Exemplo n.º 1
0
def Fn(AI, key=DEFAULT):
    if key is None:
        key = DEFAULT
    #     key = AI.pull("fn", list(LAYERS.keys()) + list(FNS.keys()))
    if key in LAYERS.keys():
        return LAYERS[key]()
    return L.Activation(clean_activation(key.lower()), name=make_id(key))
Exemplo n.º 2
0
 def pull(self, *args, log_uniform=False, id=False):
     args = list(args)
     assert isinstance(args[0], str)
     args[0] = make_id(args[0]) if id else args[0]
     # opt = trial.suggest_categorical('optimizer', ['MomentumSGD', 'Adam'])
     if isinstance(args[1], list):
         return self.log_and_return(
             args, self.trial.suggest_categorical(*args))
     # num_layers = trial.suggest_int('num_layers', 1, 3)
     elif isinstance(args[1], int) and isinstance(args[2], int):
         return self.log_and_return(args, self.trial.suggest_int(*args))
     # learning_rate = trial.suggest_loguniform('learning_rate', 1e-5, 1e-2)
     # dropout_rate = trial.suggest_uniform('dropout_rate', 0.0, 1.0)
     elif isinstance(args[1], float) and isinstance(args[2], float):
         if log_uniform:
             return self.log_and_return(
                 args, self.trial.suggest_loguniform(*args))
         return self.log_and_return(args, self.trial.suggest_uniform(*args))
     # rate = trial.suggest_discrete_uniform('rate', 0.0, 1.0, 0.1)
     elif len(args) is 4:
         return self.log_and_return(
             args, self.trial.suggest_discrete_uniform(*args))
     else:
         log("FAILED TO PULL FOR ARGS", args, color="red")
         raise Exception("AI.Pull failed")
Exemplo n.º 3
0
 def __init__(self, AI, out_shape):
     self.ensemble_size = AI.pull('regresser_ensemble_size', SIZE_OPTIONS)
     first = AI.pull("regresser_first", FIRST_OPTIONS)
     self.first = getattr(nature, first)
     super(Regresser, self).__init__(
         name=make_id(f"{self.ensemble_size}X_{first}_regresser"))
     self.out_shape = out_shape
     self.ai = AI
Exemplo n.º 4
0
 def __init__(self, layer_fn=OPTIONS, n=N):
     """
     layer_fn: callable returning the layer to use
     """
     if isinstance(layer_fn, list):
         layer_fn = random.choice(layer_fn)
     key = make_id(f"{layer_fn.__name__}_block")
     super(ResBlock, self).__init__(name=key)
     self.layer_fn = layer_fn
     self.n = N
Exemplo n.º 5
0
 def __init__(self, AI, units=UNITS):
     layers = AI.pull("AOA_layers", ["monolayer", "bilayer"])
     super().__init__(name=make_id(f"{layers}_attn"))
     self.call = self.call_monolayer
     if bilayer:
         self.call = self.call_bilayer
         self.q2 = L.Dense(units)
         self.k2 = L.Dense(units)
         self.v2 = L.Dense(units)
     self.attn = L.Attention()
     self.q1 = L.Dense(units)
     self.k1 = L.Dense(units)
     self.v1 = L.Dense(units)
     self.built = True
Exemplo n.º 6
0
def Input(spec, batch_size=1, drop_batch_dim=False):
    shape, format = spec["shape"], spec["format"]
    # if tf.is_tensor(tensor_or_shape):
    #     shape = tensor_or_shape.shape
    # else:
    #     shape = tensor_or_shape
    # if drop_batch_dim:
    #     shape = shape[1:]
    shape_string = 'x'.join([str(n) for n in list(shape)])
    name = make_id(f"{batch_size}x{shape_string}_{format}")
    return tf.keras.Input(shape,
                          batch_size=batch_size,
                          dtype=tf.float32,
                          name=name)
Exemplo n.º 7
0
 def __init__(self, AI, units=None):
     n = AI.pull(f"conv_set_n", N)
     super().__init__(name=make_id(f"conv_set_{n}"))
     self.call = self.call_for_two if n is 2 else self.call_for_three
     self.ai = AI
Exemplo n.º 8
0
 def __init__(self, AI, units=None):
     self.units = AI.pull(f"echo_units", UNITS)
     super().__init__(name=make_id(f"echo_{self.units}"))
     self.ai = AI
Exemplo n.º 9
0
 def __init__(self, AI, units=None):
     self.N = AI.pull("slim_n", N_OPTIONS)
     super().__init__(name=make_id(f"slim_{self.N}"))
     self.ai = AI
Exemplo n.º 10
0
 def __init__(self, units=None):
     name = make_id(f"slim_{N}")
     super(Slim, self).__init__(name=name)
     self.units = units