Exemplo n.º 1
0
    def setUp(self):
        """
        Repeating above test cases but with delays to determine that delay
        flags reach us.
        Returns
        -------

        """

        self.env = simpy.Environment()
        config = Config(INTEGRATION)
        self.cluster = Cluster(self.env, config)
        self.buffer = Buffer(self.env, self.cluster, config)
        dm = DelayModel(0.9, "normal",
                   DelayModel.DelayDegree.HIGH)
        self.planner = Planner(
            self.env, PLANNING_ALGORITHM,
            self.cluster, SHADOWPlanning('heft',delay_model=dm), delay_model=dm
        )

        self.scheduler = Scheduler(
            self.env, self.buffer, self.cluster, DynamicAlgorithmFromPlan()
        )
        self.telescope = Telescope(
            self.env, config, self.planner, self.scheduler
        )
        self.env.process(self.cluster.run())
        self.env.process(self.buffer.run())
        self.scheduler.start()
        self.env.process(self.scheduler.run())
        self.env.process(self.telescope.run())
Exemplo n.º 2
0
    def setUp(self) -> None:
        """
        This test scenario is going to test the edge cases like
        double-allocation that may happen.

        For example - the use of curr_allocs should result in the
        _process_current_schedule not double_allocation, so we will test this.
        Returns
        -------

        """
        self.env = simpy.Environment()
        config = Config(CONFIG)
        sched_algorithm = DynamicAlgorithmFromPlan()

        self.cluster = Cluster(env=self.env, config=config)
        self.telescope = Telescope(self.env,
                                   config,
                                   planner=None,
                                   scheduler=None)
        self.buffer = Buffer(self.env, self.cluster, config)

        self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                   sched_algorithm)

        self.observation = self.telescope.observations[0]
        self.machine = self.cluster.machines[0]
Exemplo n.º 3
0
    def setUp(self) -> None:
        """
        Create a planner and a `simpy` environment in which to run dummy
        simulations for the purpose of ensuring the planner works nicely
        when selecting 'batch' as a static scheduling method.
        Returns
        -------

        """
        self.env = simpy.Environment()
        config = Config(CONFIG)
        self.model = BatchPlanning('batch')

        self.cluster = Cluster(self.env, config=config)
        self.buffer = Buffer(env=self.env, cluster=self.cluster, config=config)
        self.planner = Planner(
            self.env,
            PLAN_ALGORITHM,
            self.cluster,
            self.model,
        )
        self.telescope = Telescope(self.env,
                                   config,
                                   planner=None,
                                   scheduler=None)
Exemplo n.º 4
0
    def setUp(self):
        self.env = simpy.Environment()
        config = Config(INTEGRATION)
        self.cluster = Cluster(self.env, config)
        self.buffer = Buffer(self.env, self.cluster, config)
        self.planner = Planner(self.env, PLANNING_ALGORITHM, self.cluster,
                               SHADOWPlanning('heft'))

        self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                   DynamicAlgorithmFromPlan())
        self.telescope = Telescope(self.env, config, self.planner,
                                   self.scheduler)
        self.env.process(self.cluster.run())
        self.env.process(self.buffer.run())
        self.scheduler.start()
        self.env.process(self.scheduler.run())
        self.env.process(self.telescope.run())
Exemplo n.º 5
0
 def testTelescopeBasicConfig(self):
     telescope = Telescope(env=self.env,
                           config=self.config,
                           planner=None,
                           scheduler=self.scheduler)
     self.assertEqual(36, telescope.total_arrays)
     # Pipelines are associated with individual observation
     self.assertTrue('emu' in telescope.pipelines)
Exemplo n.º 6
0
 def setUp(self) -> None:
     self.env = simpy.Environment()
     config = Config(CONFIG)
     self.cluster = Cluster(self.env, config)
     self.buffer = Buffer(self.env, self.cluster, config)
     self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                DynamicAlgorithmFromPlan)
     self.planner = Planner(self.env, PLANNING_ALGORITHM, self.cluster,
                            SHADOWPlanning('heft'))
     # planner = None
     self.telescope = Telescope(self.env, config, self.planner,
                                self.scheduler)
Exemplo n.º 7
0
class TestSchedulerIntegration(unittest.TestCase):
    def setUp(self):
        self.env = simpy.Environment()
        config = Config(INTEGRATION)
        self.cluster = Cluster(self.env, config)
        self.buffer = Buffer(self.env, self.cluster, config)
        self.planner = Planner(self.env, PLANNING_ALGORITHM, self.cluster,
                               SHADOWPlanning('heft'))

        self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                   DynamicAlgorithmFromPlan())
        self.telescope = Telescope(self.env, config, self.planner,
                                   self.scheduler)
        self.env.process(self.cluster.run())
        self.env.process(self.buffer.run())
        self.scheduler.start()
        self.env.process(self.scheduler.run())
        self.env.process(self.telescope.run())

    def test_FIFO_with_buffer(self):
        """
        Demonstrate that the scheduler accurately schedules when we have
        other Actors working in tandem.

        Expectations:
            - After 1 timestep in the simualtion, we have 5 resources
            available of the 10 that we start with.
            -
        Returns
        -------

        """
        self.env.run(until=1)

        self.assertEqual(10, len(self.cluster._resources['available']))
        # This takes timestep, data in the HotBuffer should be 4
        self.env.run(until=2)
        self.assertEqual(5, len(self.cluster._resources['available']))
        self.assertEqual(496, self.buffer.hot[0].current_capacity)
        self.env.run(until=31)
        self.assertEqual(5, len(self.cluster._tasks['finished']))
        # self.assertEqual(500, self.buffer.hot[0].current_capacity)
        self.assertEqual(210, self.buffer.cold[0].current_capacity)
        self.env.run(until=32)
        # Ensure the time
        self.assertEqual(ScheduleStatus.ONTIME, self.scheduler.schedule_status)
        # 30 timesteps until we finish everything + 81 timesteps to complete
        # workflow plan.
        self.env.run(until=124)
        # As we have been processing the current observation, we are also
        # ingestting the next one.
        self.assertEqual(250, self.buffer.cold[0].current_capacity)
Exemplo n.º 8
0
 def setUp(self):
     self.env = simpy.Environment()
     sched_algorithm = DynamicAlgorithmFromPlan()
     config = Config(LONG_CONFIG)
     self.cluster = Cluster(self.env, config)
     planning_model = SHADOWPlanning(algorithm=PLANNING_ALGORITHM)
     self.planner = Planner(self.env, PLANNING_ALGORITHM, self.cluster,
                            planning_model)
     self.buffer = Buffer(self.env, self.cluster, config)
     self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                sched_algorithm)
     self.telescope = Telescope(self.env, config, self.planner,
                                self.scheduler)
Exemplo n.º 9
0
    def setUp(self) -> None:
        """
        Setup a cluster and a simulation environment to test ingest pipelines
        """
        self.env = simpy.Environment()
        config = Config(CONFIG)

        self.cluster = Cluster(env=self.env, config=config)
        self.telescope = Telescope(self.env,
                                   config,
                                   planner=None,
                                   scheduler=None)
        self.observation = self.telescope.observations[0]
Exemplo n.º 10
0
    def setUp(self) -> None:
        """
        Batch scheduling setup
        """
        self.env = simpy.Environment()
        config = Config(CONFIG)

        self.cluster = Cluster(env=self.env, config=config)
        self.telescope = Telescope(self.env,
                                   config,
                                   planner=None,
                                   scheduler=None)
        self.observation = self.telescope.observations[0]
Exemplo n.º 11
0
 def testIngest(self):
     telescope = Telescope(env=self.env,
                           config=self.config,
                           planner=self.planner,
                           scheduler=self.scheduler)
     self.assertEqual(0, telescope.telescope_use)
     self.env.process(telescope.run())
     self.env.process(self.cluster.run())
     self.scheduler.start()
     self.env.process(self.scheduler.run())
     self.env.process(self.buffer.run())
     self.env.run(until=2)
     self.assertEqual(36, telescope.telescope_use)
     self.assertEqual(5, len(self.cluster._resources['available']))
     # After 1 timestep, data in the HotBuffer should be 2
     self.assertEqual(496, self.buffer.hot[0].current_capacity)
     self.env.run(until=11)
     self.assertEqual(len([self.buffer.hot[0].observations["transfer"]]), 1)
     self.assertEqual(462, self.buffer.hot[0].current_capacity)
     self.assertEqual(248, self.buffer.cold[0].current_capacity)
     self.env.run(until=12)
     self.assertEqual(0, telescope.telescope_use)
     self.assertEqual(10, len(self.cluster._resources['available']))
     self.assertEqual(5, len(self.cluster._tasks['finished']))
Exemplo n.º 12
0
    def setUp(self) -> None:
        """
        TODO
        Set up tasks and cluster to attempt allocation of tasks to resources
        """
        self.env = simpy.Environment()
        config = Config(CONFIG)

        self.cluster = Cluster(env=self.env, config=config)
        self.telescope = Telescope(self.env,
                                   config,
                                   planner=None,
                                   scheduler=None)
        self.observation = self.telescope.observations[0]
        self.machine = self.cluster.machines[0]
        self.task = Task('test_0', 0, 2, self.machine, [])
Exemplo n.º 13
0
    def setUp(self):
        self.algorithm = BatchProcessing
        self.env = simpy.Environment()
        config = Config(CONFIG)
        self.cluster = Cluster(self.env, config=config)
        self.buffer = Buffer(self.env, self.cluster, config)
        self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                   DynamicAlgorithmFromPlan())
        self.algorithm = BatchProcessing()
        self.model = BatchPlanning('batch')
        self.planner = Planner(
            self.env,
            'heft',
            self.cluster,
            self.model,
        )

        self.telescope = Telescope(self.env, config, self.planner,
                                   self.scheduler)
Exemplo n.º 14
0
class TestSchedulerDelayHelpers(unittest.TestCase):
    def setUp(self):
        self.env = simpy.Environment()
        config = Config(INTEGRATION)
        self.cluster = Cluster(self.env, config)
        self.buffer = Buffer(self.env, self.cluster, config)
        self.planner = Planner(self.env,
                               PLANNING_ALGORITHM,
                               self.cluster,
                               SHADOWPlanning('heft'),
                               delay_model=DelayModel(0.3, "normal"))

        self.scheduler = Scheduler(self.env, self.buffer, self.cluster,
                                   DynamicAlgorithmFromPlan())
        self.telescope = Telescope(self.env, config, self.planner,
                                   self.scheduler)
        self.env.process(self.cluster.run())
        self.env.process(self.buffer.run())
        self.scheduler.start()
        self.env.process(self.scheduler.run())
        self.env.process(self.telescope.run())

    def test_propogate_delay_returns_updated_workflow(self):
        """
Exemplo n.º 15
0
class TestDelaysInActors(unittest.TestCase):

    def setUp(self):
        """
        Repeating above test cases but with delays to determine that delay
        flags reach us.
        Returns
        -------

        """

        self.env = simpy.Environment()
        config = Config(INTEGRATION)
        self.cluster = Cluster(self.env, config)
        self.buffer = Buffer(self.env, self.cluster, config)
        dm = DelayModel(0.9, "normal",
                   DelayModel.DelayDegree.HIGH)
        self.planner = Planner(
            self.env, PLANNING_ALGORITHM,
            self.cluster, SHADOWPlanning('heft',delay_model=dm), delay_model=dm
        )

        self.scheduler = Scheduler(
            self.env, self.buffer, self.cluster, DynamicAlgorithmFromPlan()
        )
        self.telescope = Telescope(
            self.env, config, self.planner, self.scheduler
        )
        self.env.process(self.cluster.run())
        self.env.process(self.buffer.run())
        self.scheduler.start()
        self.env.process(self.scheduler.run())
        self.env.process(self.telescope.run())

    def test_scheduler_delay_detection(self):
        """
        Nothing should change until we reach the workflow plan, as we are
        testing TaskDelays
        Returns
        -------
        """

        self.env.run(until=1)
        # Remember - env starts at 0, we don't start until 1.
        self.assertEqual(10, len(self.cluster._resources['available']))
        self.env.run(until=2)

        # After 1 timestep, data in the HotBuffer should be 4
        self.assertEqual(496, self.buffer.hot[0].current_capacity)
        self.env.run(until=31)
        self.assertEqual(5, len(self.cluster._tasks['finished']))
        self.assertEqual(500, self.buffer.hot[0].current_capacity)
        self.env.run(until=44)
        # We know that the schedule has been delayed - however, we don't
        # report this to the telescope until we know how long we are delayed
        # (that is, until the task has completely finished its duration).
        # In this instance. we know that the first task is going to be
        # delayed, and so wait until it's completed execution to trigger a
        # delay.
        self.assertEqual(ScheduleStatus.ONTIME, self.scheduler.schedule_status)
        self.env.run(until=45)
        self.assertTrue(ScheduleStatus.DELAYED,self.scheduler.schedule_status)
        self.env.run(until=124)
        # Assert that we still have tasks running
        # self.assertLess(
        #     0, len(self.cluster.clusters['default']['tasks']['running'])
        # )
        self.assertNotEqual(250, self.buffer.cold[0].current_capacity)

    def test_telescope_delay_detection(self):
        """

        Returns
        -------

        """
        self.env.run(until=1)
        # Remember - env starts at 0, we don't start until 1.
        self.assertEqual(10, len(self.cluster._resources['available']))
        self.env.run(until=2)

        # After 1 timestep, data in the HotBuffer should be 4
        self.assertEqual(496, self.buffer.hot[0].current_capacity)
        self.env.run(until=31)
        self.assertEqual(5, len(self.cluster._tasks['finished']))
        self.assertEqual(500, self.buffer.hot[0].current_capacity)
        self.env.run(until=32)
        # Ensure the time
        self.assertEqual(ScheduleStatus.ONTIME, self.scheduler.schedule_status)
        self.env.run(until=100)
        self.assertEqual(ScheduleStatus.DELAYED,self.scheduler.schedule_status)
        self.assertTrue(self.telescope.delayed)

    def test_telescope_delay_greedy_decision(self):
        """