cluster_colors(self, clusters=None, can_override=True):
     if clusters is None:
         clusters = self.clusters_selected
     if can_override and self.override_color:
         group_colors = get_array(self.get_group_colors("all"))
         groups = get_array(self.get_cluster_groups("all"))
         colors = pd.Series(group_colors[groups], index=self.get_clusters_unique())
     else:
         colors = pd.Series([self.get_cluster_color(c) for c in clusters], index=clusters)
     return select(colors, clusters)
Exemplo n.º 4
0
 def get_next_cluster(self, cluster):
     cluster_groups = self.get_cluster_groups("all")
     group = get_array(self.get_cluster_groups(cluster))
     clusters = get_indices(cluster_groups)
     cluster_groups = get_array(cluster_groups)
     samegroup = (cluster_groups == group) & (clusters > cluster)
     i = np.nonzero(samegroup)[0]
     if len(i) > 0:
         return clusters[i[0]]
     else:
         return cluster
 def get_next_cluster(self, cluster):
     cluster_groups = self.get_cluster_groups('all')
     group = get_array(self.get_cluster_groups(cluster))
     clusters = get_indices(cluster_groups)
     cluster_groups = get_array(cluster_groups)
     samegroup = (cluster_groups == group) & (clusters > cluster)
     i = np.nonzero(samegroup)[0]
     if len(i) > 0:
         return clusters[i[0]]
     else:
         return cluster
 def get_cluster_colors(self, clusters=None, can_override=True,
         ):
     if clusters is None:
         clusters = self.clusters_selected
     if can_override and self.override_color:
         group_colors = get_array(self.get_group_colors('all'))
         groups = get_array(self.get_cluster_groups('all'))
         colors = pd.Series(group_colors[groups], 
             index=self.get_clusters_unique())
     else:
         colors = self.cluster_colors
     return select(colors, clusters)
 def get_channel_colors(self, channels=None, can_override=True,
         ):
     if channels is None:
         channels = self.channels_selected
     if can_override and self.override_color:
         channel_group_colors = get_array(self.get_channel_group_colors('all'))
         channel_groups = get_array(self.get_channel_groups('all'))
         colors = pd.Series(channel_group_colors[channel_groups], 
             index=self.channels)
     else:
         colors = self.channel_colors
     return select(colors, channels)
Exemplo n.º 8
0
 def _update_data(self,):
     """Update internal variables."""
     clusters_array = get_array(self.clusters)
     self.clusters_unique = np.unique(clusters_array)
     self.nclusters = len(self.clusters_unique)
     bincount = np.bincount(clusters_array)
     self.counter = {key: bincount[key] for key in np.nonzero(bincount)[0]}
 def _update_data(self,):
     """Update internal variables."""
     clusters_array = get_array(self.clusters)
     self.clusters_unique = np.unique(clusters_array)
     self.nclusters = len(self.clusters_unique)
     bincount = np.bincount(clusters_array)
     self.counter = {key: bincount[key] for key in np.nonzero(bincount)[0]}
Exemplo n.º 10
0
 def save(self, renumber=False):
     self.update_cluster_info()
     self.update_group_info()
     
     if renumber:
         self.renumber()
         clusters = get_array(self.clusters_renumbered)
         cluster_info = self.cluster_info_renumbered
     else:
         clusters = get_array(self.clusters)
         cluster_info = self.cluster_info
     
     # Save both ACLU and CLU files.
     save_clusters(self.filename_aclu, clusters)
     save_clusters(self.filename_clu, 
         convert_to_clu(clusters, cluster_info['group']))
     
     # Save CLUINFO and GROUPINFO files.
     save_cluster_info(self.filename_acluinfo, cluster_info)
     save_group_info(self.filename_groupinfo, self.group_info)
 def save(self, renumber=False):
     self.update_cluster_info()
     self.update_group_info()
     
     if renumber:
         self.renumber()
         clusters = get_array(self.clusters_renumbered)
         cluster_info = self.cluster_info_renumbered
     else:
         clusters = get_array(self.clusters)
         cluster_info = self.cluster_info
     
     # Save both ACLU and CLU files.
     save_clusters(self.filename_aclu, clusters)
     save_clusters(self.filename_clu, 
         convert_to_clu(clusters, cluster_info['group']))
     
     # Save CLUINFO and GROUPINFO files.
     save_cluster_info(self.filename_acluinfo, cluster_info)
     save_group_info(self.filename_groupinfo, self.group_info)
Exemplo n.º 12
0
def renumber_clusters(clusters, cluster_info):
    clusters_unique = get_array(get_indices(cluster_info))
    nclusters = len(clusters_unique)
    assert np.array_equal(clusters_unique, np.unique(clusters))
    clusters_array = get_array(clusters)
    groups = get_array(cluster_info["group"])
    colors = get_array(cluster_info["color"])
    groups_unique = np.unique(groups)
    # Reorder clusters according to the group.
    clusters_unique_reordered = np.hstack([sorted(clusters_unique[groups == group]) for group in groups_unique])
    # WARNING: there's a +2 offset to avoid conflicts with the old convention
    # cluster 0 = noise, cluster 1 = MUA.
    clusters_renumbered = reorder(clusters_array, clusters_unique_reordered) + 2
    cluster_permutation = reorder(clusters_unique_reordered, clusters_unique)
    # Reorder cluster info.
    groups_reordered = groups[cluster_permutation]
    colors_reordered = colors[cluster_permutation]
    # Recreate new cluster info.
    cluster_info_reordered = pd.DataFrame(
        {"color": colors_reordered, "group": groups_reordered}, dtype=np.int32, index=(np.arange(nclusters) + 2)
    )
    return clusters_renumbered, cluster_info_reordered
plt.rc("font", family="serif", size=14)
plt.rc("axes", labelsize=32)
plt.rc("xtick", labelsize=20)
plt.rc("ytick", labelsize=20)
plt.rc("legend", fontsize=24)

# Setup
fig = plt.figure(dpi=100, figsize=(6, 6))
ax = fig.add_subplot(111)

# Do stuff
for i in range(len(dags)):
    data = dags[i]
    label_index = 0
    time = get_array(data, "copied voxels")
    num_voxels = get_array(data, "num voxels")

    #label = "(MISSING LABEL)"
    #if -1 != names[i].find("nothread"):
    #    label = "Single-threaded"
    #else:
    #    threadCount = re.search(r"_thread(\d+)", names[i]).group(1)
    #    label = "{} threads".format(threadCount)

    kwargs = {"linestyle": "None", "marker": "o", "markersize": 5}

    ax.set_xlabel("template voxels")
    ax.set_ylabel("changed voxels")

    ax.plot(num_voxels, time, **kwargs)
Exemplo n.º 14
0
import matplotlib.pyplot as plt
import tools
from tools import get_array, dags, names, profiling_prompt

profiling_prompt()

plt.style.use("seaborn")

fig = plt.figure(dpi=100, figsize=(6, 8))
ax = fig.add_subplot(111)

for i in range(len(dags)):
    data = dags[i]
    paths = get_array(data, "paths")
    colors = get_array(data, "colors")

    kwargs = {"marker": "", "markersize": 2}

    ax.set_xlabel("frames")
    ax.set_ylabel("time (ms)")

    #color = "red" if "headless=1" in names[i] else "green"
    #ax.plot(tools.indices, paths, label="paths " + names[i], color=color, **kwargs)
    #ax.plot(tools.indices, colors, label="colors " + names[i], color=color, **kwargs)
    ax.plot(tools.indices, paths, label="paths " + names[i], **kwargs)
    ax.plot(tools.indices, colors, label="colors " + names[i], **kwargs)

#ax.set_aspect( 1.0/ax.get_data_ratio()*4.0/3.0 );

leg = ax.legend()
#leg.set_in_layout(False);
Exemplo n.º 15
0
plt.rc("font", family="serif", size=14)
plt.rc("axes", labelsize=32)
plt.rc("xtick", labelsize=20)
plt.rc("ytick", labelsize=20)
plt.rc("legend", fontsize=24)

# Setup
fig = plt.figure(dpi=100, figsize=(6, 6))
ax = fig.add_subplot(111)

# Do stuff
for i in range(len(dags)):
    data = dags[i]
    label_index = 0
    time = get_array(data, "edits")
    num_voxels = get_array(data, "num voxels")

    label = "(MISSING LABEL)"
    if -1 != names[i].find("normal"):
        label = "Ref."
    elif -1 != names[i].find("compempty"):
        label = "Compr. (NE)"
    elif -1 != names[i].find("decempty"):
        label = "Dec. (NE)"
    elif -1 != names[i].find("comp"):
        label = "Compr. (Full)"

    kwargs = {"linestyle": "None", "marker": "o", "markersize": 5}

    ax.set_xlabel("template voxels")
Exemplo n.º 16
0
import numpy as np
import matplotlib.pyplot as plt
from tools import get_array, dags, names

plots_map = {}
names = ["first pass", "start threads", "waiting", "second pass"]
names = [
    "first pass", "leaf level edits", "high level edits", "bunch color copy",
    "full color copy", "find_node", "add_node", "second pass"
]
# names = ["leaf level edits average", "high level edits average", "bunch color copy average", "find_or_add average"]
# names = ["find_or_add average"]

num_nodes = None
for data in dags:
    new_num_nodes = get_array(data, "num nodes")
    assert num_nodes is None or np.all(
        num_nodes == new_num_nodes), "Edits are different!"
    num_nodes = new_num_nodes

    for name in names:
        if name not in plots_map:
            plots_map[name] = []
        plots_map[name].append(get_array(data, name))

width = 0.3

indices = np.argsort(num_nodes)
plt.xlabel("nodes")
plt.ylabel("time (ms)")
Exemplo n.º 17
0
import matplotlib
import numpy as np
from tools import get_array, dags, page_sizes
import matplotlib.pyplot as plt

edits_time = []
edits_num_nodes = []
for dag in dags:
    edits_time.append(get_array(dag, "edits"))
    edits_num_nodes.append(get_array(dag, "numNodes"))

kwargs = {"linestyle": "None", "marker": "o", "markersize": 5}

plt.xlabel("nodes")
plt.ylabel("time")

cmap = matplotlib.cm.get_cmap('Spectral')

log_page_sizes = np.log2(np.array(page_sizes))
log_page_sizes = (log_page_sizes - np.min(log_page_sizes)) / (
    np.max(log_page_sizes) - np.min(log_page_sizes))
labels = set()
for i in range(len(dags)):
    color = cmap(log_page_sizes[i])
    label = page_sizes[i]
    if label in labels:
        label = ""
    else:
        labels.add(label)
    plt.plot(edits_num_nodes[i],
             edits_time[i],
import numpy as np
import matplotlib.pyplot as plt
from tools import get_array, dags, names

data = dags[0]

find_or_add_index = get_array(data, "find_or_add index")
find_or_add_time = get_array(data, "find_or_add add time")
find_or_add_add = get_array(data, "find_or_add is add")
find_or_add_level = get_array(data, "find_or_add level")

kwargs = {"linestyle": "None", "marker": "o", "markersize": 3}

plt.xlabel("index")
plt.ylabel("time")

indices_add = find_or_add_add == 1
indices_noadd = find_or_add_add == 0

print("Num add: ", np.sum(indices_add))
print("Num no add: ", np.sum(indices_noadd))

plt.title(names[0])

assert np.sum(indices_add) + np.sum(indices_noadd) == len(find_or_add_index)

plot_index = 0
for level in range(32):
    level_indices = level == find_or_add_level
    if np.sum(level_indices) == 0:
        continue
from tools import get_array, dags, results_prompt, defines

results_prompt("page_size_memory_overhead")

for i in range(len(dags)):
    data = dags[i]
    virtual_size = get_array(data, "virtual_size")
    allocated_size = get_array(data, "allocated_size")
    print("page size: {}; used: {}; allocated: {}; wasted: {}".format(
        defines[i]["PAGE_SIZE"], virtual_size[0], allocated_size[0],
        allocated_size[0] - virtual_size[0]))
    "second pass",
    "early exit checks",
    "leaf edit",
    "find or add leaf",
    "interior edit",
    "find or add interior",
    # "start threads",
    # "waiting",
    "entirely full - add colors",
    "skip edit - copy colors"
]

num_nodes = None
total_num_nodes = []
for data in dags:
    new_num_nodes = get_array(data, "num voxels")
    assert num_nodes is None or np.all(
        num_nodes == new_num_nodes), "Edits are different!"
    num_nodes = new_num_nodes

    total_num_nodes += list(num_nodes)

    for name in names:
        if name not in plots_map:
            plots_map[name] = []
        plots_map[name] += list(get_array(data, name))

total_num_nodes = np.array(total_num_nodes)

width = 0.5
Exemplo n.º 21
0
 def save(self, renumber=False):
     
     # Report progress.
     self.report_progress_save(1, 6)
     
     self.update_cluster_info()
     self.update_group_info()
     
     # Renumber internal variables, knowing that in this case the file
     # will be automatically reloaded right afterwards.
     if renumber:
         self.renumber()
         self.clusters = self.clusters_renumbered
         self.cluster_info = self.cluster_info_renumbered
         self._update_data()
     
     # Update the changes in the HDF5 tables.
     self.spike_table.cols.cluster_manual[:] = get_array(self.clusters)
     
     
     # Report progress.
     self.report_progress_save(2, 6)
     
     # Update the clusters table.
     # --------------------------
     # Add/remove rows to match the new number of clusters.
     self._update_table_size(self.clusters_table, 
         len(self.get_clusters_unique()))
     self.clusters_table.cols.cluster[:] = self.get_clusters_unique()
     self.clusters_table.cols.group[:] = np.array(self.cluster_info['group'])
     
     
     # Report progress.
     self.report_progress_save(3, 6)
     
     # Update the group table.
     # -----------------------
     # Add/remove rows to match the new number of clusters.
     groups = get_array(get_indices(self.group_info))
     self._update_table_size(
         self.groups_table, 
         len(groups), )
     self.groups_table.cols.group[:] = groups
     self.groups_table.cols.name[:] = list(self.group_info['name'])
     
     # Commit the changes on disk.
     self.kwik.flush()
     
     
     # Report progress.
     self.report_progress_save(4, 6)
     
     # Save the CLU file.
     # ------------------
     save_clusters(self.filename_clu, 
         convert_to_clu(self.clusters, self.cluster_info['group']))
     
     
     # Report progress.
     self.report_progress_save(5, 6)
     
     # Update the KWA file.
     # --------------------
     kwa={}
     kwa['shanks'] = {
         shank: dict(
             cluster_colors=self.cluster_info['color'],
             group_colors=self.group_info['color'],
         ) for shank in self.shanks
     }
     write_kwa(self.filename_kwa, kwa)
     
     # Report progress.
     self.report_progress_save(6, 6)
Exemplo n.º 22
0
plt.rc("ytick", labelsize=20)
plt.rc("legend", fontsize=24)

# Setup
fig = plt.figure(dpi=120, figsize=(10, 6))
ax = fig.add_subplot(111)

# Plot
data = dags[0]

plt.xlabel("Cumulative #edited voxels")
plt.ylabel("Memory usage (MB)")

kwargs = {"marker": "", "markersize": 5}

num_voxels = get_array(data, "num voxels")
voxels_indices = np.cumsum(num_voxels)

color_size = get_custom_array(data, "color_size")
undo_redo_size = get_custom_array(data, "color_size undo_redo")

ax.plot(voxels_indices,
        color_size + undo_redo_size,
        label="With history",
        **kwargs)
ax.plot(voxels_indices, color_size, label="Without history", **kwargs)

ax.ticklabel_format(axis='x', style='sci', scilimits=(0, 0))
leg = plt.legend()
for legobj in leg.legendHandles:
    legobj.set_linewidth(6.0)
Exemplo n.º 23
0
from tools import get_array, dags
import matplotlib.pyplot as plt

data = dags[0]

edits_time = get_array(data, "edits")
edits_radius = get_array(data, "radius")
edits_num_findadd = get_array(data, "num find or add")
edits_num_iteratedvoxels = get_array(data, "num iterated leaf voxels")
edits_num_editedvoxels = get_array(data, "num edited leaf voxels")
edits_num_nodes = get_array(data, "num nodes")

kwargs = {"linestyle": "None", "marker": "o", "markersize": 5}

plt.xlabel("radius")
plt.ylabel("time")
plt.plot(edits_radius, edits_time, **kwargs)
plt.figure()

plt.xlabel("findadd")
plt.ylabel("time")
plt.plot(edits_num_findadd, edits_time, **kwargs)
plt.figure()

plt.xlabel("Edited nodes")
plt.ylabel("Time (ms)")
plt.plot(edits_num_nodes, edits_time, **kwargs)
plt.figure()

plt.xlabel("iterated voxels")
plt.ylabel("time")
Exemplo n.º 24
0
from tools import get_array, dags
import matplotlib.pyplot as plt

data = dags[0]

edits_time = get_array(data, "edits")
edits_num_nodes = get_array(data, "num nodes")

kwargs = {"linestyle": "None", "marker": "o", "markersize": 5}

plt.xlabel("nodes")
plt.ylabel("time")
plt.plot(edits_num_nodes, edits_time, **kwargs)

if "rebuilding colors" in data[:, 1]:
    colors_time = get_array(data, "rebuilding colors")
    print("plotting rebuilding colors")
    plt.plot(edits_num_nodes, edits_time + colors_time, color="red", **kwargs)

plt.show()
Exemplo n.º 25
0
import numpy as np
from tools import get_array, dags, profiling_prompt

profiling_prompt()

data = dags[0]

num_voxels = get_array(data, "copied voxels")

print("{} copied voxels".format(np.sum(num_voxels)))
Exemplo n.º 26
0
import tools
from tools import get_array, dags, profiling_prompt
import matplotlib.pyplot as plt

profiling_prompt()

data = dags[0]

virtual_size = get_array(data, "virtual_size")

plt.xlabel("Frame")
plt.ylabel("Memory usage (MB)")

kwargs = {"marker": "", "markersize": 5}

plt.plot(tools.indices, virtual_size, label="Virtual size", **kwargs)

gc_freed_memory = get_array(data, "GC freed memory leaf level")
plt.plot(tools.indices,
         virtual_size - gc_freed_memory,
         label="Virtual size after GC",
         marker="x")

depth = 16
for i in range(depth - 1):
    gc_freed_memory = get_array(data, "GC freed memory level " + str(i))
    plt.plot(tools.indices,
             virtual_size - gc_freed_memory,
             label="Virtual size after GC level " + str(i),
             **kwargs)
Exemplo n.º 27
0
import tools
from tools import get_array, dags
import matplotlib.pyplot as plt

data = dags[0]

edits_num_nodes = get_array(data, "num nodes")
edits_num_leaf_nodes = get_array(data, "num leaf nodes")

kwargs = {"linestyle": "None", "marker": "o", "markersize": 5}

plt.xlabel("frame")
plt.ylabel("nodes")
plt.plot(tools.indices, edits_num_nodes, label="num nodes", **kwargs)
plt.plot(tools.indices, edits_num_leaf_nodes, label="num leaf nodes", **kwargs)
plt.legend()
plt.show()