Exemplo n.º 1
0
def mfcc(samples,
         winlen=400,
         winshift=200,
         preempcoeff=0.97,
         nfft=512,
         nceps=13,
         samplingrate=20000,
         liftercoeff=22,
         cepstrum_flag=True):
    """Computes Mel Frequency Cepstrum Coefficients.

    Args:
        samples: array of speech samples with shape (N,)
        winlen: lenght of the analysis window
        winshift: number of samples to shift the analysis window at every time step
        preempcoeff: pre-emphasis coefficient
        nfft: length of the Fast Fourier Transform (power of 2, >= winlen)
        nceps: number of cepstrum coefficients to compute
        samplingrate: sampling rate of the original signal
        liftercoeff: liftering coefficient used to equalise scale of MFCCs

    Returns:
        N x nceps array with lifetered MFCC coefficients
    """
    frames = enframe(samples, winlen, winshift)
    preemph = preemp(frames, preempcoeff)
    windowed = windowing(preemph)
    spec = powerSpectrum(windowed, nfft)
    mspec = logMelSpectrum(spec, samplingrate)

    if cepstrum_flag is True:
        ceps = cepstrum(mspec, nceps)
        return tools.lifter(ceps, liftercoeff)
    else:
        return mspec
Exemplo n.º 2
0
def mfcc(samples,
         winlen=400,
         winshift=200,
         preempcoeff=0.97,
         nfft=512,
         nceps=13,
         samplingrate=20000,
         liftercoeff=22):
    """Computes Mel Frequency Cepstrum Coefficients.

    Args:
        samples: array of speech samples with shape (N,)
        winlen: lenght of the analysis window
        winshift: number of samples to shift the analysis window at every time step
        preempcoeff: pre-emphasis coefficient
        nfft: length of the Fast Fourier Transform (power of 2, >= winlen)
        nceps: number of cepstrum coefficients to compute
        samplingrate: sampling rate of the original signal
        liftercoeff: liftering coefficient used to equalise scale of MFCCs

    Returns:
        N x nceps array with lifetered MFCC coefficients
    """
    frames = enframe(samples, winlen, winshift)
    #plt.rc('text',usetex=True)
    #plt.pcolormesh(frames)
    #plt.axis('off')
    #plt.title('Enframed Samples',fontsize=20)
    #plt.show()

    preemph = preemp(frames, preempcoeff)
    windowed = windowing(preemph)
    spec = powerSpectrum(windowed, nfft)
    mspec = logMelSpectrum(spec, samplingrate)
    ceps = cepstrum(mspec, nceps)
    #plt.pcolormesh(ceps)
    #plt.title('Mfcc Coefficients',fontsize=20)
    #plt.axis('off')
    #plt.show()
    lmfcc = to.lifter(ceps, liftercoeff)
    #corr=np.corrcoef(lmfcc)
    #plt.pcolormesh(corr)
    #plt.show()
    return lmfcc
Exemplo n.º 3
0
def mfcc(samples,
         winlen=400,
         winshift=200,
         preempcoeff=0.97,
         nfft=512,
         nceps=13,
         samplingrate=20000,
         liftercoeff=22):
    """Computes Mel Frequency Cepstrum Coefficients.
    Args:
        samples: array of speech samples with shape (N,)
        winlen: lenght of the analysis window
        winshift: number of samples to shift the analysis window at every time step
        preempcoeff: pre-emphasis coefficient
        nfft: length of the Fast Fourier Transform (power of 2, >= winlen)
        nceps: number of cepstrum coefficients to compute
        samplingrate: sampling rate of the original signal
        liftercoeff: liftering coefficient used to equalise scale of MFCCs
    Returns:
        N x nceps array with lifetered MFCC coefficients
    """
    mspec_ = mspec(samples, winlen, winshift, preempcoeff, nfft, samplingrate)
    ceps = cepstrum(mspec_, nceps)
    return lifter(ceps, liftercoeff)
# Compute 4.4 : Fast Fourier Transform
plt.subplot(815)
result4 = proto.powerSpectrum(result3, 512)
plt.imshow(result4.transpose(), origin='lower', interpolation='nearest', aspect='auto')

# Compute 4.5 : Mel filterbank log spectrum
plt.subplot(816)
result5 = proto.logMelSpectrum(result4, 20000)
plt.imshow(result5.transpose(), origin='lower', interpolation='nearest', aspect='auto')

# Compute 4.6 : Cosine Transform and Liftering
plt.subplot(817)
result6 = proto.cepstrum(result5, 13)
plt.imshow(result6.transpose(), origin='lower', interpolation='nearest', aspect='auto')
plt.subplot(818)
result7 = tools.lifter(result6)
plt.imshow(result7.transpose(), origin='lower', interpolation='nearest', aspect='auto')

## Compute 5 : MFCC for all tidigits and concanate them
#tidiMfcc = tools.mfcc(tidigits[0]['samples']) 
#for i in range(1, len(tidigits)):
#    tidiMfcc = np.append(tidiMfcc, tools.mfcc(tidigits[i]['samples']), axis=0 )
#
## Correlation
#corMfcc = np.corrcoef(tidiMfcc.transpose())
#
#tidiMspec = tools.mspec(tidigits[0]['samples']) 
#for i in range(1, len(tidigits)):
#    tidiMspec = np.append(tidiMspec, tools.mspec(tidigits[i]['samples']), axis=0 )

# Correlation
Exemplo n.º 5
0
import numpy as np
import matplotlib.pyplot as plt
import proto
from tools import lifter
reload(proto)

example = np.load('C:\Users\Linnea\Desktop\dt2118_lab1_2016-04-01\example.npz'
                  )['example'].item()
tidigits = np.load(
    'C:\Users\Linnea\Desktop\dt2118_lab1_2016-04-01\etidigits.npz')['tidigits']

#plt.plot(example['samples'])

# SHOW IMAGE FROM EXAMPLE
#plt.imshow(example['frames'], origin = 'lower', interpolation = 'nearest', aspect = 'auto')

ef = proto.enframe(example['samples'], 400, 200)
preemphas = proto.preemp(example['frames'], 0.97)
fourierTrans = proto.powerSpectrum(example['windowed'], 512)
cos = proto.cepstrum(example['mspec'], 13)
cosLift = lifter(cos, 22)
#plt.imshow(ef, origin = 'lower', interpolation = 'nearest', aspect = 'auto')

#plt.show()
Exemplo n.º 6
0
plt.subplot(816)
result5 = proto.logMelSpectrum(result4, 20000)
plt.imshow(result5.transpose(),
           origin='lower',
           interpolation='nearest',
           aspect='auto')

# Compute 4.6 : Cosine Transform and Liftering
plt.subplot(817)
result6 = proto.cepstrum(result5, 13)
plt.imshow(result6.transpose(),
           origin='lower',
           interpolation='nearest',
           aspect='auto')
plt.subplot(818)
result7 = tools.lifter(result6)
plt.imshow(result7.transpose(),
           origin='lower',
           interpolation='nearest',
           aspect='auto')

## Compute 5 : MFCC for all tidigits and concanate them
#tidiMfcc = tools.mfcc(tidigits[0]['samples'])
#for i in range(1, len(tidigits)):
#    tidiMfcc = np.append(tidiMfcc, tools.mfcc(tidigits[i]['samples']), axis=0 )
#
## Correlation
#corMfcc = np.corrcoef(tidiMfcc.transpose())
#
#tidiMspec = tools.mspec(tidigits[0]['samples'])
#for i in range(1, len(tidigits)):
Exemplo n.º 7
0
def main():
    #------------------------------------------------ Quest 4 ----------------------------->>>
    # Step 1: Enframe
    sample_rate = example['samplingrate']
    winlen = int(.02 * sample_rate)  # window length = 20ms
    winshift = int(.01 * sample_rate)  # shift length = 10ms
    enf = enframe(samples, winlen, winshift)

    # Step 2: Pre-emphasis
    pre_emp = preemp(enf, p=0.97)

    # Step 3: Hamming Window
    ham = windowing(pre_emp)

    # Step 4: Fast Fourier Transform
    FFT = powerSpectrum(ham, nfft=512)

    # Step 5: Mel filterbank log spectrum
    logMel = logMelSpectrum(FFT, sample_rate)

    # Step 6: Cosine Transofrm and Liftering
    nceps = 13
    cos_tra = cepstrum(logMel, nceps)
    l_cos_tra = tools.lifter(cos_tra)

    # Tidigits test for Quest 4
    l_MFCC = []
    for item in tidigits:
        tid_samples = item['samples']
        l_MFCC.append(mfcc(tid_samples))

    #------------------------------------------------ Quest 5 ----------------------------->>>
    l_MFCC_concat = np.zeros([1, nceps])
    for i in range(len(tidigits)):
        l_MFCC_concat = np.append(l_MFCC_concat, l_MFCC[i], axis=0)
    MFCC_cor_coef = np.corrcoef(
        l_MFCC_concat, rowvar=0
    )  # rowvar = non-zero (default): each row represents a variable, with observations in the columns.
    # Otherwise, the relationship is transposed: each column represents a variable, while the rows contain observations.

    Mspec_concat = mspec(tidigits[0]['samples'])
    for i in range(1, len(tidigits)):
        Mspec_concat = np.append(Mspec_concat,
                                 mspec(tidigits[i]['samples']),
                                 axis=0)
    Mspec_cor_coef = np.corrcoef(Mspec_concat, rowvar=0)

    #------------------------------------------------ Quest 6 ----------------------------->>>
    # check local dist function for 2 utterances from Tidigit samples
    # utter1 = mfcc(tidigits[0]['samples'])
    # utter2 = mfcc(tidigits[1]['samples'])
    # loc_dist = locdist(utter1, utter2)

    # next step
    # D = np.zeros([len(tidigits), len(tidigits) ])
    # N = len(D)               # full data: len(D)
    # M = D.shape[1]               # full data: D.shape[1]
    # for i in range(N):
    #     for j in range(M):
    #         u1 = mfcc(tidigits[i]['samples'])
    #         u2 = mfcc(tidigits[j]['samples'])
    #         loc_dist = locdist(u1, u2)
    #         D[i, j] = dtw(loc_dist)

    #------------------------------------------------ Quest 7 ----------------------------->>>
    all_features = np.copy(l_MFCC_concat)
    n_components = 32
    gmm = GMM(n_components=n_components, covariance_type='full')
    feature_fit = gmm.fit(all_features)

    lift_mfcc_71 = mfcc(tidigits[16]['samples'])
    prediction_71 = gmm.predict(lift_mfcc_71)
    print("prediction 71 =", prediction_71, "\n")

    lift_mfcc_72 = mfcc(tidigits[17]['samples'])
    prediction_72 = gmm.predict(lift_mfcc_72)
    print("prediction 72 =", prediction_72, "\n")

    lift_mfcc_73 = mfcc(tidigits[38]['samples'])
    prediction_73 = gmm.predict(lift_mfcc_73)
    print("prediction 73 =", prediction_73, "\n")

    lift_mfcc_74 = mfcc(tidigits[39]['samples'])
    prediction_74 = gmm.predict(lift_mfcc_74)
    print("prediction 74 =", prediction_74, "\n")

    lift_mfcc_un = mfcc(tidigits[4]['samples'])
    prediction_un = gmm.predict(lift_mfcc_un)
    print("prediction un =", prediction_un)

    fig0 = plt.figure()
    fig0.canvas.set_window_title('num of components = ' + str(n_components))
    lab = tools.tidigit2labels(tidigits)
    plt.plot(prediction_71, 'r', label=lab[16])
    plt.legend(loc='upper right')
    plt.suptitle('num of components = ' + str(n_components))
    #plt.savefig('fig13')

    fig1 = plt.figure()
    fig1.canvas.set_window_title('num of components =' + str(n_components))
    plt.plot(prediction_72, 'b', label=lab[17])
    plt.legend(loc='upper right')
    plt.suptitle('num of components = ' + str(n_components))
    #plt.savefig('fig14')

    fig2 = plt.figure()
    fig2.canvas.set_window_title('num of components =' + str(n_components))
    plt.plot(prediction_73, 'g', label=lab[38])
    plt.legend(loc='upper right')
    plt.suptitle('num of components = ' + str(n_components))
    #plt.savefig('fig15')

    fig3 = plt.figure()
    fig3.canvas.set_window_title('num of components =' + str(n_components))
    plt.plot(prediction_74, 'y', label=lab[39])
    plt.legend(loc='upper right')
    plt.suptitle('num of components = ' + str(n_components))
    #plt.savefig('fig16')

    #@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@  VISUALIZATION  @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

    # # My Visualization:

    # -------- Quest 4
    fig1 = plt.figure(figsize=(10, 10))
    fig1.canvas.set_window_title('My results')
    # Speech samples
    plt.subplot(8, 1, 1)
    plt.plot(samples)
    plt.title('Speech samples')
    # Step 1: Enframe
    plt.subplot(8, 1, 2)
    plt.pcolormesh(enf.T, cmap='jet')
    plt.title('Enframe')
    # Step 2: Pre-emphasis
    plt.subplot(8, 1, 3)
    plt.pcolormesh(pre_emp.T, cmap='jet')
    plt.title('Pre-emphasis')
    # Step 3: Hamming Window
    plt.subplot(8, 1, 4)
    plt.pcolormesh(ham.T, cmap='jet')
    plt.title('Hamming Window')
    # Step 4: Fast Fourier Transform
    plt.subplot(8, 1, 5)
    plt.pcolormesh(FFT.T, cmap='jet')
    plt.title('Fast Fourier Transform')
    # Step 5: Mel filterbank log spectrum
    plt.subplot(8, 1, 6)
    plt.pcolormesh(logMel.T, cmap='jet')
    plt.title('Mel filterbank log spectrum')
    # Step 6: Cosine Transofrm and Liftering
    plt.subplot(8, 1, 7)
    plt.pcolormesh(cos_tra.T, cmap='jet')
    plt.title('MFCC')
    plt.subplot(8, 1, 8)
    plt.pcolormesh(l_cos_tra.T, cmap='jet')
    plt.title('Lifted MFCC')
    # filter banks plot
    fig2 = plt.figure()
    fig2.canvas.set_window_title('Filter Banks')
    plt.plot(fbank.T)
    # Quest 4.6 : Tidigit utterances
    fig3 = plt.figure(figsize=(10, 6))
    fig3.canvas.set_window_title('Tidigit 10 utterances: l_MFCC')

    plt.subplot(4, 1, 1)
    plt.title(lab[16])
    plt.xticks([])
    plt.yticks([])
    plt.pcolormesh(l_MFCC[16].T, cmap='jet')

    plt.subplot(4, 1, 2)
    plt.title(lab[17])
    plt.xticks([])
    plt.yticks([])
    plt.pcolormesh(l_MFCC[17].T, cmap='jet')

    plt.subplot(4, 1, 3)
    plt.title(lab[38])
    plt.xticks([])
    plt.yticks([])
    plt.pcolormesh(l_MFCC[38].T, cmap='jet')

    plt.subplot(4, 1, 4)
    plt.title(lab[39])
    plt.xticks([])
    plt.yticks([])
    plt.pcolormesh(l_MFCC[39].T, cmap='jet')
    fig3.tight_layout(pad=2)

    # -------- Quest 5
    fig4 = plt.figure(figsize=(10, 6))
    fig4.canvas.set_window_title('Feature Correlation')
    plt.subplot(2, 1, 1)
    plt.pcolormesh(MFCC_cor_coef, cmap='jet')

    plt.subplot(2, 1, 2)
    plt.pcolormesh(Mspec_cor_coef, cmap='jet')

    # -------- Quest 6
    # plt.pcolormesh(D, cmap = 'jet')
    # plt.show()
    # fig5 = plt.figure(figsize=(20,30))
    # fig5.canvas.set_window_title('Comparing Utterances')
    # ax = fig5.add_subplot(111)
    # link = hac.linkage(D, method = 'complete')
    # labels = tools.tidigit2labels(tidigits)
    # dendro = hac.dendrogram(link, labels = labels)

    # ax.set_xticklabels(labels)
    # ax.legend(labels)
    # plt.legend(labels, loc='center', fontsize='xx-large')

    fig1.tight_layout(pad=2)
    fig2.tight_layout(pad=2)
    plt.show()  # uncomment for visualization