Exemplo n.º 1
0
 def get_bn(scale, bias):
     norm_shift, norm_mul = 15, scale
     return {
         'norm_mul': tools.signed_to_hex(norm_mul, 24),
         'norm_add': tools.signed_to_hex(bias, 32),
         'norm_shift': norm_shift
     }
Exemplo n.º 2
0
def gen_weights_code(dlayer, idx, eight_bit_mode, prefix):
    weights = dlayer[0]['kernel_load_cfg']['para_start_addr']
    weights_data = ', '.join([
        ('\n ' if i % 64 == 0 else '') +
        tools.signed_to_hex(item, 8 if eight_bit_mode else 16)
        for item, i in zip(weights, range(len(weights)))
    ])
    para_type = 'static uint8_t' if eight_bit_mode else 'static uint16_t'
    return para_type + \
           ' {prefix}para_start_addr_{idx}[] __attribute__((aligned(128))) = {{{data}}};'\
               .format(idx=idx, data=weights_data, prefix=prefix)
Exemplo n.º 3
0
def gen_act_code(dlayer, idx, prefix):
    act_list = dlayer[0]['kernel_calc_type_cfg']['active_addr']
    active_para = ' .activate_para = {\n' + ',\n'.join([
        '  {{.data = {{.shift_number={dxs}, .y_mul={dy}, .x_start={x} }}}}'.format(
            dxs=item['dxs'], dy=int(item['dy']), x=tools.signed_to_hex(item['x'], 36)
        )
        for item in act_list
    ]) + '\n }'
    bias_list = [int(item['y']) for item in act_list]
    active_para_bias0 = (
                ' .activate_para_bias0.data = {{\n  .result_bias = {{{},{},{},{},{},{},{},{}}}\n }}'
    ).format(*(bias_list[:8]))

    active_para_bias1 = (
            ' .activate_para_bias1.data = {{\n  .result_bias = {{{},{},{},{},{},{},{},{}}}\n }}'
    ).format(*(bias_list[8:]))

    return 'static kpu_activate_table_t ' + prefix + 'active_addr_' + str(idx) + ' __attribute__((aligned(128))) = {\n' + \
           ',\n'.join([active_para, active_para_bias0, active_para_bias1]) + \
           '\n};'
Exemplo n.º 4
0
def gen_layer_struct(klayer: k210_layer.K210Layer, idx: int):
    reserved = 0
    set_to_zero = 0
    img_ram_size = 2 * 1024 * 1024

    conv_arg = klayer.conv and klayer.conv.to_k210() or default_conv_arg
    bn_arg = klayer.bn and klayer.bn.to_k210(conv_arg['swsx']) or default_bn_arg
    act_arg = klayer.act and klayer.act.to_k210(bn_arg['post_scale']) or default_act_arg
    pool_arg = klayer.pool and klayer.pool.to_k210() or default_pool_arg
    io_arg = klayer.to_k210()

    mino, maxo = klayer.act.min_y, klayer.act.max_y
    output_scale, output_bias = tools.min_max_to_scale_bias(mino, maxo)

    img_input_size = int(math.ceil(io_arg['i_ch_num'] / conv_arg['coef_group']) * 64 * conv_arg['channel_switch_addr'])
    img_output_size = int(math.ceil(io_arg['o_ch_num'] / io_arg['wb_group']) * 64 * io_arg['wb_channel_switch_addr'])

    assert (img_input_size + img_output_size <= img_ram_size)

    interrupt_enabe = {
        'int_en': set_to_zero,
        'ram_flag': reserved,
        'full_add': set_to_zero,
        'depth_wise_layer': conv_arg['depth_wise_layer']
    }
    image_addr = {
        'image_src_addr': '(uint64_t)' + hex(int((0 if not idx & 1 else (img_ram_size - img_input_size)) / 64)),
        'image_dst_addr': '(uint64_t)' + hex(int((0 if idx & 1 else (img_ram_size - img_output_size)) / 64))
    }
    image_channel_num = {
        'i_ch_num': hex(io_arg['i_ch_num'] - 1),
        'o_ch_num': hex(io_arg['o_ch_num'] - 1),
        'o_ch_num_coef': hex(conv_arg['o_ch_num_coef'] - 1),
    }
    image_size = {
        'i_row_wid': hex(conv_arg['i_row_wid'] - 1),
        'i_col_high': hex(conv_arg['i_col_high'] - 1),
        'o_row_wid': hex(io_arg['o_row_wid'] - 1),
        'o_col_high': hex(io_arg['o_col_high'] - 1),
    }
    kernel_pool_type_cfg = {
        'kernel_type': conv_arg['kernel_type'],
        'pad_type': conv_arg['pad_type'],
        'pool_type': pool_arg['pool_type'],
        'first_stride': conv_arg['first_stride'],
        'bypass_conv': 0 if klayer.conv else 1,
        'load_para': bn_arg['load_para'],
        'dma_burst_size': io_arg['dma_burst_size'],
        'pad_value': tools.signed_to_hex(conv_arg['pad_value'], 8),
        'bwsx_base_addr': bn_arg['bwsx_base_addr'],
    }
    kernel_load_cfg = {
        'load_coor': conv_arg['load_coor'],
        'load_time': conv_arg['load_time'] - 1,
        'para_size': conv_arg['para_size'],
        'para_start_addr': conv_arg['para_start_addr'],
    }
    kernel_offset = {
        'coef_column_offset': set_to_zero,
        'coef_row_offset': set_to_zero,
    }
    kernel_calc_type_cfg = {
        'channel_switch_addr': hex(conv_arg['channel_switch_addr']),
        'row_switch_addr': hex(conv_arg['row_switch_addr']),
        'coef_size': reserved,
        'coef_group': conv_arg['coef_group'],
        'load_act': 1 if klayer.act else 0,
        'active_addr': act_arg['active_addr']
    }
    write_back_cfg = {
        'wb_channel_switch_addr': hex(io_arg['wb_channel_switch_addr']),
        'wb_row_switch_addr': hex(io_arg['wb_row_switch_addr']),
        'wb_group': io_arg['wb_group']
    }
    conv_value = {
        'shr_w': conv_arg['shr_w'],
        'shr_x': conv_arg['shr_x'],
        'arg_w': tools.signed_to_hex(conv_arg['arg_w'], 24),
        'arg_x': tools.signed_to_hex(conv_arg['arg_x'], 24),
    }
    conv_value2 = {
        'arg_add': int(round(conv_arg['arg_add'])),
    }
    dma_parameter = {
        'send_data_out': io_arg['send_data_out'],
        'channel_byte_num': io_arg['channel_byte_num'] - 1,
        'dma_total_byte': io_arg['dma_total_byte'] - 1,
    }

    return {
        'interrupt_enabe': interrupt_enabe,
        'image_addr': image_addr,
        'image_channel_num': image_channel_num,
        'image_size': image_size,
        'kernel_pool_type_cfg': kernel_pool_type_cfg,
        'kernel_load_cfg': kernel_load_cfg,
        'kernel_offset': kernel_offset,
        'kernel_calc_type_cfg': kernel_calc_type_cfg,
        'write_back_cfg': write_back_cfg,
        'conv_value': conv_value,
        'conv_value2': conv_value2,
        'dma_parameter': dma_parameter
    }, (output_scale, output_bias)