Exemplo n.º 1
0
 def setup(self,setup_options=True):
     model = super(ExamplesGCAL, self).setup(setup_options)
     if setup_options is True or 'sheets' in setup_options:
         model.sheets.Retina.update(nominal_bounds=sheet.BoundingBox(radius=self.area/2.0+1.125))
         model.sheets.LGNOn.update(nominal_bounds=sheet.BoundingBox(radius=self.area/2.0+0.75))
         model.sheets.LGNOff.update(nominal_bounds=sheet.BoundingBox(radius=self.area/2.0+0.75))
         model.sheets.V1.update(nominal_density=48)
     if setup_options is True or 'projections' in setup_options:
         order_projections(model, ['afferent',
                                   'lateral_gain_control',
                                   ('V1_afferent', {'polarity':'On'}),
                                   ('V1_afferent', {'polarity':'Off'}),
                                   'lateral_excitatory',
                                   'lateral_inhibitory'])
     return model
Exemplo n.º 2
0
    def Retina(self, properties):
        input_generator=self['training_patterns'][properties['eye']+'Retina'
                                                     if 'eye' in properties
                                                     else 'Retina']
        if 'cr' in self.dims and self.dataset!='Gaussian':
            for pattern_number, individual_generator in enumerate(input_generator.generators):
                brightness_difference=numbergen.UniformRandom(lbound=(-1.0+self.dim_fraction)/2.0,
                                                              ubound=(1.0-self.dim_fraction)/2.0,
                                                              seed=456+pattern_number,
                                                              name="Dim"+str(pattern_number))
                if 'eye' in properties and properties['eye']=='Left':
                    hsv = colorsys.rgb_to_hsv(*self.cone_scale)
                    hsv_dimmed=(hsv[0],hsv[1],hsv[2]+brightness_difference)
                    channel_factors = list(colorsys.hsv_to_rgb(*hsv_dimmed))
                elif 'eye' in properties and properties['eye']=='Right':
                    hsv = colorsys.rgb_to_hsv(*self.cone_scale)
                    hsv_dimmed=(hsv[0],hsv[1],hsv[2]-brightness_difference)
                    channel_factors = list(colorsys.hsv_to_rgb(*hsv_dimmed))
                else:
                    channel_factors = self.cone_scale

                individual_generator.channel_transforms.append(
                    ScaleChannels(channel_factors = channel_factors))

        return Model.ChannelGeneratorSheet.params(
            period=self['period'],
            phase=0.05,
            nominal_density=self.retina_density,
            nominal_bounds=sheet.BoundingBox(radius=self.area/2.0
                                + self.v1aff_radius*self.sf_spacing**(max(self['SF'])-1)
                                + self.lgnaff_radius*self.sf_spacing**(max(self['SF'])-1)
                                + self.lgnlateral_radius),
            input_generator=input_generator)
Exemplo n.º 3
0
    def afferent(self, src_properties, dest_properties):
        channel = dest_properties['SF'] if 'SF' in dest_properties else 1

        centerg = imagen.Gaussian(
            size=0.07385 * self.sf_spacing**(channel - 1),
            aspect_ratio=1.0,
            output_fns=[transferfn.DivisiveNormalizeL1()])
        surroundg = imagen.Gaussian(
            size=(4 * 0.07385) * self.sf_spacing**(channel - 1),
            aspect_ratio=1.0,
            output_fns=[transferfn.DivisiveNormalizeL1()])
        on_weights = imagen.Composite(generators=[centerg, surroundg],
                                      operator=numpy.subtract)
        off_weights = imagen.Composite(generators=[surroundg, centerg],
                                       operator=numpy.subtract)

        #TODO: strength=+strength_scale/len(cone_types) for 'On' center
        #TODO: strength=-strength_scale/len(cone_types) for 'Off' center
        #TODO: strength=-strength_scale/len(cone_types) for 'On' surround
        #TODO: strength=+strength_scale/len(cone_types) for 'Off' surround
        return Model.SharedWeightCFProjection.params(
            delay=0.05,
            strength=2.33 * self.strength_factor,
            name='Afferent',
            nominal_bounds_template=sheet.BoundingBox(
                radius=self.lgnaff_radius * self.sf_spacing**(channel - 1)),
            weights_generator=on_weights
            if dest_properties['polarity'] == 'On' else off_weights)
Exemplo n.º 4
0
    def V1_afferent(self, src_properties, dest_properties):
        sf_channel = src_properties['SF'] if 'SF' in src_properties else 1
        # Adjust delays so same measurement protocol can be used with and without gain control.
        LGN_V1_delay = 0.05 if self.gain_control else 0.10

        name=''
        if 'eye' in src_properties: name+=src_properties['eye']
        if 'opponent' in src_properties:
            name+=src_properties['opponent']+src_properties['surround']
        name+=('LGN'+src_properties['polarity']+'Afferent')
        if sf_channel>1: name+=('SF'+str(src_properties['SF']))

        gaussian_size = 2.0 * self.v1aff_radius *self.sf_spacing**(sf_channel-1)
        weights_generator = imagen.random.GaussianCloud(gaussian_size=gaussian_size)

        return [Model.CFProjection.params(
                delay=LGN_V1_delay+lag,
                dest_port=('Activity','JointNormalize','Afferent'),
                name= name if lag==0 else name+('Lag'+str(lag)),
                learning_rate=self.aff_lr,
                strength=self.aff_strength*(1.0 if not self.gain_control else 1.5),
                weights_generator=weights_generator,
                nominal_bounds_template=sheet.BoundingBox(radius=
                                            self.v1aff_radius*self.sf_spacing**(sf_channel-1)))
                for lag in self['lags']]
Exemplo n.º 5
0
 def lateral_excitatory(self, src_properties, dest_properties):
     return Model.CFProjection.params(
         delay=0.05,
         name='LateralExcitatory',
         weights_generator=imagen.Gaussian(aspect_ratio=1.0, size=0.05),
         strength=self.exc_strength,
         learning_rate=self.exc_lr,
         nominal_bounds_template=sheet.BoundingBox(radius=self.latexc_radius))
Exemplo n.º 6
0
 def lateral_inhibitory(self, src_properties, dest_properties):
     return Model.CFProjection.params(
         delay=0.05,
         name='LateralInhibitory',
         weights_generator=imagen.random.GaussianCloud(gaussian_size=0.15),
         strength=-1.0*self.inh_strength,
         learning_rate=self.inh_lr,
         nominal_bounds_template=sheet.BoundingBox(radius=self.latinh_radius))
Exemplo n.º 7
0
 def V1(self, properties):
     return Model.SettlingCFSheet.params(
         tsettle=16,
         plastic=True,
         joint_norm_fn=optimized.compute_joint_norm_totals_cython,
         output_fns=[transferfn.misc.HomeostaticResponse(t_init=self.t_init,
                                                         learning_rate=0.01 if self.homeostasis else 0.0)],
         nominal_density=self.cortex_density,
         nominal_bounds=sheet.BoundingBox(radius=self.area/2.0))
Exemplo n.º 8
0
 def lr_lateral_excitatory(self, src_properties, dest_properties):
     return Model.CFProjection.params(
         delay=0.1,
         name='LRExcitatory',
         activity_group=(0.9, MultiplyWithConstant()),
         weights_generator=imagen.Gaussian(aspect_ratio=1.0, size=self.lateral_size),
         strength=self.latexc_strength,
         learning_rate=self.latexc_lr,
         nominal_bounds_template=sheet.BoundingBox(radius=self.lateral_radius))
Exemplo n.º 9
0
 def Retina(self, properties):
     return Model.GeneratorSheet.params(
         period=self['period'],
         phase=0.05,
         nominal_density=self.retina_density,
         nominal_bounds=sheet.BoundingBox(radius=self.area/2.0
                             + self.v1aff_radius*self.sf_spacing**(max(self['SF'])-1)
                             + self.lgnaff_radius*self.sf_spacing**(max(self['SF'])-1)
                             + self.lgnlateral_radius),
         input_generator=self['training_patterns'][properties['eye']+'Retina'
                                                   if 'eye' in properties
                                                   else 'Retina'])
Exemplo n.º 10
0
 def LGN(self, properties):
     channel = properties['SF'] if 'SF' in properties else 1
     return Model.SettlingCFSheet.params(
         mask=topo.base.projection.SheetMask(),
         measure_maps=False,
         output_fns=[transferfn.misc.HalfRectify()],
         nominal_density=self.lgn_density,
         nominal_bounds=sheet.BoundingBox(
             radius=self.area / 2.0 +
             self.v1aff_radius * self.sf_spacing**(channel - 1) +
             self.lgnlateral_radius),
         tsettle=2 if self.gain_control else 0,
         strict_tsettle=1 if self.gain_control else 0)
Exemplo n.º 11
0
 def lateral_inhibitory(self, src_properties, dest_properties):
     """
     Switch to divisive inhibition, otherwise parameters unchanged.
     """
     return Model.CFProjection.params(
         delay=0.05,
         name='LateralInhibitory',
         weights_generator=ig.random.GaussianCloud(
             gaussian_size=self.latinh_size),
         strength=self.inh_strength,
         activity_group=(0.6, DivideWithConstant(c=self.division_constant)),
         learning_rate=self.inh_lr,
         nominal_bounds_template=sheet.BoundingBox(
             radius=self.latinh_radius))
Exemplo n.º 12
0
 def lateral_gain_control(self, src_properties, dest_properties):
     #TODO: Are those 0.25 the same as lgnlateral_radius/2.0?
     return Model.SharedWeightCFProjection.params(
         delay=0.05,
         dest_port=('Activity'),
         activity_group=(0.6, DivideWithConstant(c=0.11)),
         weights_generator=imagen.Gaussian(
             size=0.25,
             aspect_ratio=1.0,
             output_fns=[transferfn.DivisiveNormalizeL1()]),
         nominal_bounds_template=sheet.BoundingBox(radius=0.25),
         name=('LateralGC' + src_properties['eye']
               if 'eye' in src_properties else 'LateralGC'),
         strength=0.6 / len(self.attrs.Eyes))
Exemplo n.º 13
0
    def afferent_surround(self, src_properties, dest_properties):
        surrounds=[]
        for color, color_code in self.ColorToChannel.items():
            if color in dest_properties['surround']:
                surrounds.append(color_code)

        return [Model.SharedWeightCFProjection.params(
            delay=0.05,
            strength=(4.7/2.33)*self.lgnaff_strength/len(surrounds)*(-1 if dest_properties['polarity'] == 'On' else 1),
            src_port='Activity%d'%surround,
            dest_port='Activity',
            weights_generator=imagen.Gaussian(size=0.07385*(4 if dest_properties['opponent'] is not 'Blue' else 1),
                                              aspect_ratio=1.0,
                                              output_fns=[transferfn.DivisiveNormalizeL1()]),
            name='AfferentSurround'+str(surround),
            nominal_bounds_template=sheet.BoundingBox(radius=self.lgnaff_radius))
            for surround in surrounds]
Exemplo n.º 14
0
 def afferent_surround(self, src_properties, dest_properties):
     #TODO: strength=-strength_scale for 'On', +strength_scale for 'Off'
     #TODO: strength=-strength_scale/2 for dest_properties['opponent']=='Blue'
     #      dest_properties['surround']=='RedGreen' and dest_properties['polarity']=='On'
     #TODO: strength=+strength_scale/2 for above, but 'Off'
     #TODO: strength=-strength_scale/len(cone_types) for Luminosity 'On'
     #TODO: strength=+strength_scale/len(cone_types) for Luminosity 'Off'
     return Model.SharedWeightCFProjection.params(
         delay=0.05,
         strength=2.33 * self.strength_factor,
         weights_generator=imagen.Gaussian(
             size=4 * 0.07385,
             aspect_ratio=1.0,
             output_fns=[transferfn.DivisiveNormalizeL1()]),
         name='AfferentSurround' + src_properties['cone'],
         nominal_bounds_template=sheet.BoundingBox(
             radius=self.lgnaff_radius))
Exemplo n.º 15
0
    def lateral_gain_control(self, src_properties, dest_properties):
        #TODO: Are those 0.25 the same as lgnlateral_radius/2.0?
        name='LateralGC'
        if 'eye' in src_properties:
            name+=src_properties['eye']
        if 'SF' in src_properties and self.gain_control_SF:
            name+=('SF'+str(src_properties['SF']))

        return Model.SharedWeightCFProjection.params(
            delay=0.05,
            dest_port=('Activity'),
            activity_group=(0.6,DivideWithConstant(c=0.11)),
            weights_generator=imagen.Gaussian(size=self.gain_control_size,
                                              aspect_ratio=1.0,
                                              output_fns=[transferfn.DivisiveNormalizeL1()]),
            nominal_bounds_template=sheet.BoundingBox(radius=self.gain_control_size),
            name=name,
            strength=0.6/(2 if self['binocular'] else 1))
Exemplo n.º 16
0
 def afferent_center(self, src_properties, dest_properties):
     #TODO: It shouldn't be too hard to figure out how many retina sheets it connects to,
     #      then all the below special cases can be generalized!
     #TODO: strength=+strength_scale for 'On', strength=-strength_scale for 'Off'
     #TODO: strength=+strength_scale for dest_properties['opponent']=='Blue'
     #      dest_properties['surround']=='RedGreen' and dest_properties['polarity']=='On'
     #TODO: strength=-strength_scale for above, but 'Off'
     #TODO: strength=+strength_scale/len(cone_types) for Luminosity 'On'
     #TODO: strength=-strength_scale/len(cone_types) for Luminosity 'Off'
     return Model.SharedWeightCFProjection.params(
         delay=0.05,
         strength=2.33 * self.strength_factor,
         weights_generator=imagen.Gaussian(
             size=0.07385,
             aspect_ratio=1.0,
             output_fns=[transferfn.DivisiveNormalizeL1()]),
         name='AfferentCenter' + src_properties['cone'],
         nominal_bounds_template=sheet.BoundingBox(
             radius=self.lgnaff_radius))
Exemplo n.º 17
0
    def V1_afferent(self, src_properties, dest_properties):
        sf_channel = src_properties['SF'] if 'SF' in src_properties else 1
        # Adjust delays so same measurement protocol can be used with and without gain control.
        LGN_V1_delay = 0.05 if self.gain_control else 0.10

        name=''
        if 'eye' in src_properties: name+=src_properties['eye']
        if 'opponent' in src_properties:
            name+=src_properties['opponent']+src_properties['surround']
        name+=('LGN'+src_properties['polarity']+'Afferent')
        if sf_channel>1: name+=('SF'+str(src_properties['SF']))

        gaussian_size = 2.0 * self.v1aff_radius *self.sf_spacing**(sf_channel-1)
        weights_generator = imagen.random.GaussianCloud(gaussian_size=gaussian_size)

        #TFALERT: Changes regarding color begin
        if 'opponent' in src_properties:
            # Determine strength per channel from how many luminosity and color channels there are
            num_tot=len(self['polarities'])*len(self['opponents'])
            num_lum=len(self['polarities'])
            num_col=num_tot-num_lum
            color_scale=((1.0*num_tot/num_lum*(1.0-self.color_strength)) if src_properties['opponent']=="RedGreenBlue" else
                         (1.0*num_tot/num_col*self.color_strength))
        else: color_scale=1.0
        #TFALERT: Changes regarding color end

        #TFALERT: Mind the change in the strength compared to the non-color version
        return [Model.CFProjection.params(
                delay=LGN_V1_delay+lag,
                dest_port=('Activity','JointNormalize','Afferent'),
                name= name if lag==0 else name+('Lag'+str(lag)),
                learning_rate=self.aff_lr,
                strength=self.aff_strength*color_scale*
                            (1.0 if (not self.gain_control
                                     or ('opponent' in src_properties
                                         and not self.gain_control_color))
                            else 1.5),
                weights_generator=weights_generator,
                nominal_bounds_template=sheet.BoundingBox(radius=
                                            self.v1aff_radius*self.sf_spacing**(sf_channel-1)))
                for lag in self['lags']]
Exemplo n.º 18
0
    def LGN(self, properties):
        channel=properties['SF'] if 'SF' in properties else 1

        sf_aff_multiplier = self.sf_spacing**(max(self['SF'])-1) if self.gain_control_SF else \
                            self.sf_spacing**(channel-1)

        luminosity_channel='RedGreenBlue' if self.color_sim_type=='Trichromatic' else 'GreenBlue'

        gain_control = self.gain_control_SF if 'SF' in properties else \
                       self.gain_control_color if 'opponent' in properties and \
                                                properties['opponent']!=luminosity_channel else \
                       self.gain_control

        return Model.SettlingCFSheet.params(
            mask = topo.base.projection.SheetMask(),
            measure_maps=False,
            output_fns=[transferfn.misc.HalfRectify()],
            nominal_density=self.lgn_density,
            nominal_bounds=sheet.BoundingBox(radius=self.area/2.0
                                             + self.v1aff_radius
                                             * sf_aff_multiplier
                                             + self.lgnlateral_radius),
            tsettle=2 if gain_control else 0,
            strict_tsettle=1 if gain_control else 0)