Exemplo n.º 1
0
    def __init__(self, max_gen=100, pop_size=25, Pm=None, Pc=.5, elitism=True, bits={}, debug_print=[], run_parallel=False, random_state=None):
        """SimpleGA driver with optional arguments

        Parameters
        ----------
        max_gen : int
            Number of generations before termination.
        pop_size : int
            Number of points in the GA.
        pm : float
            Probability of mutation.
        pc : float
             Probability of cross over.
        elitism : bool, optional
            If True, replace worst performing point with best from previous generation each iteration.
        bits : dict, optional
            Number of bits of resolution. Default is an empty dict, where every
            unspecified variable is assumed to be integer, and the number of
            bits is calculated automatically.
            If you have a continuous var, you should set a bits value as a key
            in this dictionary.
            Ex: {'x':16,'y':16}
        debug_print : list, optional
            List of what type of Driver variables to print at each iteration. Valid items in list are ‘desvars’,’ln_cons’,’nl_cons’,’objs’
        run_parallel : bool
            Set to True to execute the points in a generation in parallel.
        """
        SimpleGADriver.__init__(self, max_gen=max_gen, pop_size=pop_size, Pm=Pm, Pc=Pc, elitism=elitism,
                                bits=bits, debug_print=debug_print, run_parallel=run_parallel)
        self.supports['inequality_constraints'] = False
        self.supports['equality_constraints'] = False
        if random_state is not None:
            self._randomstate = random_state
    def test_option_pop_size(self):
        from openmdao.api import Problem, Group, IndepVarComp, SimpleGADriver
        from openmdao.test_suite.components.branin import Branin

        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('p1', IndepVarComp('xC', 7.5))
        model.add_subsystem('p2', IndepVarComp('xI', 0.0))
        model.add_subsystem('comp', Branin())

        model.connect('p2.xI', 'comp.x0')
        model.connect('p1.xC', 'comp.x1')

        model.add_design_var('p2.xI', lower=-5.0, upper=10.0)
        model.add_design_var('p1.xC', lower=0.0, upper=15.0)
        model.add_objective('comp.f')

        prob.driver = SimpleGADriver()
        prob.driver.options['bits'] = {'p1.xC': 8}
        prob.driver.options['pop_size'] = 10

        prob.setup()
        prob.run_driver()

        # Optimal solution
        print('comp.f', prob['comp.f'])
        print('p2.xI', prob['p2.xI'])
        print('p1.xC', prob['p1.xC'])
    def test_basic_with_assert(self):
        from openmdao.api import Problem, Group, IndepVarComp, SimpleGADriver
        from openmdao.test_suite.components.branin import Branin

        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('p1', IndepVarComp('xC', 7.5))
        model.add_subsystem('p2', IndepVarComp('xI', 0.0))
        model.add_subsystem('comp', Branin())

        model.connect('p2.xI', 'comp.x0')
        model.connect('p1.xC', 'comp.x1')

        model.add_design_var('p2.xI', lower=-5.0, upper=10.0)
        model.add_design_var('p1.xC', lower=0.0, upper=15.0)
        model.add_objective('comp.f')

        prob.driver = SimpleGADriver()
        prob.driver.options['bits'] = {'p1.xC': 8}

        prob.driver._randomstate = 1

        prob.setup()
        prob.run_driver()

        # Optimal solution
        assert_rel_error(self, prob['comp.f'], 0.49399549, 1e-4)
    def test_concurrent_eval_padded(self):
        # This test only makes sure we don't lock up if we overallocate our integer desvar space
        # to the next power of 2.

        class GAGroup(Group):

            def setup(self):

                self.add_subsystem('p1', IndepVarComp('x', 1.0))
                self.add_subsystem('p2', IndepVarComp('y', 1.0))
                self.add_subsystem('p3', IndepVarComp('z', 1.0))

                self.add_subsystem('comp', ExecComp(['f = x + y + z']))

                self.add_design_var('p1.x', lower=-100, upper=100)
                self.add_design_var('p2.y', lower=-100, upper=100)
                self.add_design_var('p3.z', lower=-100, upper=100)
                self.add_objective('comp.f')

        prob = Problem()
        prob.model = GAGroup()

        driver = prob.driver = SimpleGADriver()
        driver.options['max_gen'] = 5
        driver.options['pop_size'] = 40
        driver.options['run_parallel'] = True

        prob.setup()

        # No meaningful result from a short run; just make sure we don't hang.
        prob.run_driver()
    def test_mixed_integer_branin(self):
        np.random.seed(1)

        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('p1', IndepVarComp('xC', 7.5))
        model.add_subsystem('p2', IndepVarComp('xI', 0.0))
        model.add_subsystem('comp', Branin())

        model.connect('p2.xI', 'comp.x0')
        model.connect('p1.xC', 'comp.x1')

        model.add_design_var('p2.xI', lower=-5.0, upper=10.0)
        model.add_design_var('p1.xC', lower=0.0, upper=15.0)
        model.add_objective('comp.f')

        prob.driver = SimpleGADriver(max_gen=75, pop_size=25)
        prob.driver.options['bits'] = {'p1.xC': 8}

        prob.driver._randomstate = 1

        prob.setup(check=False)
        prob.run_driver()

        # Optimal solution
        assert_rel_error(self, prob['comp.f'], 0.49398, 1e-4)
        self.assertTrue(int(prob['p2.xI']) in [3, -3])
    def test_analysis_error(self):
        np.random.seed(1)

        class ValueErrorComp(ExplicitComponent):
            def setup(self):
                self.add_input('x', 1.0)
                self.add_output('f', 1.0)

            def compute(self, inputs, outputs):
                raise ValueError

        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('p', IndepVarComp('x', 0.0))
        model.add_subsystem('comp', ValueErrorComp())

        model.connect('p.x', 'comp.x')

        model.add_design_var('p.x', lower=-5.0, upper=10.0)
        model.add_objective('comp.f')

        prob.driver = SimpleGADriver(max_gen=75, pop_size=25)
        prob.driver._randomstate = 1
        prob.setup(check=False)
        # prob.run_driver()
        self.assertRaises(ValueError, prob.run_driver)
    def test_simple_test_func(self):
        np.random.seed(11)

        class MyComp(ExplicitComponent):

            def setup(self):
                self.add_input('x', np.zeros((2, )))

                self.add_output('a', 0.0)
                self.add_output('b', 0.0)
                self.add_output('c', 0.0)
                self.add_output('d', 0.0)

            def compute(self, inputs, outputs):
                x = inputs['x']

                outputs['a'] = (2.0 * x[0] - 3.0 * x[1])**2
                outputs['b'] = 18.0 - 32.0 * x[0] + 12.0 * x[0]**2 + 48.0 * x[1] - 36.0 * x[0] * x[1] + 27.0 * x[1]**2
                outputs['c'] = (x[0] + x[1] + 1.0)**2
                outputs['d'] = 19.0 - 14.0 * x[0] + 3.0 * x[0]**2 - 14.0 * x[1] + 6.0 * x[0] * x[1] + 3.0 * x[1]**2

        prob = Problem()
        prob.model = model = Group()

        model.add_subsystem('px', IndepVarComp('x', np.array([0.2, -0.2])))
        model.add_subsystem('comp', MyComp())
        model.add_subsystem('obj', ExecComp('f=(30 + a*b)*(1 + c*d)'))

        model.connect('px.x', 'comp.x')
        model.connect('comp.a', 'obj.a')
        model.connect('comp.b', 'obj.b')
        model.connect('comp.c', 'obj.c')
        model.connect('comp.d', 'obj.d')

        # Played with bounds so we don't get subtractive cancellation of tiny numbers.
        model.add_design_var('px.x', lower=np.array([0.2, -1.0]), upper=np.array([1.0, -0.2]))
        model.add_objective('obj.f')

        prob.driver = SimpleGADriver()
        prob.driver.options['bits'] = {'px.x': 16}
        prob.driver.options['max_gen'] = 75

        prob.driver._randomstate = 11

        prob.setup(check=False)
        prob.run_driver()

        # TODO: Satadru listed this solution, but I get a way better one.
        # Solution: xopt = [0.2857, -0.8571], fopt = 23.2933
        assert_rel_error(self, prob['obj.f'], 12.37341703, 1e-4)
        assert_rel_error(self, prob['px.x'][0], 0.2, 1e-4)
        assert_rel_error(self, prob['px.x'][1], -0.88654333, 1e-4)
    def test_constrained_without_penalty(self):

        class Cylinder(ExplicitComponent):
            """Main class"""

            def setup(self):
                self.add_input('radius', val=1.0)
                self.add_input('height', val=1.0)

                self.add_output('Area', val=1.0)
                self.add_output('Volume', val=1.0)

            def compute(self, inputs, outputs):
                radius = inputs['radius']
                height = inputs['height']

                area = height * radius * 2 * 3.14 + 3.14 * radius ** 2 * 2
                volume = 3.14 * radius ** 2 * height
                outputs['Area'] = area
                outputs['Volume'] = volume

        prob = Problem()
        prob.model.add_subsystem('cylinder', Cylinder(), promotes=['*'])

        indeps = prob.model.add_subsystem('indeps', IndepVarComp(), promotes=['*'])
        indeps.add_output('radius', 2.)  # height
        indeps.add_output('height', 3.)  # radius

        # setup the optimization
        driver = prob.driver = SimpleGADriver()
        prob.driver.options['penalty_parameter'] = 0.  # no penalty, same as unconstrained
        prob.driver.options['penalty_exponent'] = 1.
        prob.driver.options['max_gen'] = 50
        prob.driver.options['bits'] = {'radius': 8, 'height': 8}

        prob.model.add_design_var('radius', lower=0.5, upper=5.)
        prob.model.add_design_var('height', lower=0.5, upper=5.)
        prob.model.add_objective('Area')
        prob.model.add_constraint('Volume', lower=10.)

        prob.setup()
        prob.run_driver()
        print('radius', prob['radius'])  # exact solution is (5/pi)^(1/3) ~= 1.167
        print('height', prob['height'])  # exact solution is 2*radius
        print('Area', prob['Area'])
        print('Volume', prob['Volume'])  # should be around 10
        self.assertTrue(driver.supports["equality_constraints"], True)
        self.assertTrue(driver.supports["inequality_constraints"], True)
        # it is going to the unconstrained optimum
        self.assertAlmostEqual(prob['radius'], 0.5, 1)
        self.assertAlmostEqual(prob['height'], 0.5, 1)
    def test_constrained_with_penalty(self):
        from openmdao.api import ExplicitComponent, Problem, IndepVarComp, SimpleGADriver

        class Cylinder(ExplicitComponent):
            """Main class"""

            def setup(self):
                self.add_input('radius', val=1.0)
                self.add_input('height', val=1.0)

                self.add_output('Area', val=1.0)
                self.add_output('Volume', val=1.0)

            def compute(self, inputs, outputs):
                radius = inputs['radius']
                height = inputs['height']

                area = height * radius * 2 * 3.14 + 3.14 * radius ** 2 * 2
                volume = 3.14 * radius ** 2 * height
                outputs['Area'] = area
                outputs['Volume'] = volume

        prob = Problem()
        prob.model.add_subsystem('cylinder', Cylinder(), promotes=['*'])

        indeps = prob.model.add_subsystem('indeps', IndepVarComp(), promotes=['*'])
        indeps.add_output('radius', 2.)  # height
        indeps.add_output('height', 3.)  # radius

        # setup the optimization
        prob.driver = SimpleGADriver()
        prob.driver.options['penalty_parameter'] = 3.
        prob.driver.options['penalty_exponent'] = 1.
        prob.driver.options['max_gen'] = 50
        prob.driver.options['bits'] = {'radius': 8, 'height': 8}

        prob.model.add_design_var('radius', lower=0.5, upper=5.)
        prob.model.add_design_var('height', lower=0.5, upper=5.)
        prob.model.add_objective('Area')
        prob.model.add_constraint('Volume', lower=10.)

        prob.setup()
        prob.run_driver()

        # These go to 0.5 for unconstrained problem. With constraint and penalty, they
        # will be above 1.0 (actual values will vary.)
        self.assertGreater(prob['radius'], 1.)
        self.assertGreater(prob['height'], 1.)
    def test_indivisible_error(self):
        prob = Problem()
        model = prob.model = Group()
        model.add_subsystem('par', ParallelGroup())

        prob.driver = SimpleGADriver()
        prob.driver.options['run_parallel'] = True
        prob.driver.options['procs_per_model'] = 3

        with self.assertRaises(RuntimeError) as context:
            prob.setup()

        self.assertEqual(str(context.exception),
                         "The total number of processors is not evenly divisible by the "
                         "specified number of processors per model.\n Provide a number of "
                         "processors that is a multiple of 3, or specify a number "
                         "of processors per model that divides into 4.")
 def test_driver_options(self):
     """Tests if Pm and Pc options can be set."""
     prob = Problem()
     model = prob.model
     indeps = model.add_subsystem('indeps', IndepVarComp(), promotes=['*'])
     indeps.add_output('x', 1.)
     model.add_subsystem('model', ExecComp('y=x**2'), promotes=['*'])
     driver = prob.driver = SimpleGADriver()
     driver.options['Pm'] = 0.1
     driver.options['Pc'] = 0.01
     driver.options['max_gen'] = 5
     driver.options['bits'] = {'x': 8}
     prob.model.add_design_var('x', lower=-10., upper=10.)
     prob.model.add_objective('y')
     prob.setup(check=False)
     prob.run_driver()
     self.assertEqual(driver.options['Pm'], 0.1)
     self.assertEqual(driver.options['Pc'], 0.01)
    def test_option_procs_per_model(self):
        from openmdao.api import Problem, Group, IndepVarComp, SimpleGADriver, ParallelGroup
        from openmdao.test_suite.components.branin import Branin

        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('p1', IndepVarComp('xC', 7.5))
        model.add_subsystem('p2', IndepVarComp('xI', 0.0))
        par = model.add_subsystem('par', ParallelGroup())

        par.add_subsystem('comp1', Branin())
        par.add_subsystem('comp2', Branin())

        model.connect('p2.xI', 'par.comp1.x0')
        model.connect('p1.xC', 'par.comp1.x1')
        model.connect('p2.xI', 'par.comp2.x0')
        model.connect('p1.xC', 'par.comp2.x1')

        model.add_subsystem('comp', ExecComp('f = f1 + f2'))
        model.connect('par.comp1.f', 'comp.f1')
        model.connect('par.comp2.f', 'comp.f2')

        model.add_design_var('p2.xI', lower=-5.0, upper=10.0)
        model.add_design_var('p1.xC', lower=0.0, upper=15.0)
        model.add_objective('comp.f')

        prob.driver = SimpleGADriver()
        prob.driver.options['bits'] = {'p1.xC': 8}
        prob.driver.options['max_gen'] = 10
        prob.driver.options['pop_size'] = 25
        prob.driver.options['run_parallel'] = True
        prob.driver.options['procs_per_model'] = 2

        prob.driver._randomstate = 1

        prob.setup(check=False)
        prob.run_driver()

        # Optimal solution
        print('comp.f', prob['comp.f'])
        print('p2.xI', prob['p2.xI'])
        print('p1.xC', prob['p1.xC'])
    def test_two_branin_parallel_model(self):
        np.random.seed(1)

        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('p1', IndepVarComp('xC', 5))
        model.add_subsystem('p2', IndepVarComp('xI', 0.0))
        par = model.add_subsystem('par', ParallelGroup())

        par.add_subsystem('comp1', Branin())
        par.add_subsystem('comp2', Branin())

        model.connect('p2.xI', 'par.comp1.x0')
        model.connect('p1.xC', 'par.comp1.x1')
        model.connect('p2.xI', 'par.comp2.x0')
        model.connect('p1.xC', 'par.comp2.x1')

        model.add_subsystem('comp', ExecComp('f = f1 + f2'))
        model.connect('par.comp1.f', 'comp.f1')
        model.connect('par.comp2.f', 'comp.f2')

        model.add_design_var('p2.xI', lower=-5.0, upper=10.0)
        model.add_design_var('p1.xC', lower=0.0, upper=15.0)
        model.add_objective('comp.f')

        prob.driver = SimpleGADriver()
        prob.driver.options['bits'] = {'p1.xC': 8}
        prob.driver.options['max_gen'] = 10
        prob.driver.options['pop_size'] = 25
        prob.driver.options['run_parallel'] = True
        prob.driver.options['procs_per_model'] = 2

        prob.driver._randomstate = 1

        prob.setup(check=False)
        prob.run_driver()

        # Optimal solution
        assert_rel_error(self, prob['comp.f'], 0.98799098, 1e-4)
        self.assertTrue(int(prob['p2.xI']) in [3, -3])
    def test_multiobj(self):
        prob = Problem()

        indeps = prob.model.add_subsystem('indeps', IndepVarComp())
        indeps.add_output('x', 3)
        indeps.add_output('y', [4.0, -4])

        prob.model.add_subsystem('paraboloid1', ExecComp('f = (x+5)**2- 3'))
        prob.model.add_subsystem('paraboloid2',
                                 ExecComp('f = (y[0]-3)**2 + (y[1]-1)**2 - 3', y=[0, 0]))
        prob.model.connect('indeps.x', 'paraboloid1.x')
        prob.model.connect('indeps.y', 'paraboloid2.y')

        prob.driver = SimpleGADriver()

        prob.model.add_design_var('indeps.x', lower=-5, upper=5)
        prob.model.add_design_var('indeps.y', lower=[-10, 0], upper=[10, 3])
        prob.model.add_objective('paraboloid1.f')
        prob.model.add_objective('paraboloid2.f')
        prob.setup()
        prob.run_driver()

        np.testing.assert_array_almost_equal(prob['indeps.x'], -5)
        np.testing.assert_array_almost_equal(prob['indeps.y'], [3, 1])
    def test_mixed_integer_3bar_default_bits(self):
        # Tests bug where letting openmdao calcualate the bits didn't preserve integer status unless range
        # was a power of 2.
        np.random.seed(1)

        class ObjPenalty(ExplicitComponent):
            """
            Weight objective with penalty on stress constraint.
            """

            def setup(self):
                self.add_input('obj', 0.0)
                self.add_input('stress', val=np.zeros((3, )))

                self.add_output('weighted', 0.0)

            def compute(self, inputs, outputs):
                obj = inputs['obj']
                stress = inputs['stress']

                pen = 0.0
                for j in range(len(stress)):
                    if stress[j] > 1.0:
                        pen += 10.0 * (stress[j] - 1.0)**2

                outputs['weighted'] = obj + pen

        prob = Problem()
        model = prob.model = Group()

        model.add_subsystem('xc_a1', IndepVarComp('area1', 5.0, units='cm**2'), promotes=['*'])
        model.add_subsystem('xc_a2', IndepVarComp('area2', 5.0, units='cm**2'), promotes=['*'])
        model.add_subsystem('xc_a3', IndepVarComp('area3', 5.0, units='cm**2'), promotes=['*'])
        model.add_subsystem('xi_m1', IndepVarComp('mat1', 1), promotes=['*'])
        model.add_subsystem('xi_m2', IndepVarComp('mat2', 1), promotes=['*'])
        model.add_subsystem('xi_m3', IndepVarComp('mat3', 1), promotes=['*'])
        model.add_subsystem('comp', ThreeBarTruss(), promotes=['*'])
        model.add_subsystem('obj_with_penalty', ObjPenalty(), promotes=['*'])

        model.add_design_var('area1', lower=1.2, upper=1.3)
        model.add_design_var('area2', lower=2.0, upper=2.1)
        model.add_design_var('mat1', lower=2, upper=4)
        model.add_design_var('mat2', lower=2, upper=4)
        model.add_design_var('mat3', lower=1, upper=4)
        model.add_objective('weighted')

        prob.driver = SimpleGADriver()
        prob.driver.options['bits'] = {'area1': 6,
                                       'area2': 6}
        prob.driver.options['max_gen'] = 75

        prob.driver._randomstate = 1

        prob.setup(check=False)
        prob['area3'] = 0.0005
        prob.run_driver()

        # Note, GA doesn't do so well with the continuous vars, naturally, so we reduce the space
        # as much as we can. Objective is still rather random, but it is close. GA does a great job
        # of picking the correct values for the integer desvars though.
        self.assertLess(prob['mass'], 6.0)
        assert_rel_error(self, prob['mat1'], 3, 1e-5)
        assert_rel_error(self, prob['mat2'], 3, 1e-5)
    def test_multi_obj(self):

        class Box(ExplicitComponent):

            def setup(self):
                self.add_input('length', val=1.)
                self.add_input('width', val=1.)
                self.add_input('height', val=1.)

                self.add_output('front_area', val=1.0)
                self.add_output('top_area', val=1.0)
                self.add_output('area', val=1.0)
                self.add_output('volume', val=1.)

            def compute(self, inputs, outputs):
                length = inputs['length']
                width = inputs['width']
                height = inputs['height']

                outputs['top_area'] = length * width
                outputs['front_area'] = length * height
                outputs['area'] = 2 * length * height + 2 * length * width + 2 * height * width
                outputs['volume'] = length * height * width

        prob = Problem()
        prob.model.add_subsystem('box', Box(), promotes=['*'])

        indeps = prob.model.add_subsystem('indeps', IndepVarComp(), promotes=['*'])
        indeps.add_output('length', 1.5)
        indeps.add_output('width', 1.5)
        indeps.add_output('height', 1.5)

        # setup the optimization
        prob.driver = SimpleGADriver()
        prob.driver.options['max_gen'] = 100
        prob.driver.options['bits'] = {'length': 8, 'width': 8, 'height': 8}
        prob.driver.options['multi_obj_exponent'] = 1.
        prob.driver.options['penalty_parameter'] = 10.
        prob.driver.options['multi_obj_weights'] = {'box.front_area': 0.1,
                                                    'box.top_area': 0.9}
        prob.driver.options['multi_obj_exponent'] = 1

        prob.model.add_design_var('length', lower=0.1, upper=2.)
        prob.model.add_design_var('width', lower=0.1, upper=2.)
        prob.model.add_design_var('height', lower=0.1, upper=2.)
        prob.model.add_objective('front_area', scaler=-1)  # maximize
        prob.model.add_objective('top_area', scaler=-1)  # maximize
        prob.model.add_constraint('volume', upper=1.)

        # run #1
        prob.setup()
        prob.run_driver()
        front = prob['front_area']
        top = prob['top_area']
        l1 = prob['length']
        w1 = prob['width']
        h1 = prob['height']
        print('Box dims: ', l1, w1, h1)
        print('Front and top area: ', front, top)
        print('Volume: ', prob['volume'])  # should be around 1

        # run #2
        # weights changed
        prob2 = Problem()
        prob2.model.add_subsystem('box', Box(), promotes=['*'])

        indeps2 = prob2.model.add_subsystem('indeps', IndepVarComp(), promotes=['*'])
        indeps2.add_output('length', 1.5)
        indeps2.add_output('width', 1.5)
        indeps2.add_output('height', 1.5)

        # setup the optimization
        prob2.driver = SimpleGADriver()
        prob2.driver.options['max_gen'] = 100
        prob2.driver.options['bits'] = {'length': 8, 'width': 8, 'height': 8}
        prob2.driver.options['multi_obj_exponent'] = 1.
        prob2.driver.options['penalty_parameter'] = 10.
        prob2.driver.options['multi_obj_weights'] = {'box.front_area': 0.9,
                                                     'box.top_area': 0.1}
        prob2.driver.options['multi_obj_exponent'] = 1

        prob2.model.add_design_var('length', lower=0.1, upper=2.)
        prob2.model.add_design_var('width', lower=0.1, upper=2.)
        prob2.model.add_design_var('height', lower=0.1, upper=2.)
        prob2.model.add_objective('front_area', scaler=-1)  # maximize
        prob2.model.add_objective('top_area', scaler=-1)  # maximize
        prob2.model.add_constraint('volume', upper=1.)

        # run #1
        prob2.setup()
        prob2.run_driver()
        front2 = prob2['front_area']
        top2 = prob2['top_area']
        l2 = prob2['length']
        w2 = prob2['width']
        h2 = prob2['height']
        print('Box dims: ', l2, w2, h2)
        print('Front and top area: ', front2, top2)
        print('Volume: ', prob['volume'])  # should be around 1
        self.assertGreater(w1, w2)  # front area does not depend on width
        self.assertGreater(h2, h1)  # top area does not depend on height