Exemplo n.º 1
0
    def test_fusion_conv_with_bias(self):
        for qengine in supported_qengines:
            with override_quantized_engine(qengine):
                model = ModelForFusionWithBias().train()
                # output with no fusion.
                out_ref = model(self.img_data_2d[0][0])

                model.qconfig = QConfig(activation=torch.nn.Identity,
                                        weight=torch.nn.Identity)
                model = fuse_modules(model, [["conv1", "bn1", "relu1"],
                                             ["conv2", "bn2"]])
                prep_model = prepare_qat(model, inplace=False)
                # output with fusion but no observers.
                out_fused = prep_model(self.img_data_2d[0][0])
                self.assertEqual(out_ref, out_fused)

                model.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
                prepare_qat(model, inplace=True)

                model(self.img_data_2d[0][0])

                def checkQAT(model):
                    self.assertEqual(type(model.conv1), nniqat.ConvBnReLU2d)
                    self.assertEqual(type(model.bn1), nn.Identity)
                    self.assertEqual(type(model.relu1), nn.Identity)
                    self.assertEqual(type(model.conv2), nniqat.ConvBn2d)
                    self.assertEqual(type(model.bn2), nn.Identity)

                checkQAT(model)
Exemplo n.º 2
0
    def test_dynamic_qat_linear(self):
        for qengine in supported_qengines:
            with override_quantized_engine(qengine):
                # Dynamic QAT without memoryless observers should fail
                with self.assertRaisesRegex(
                        ValueError,
                        "Dynamic QAT requires a memoryless observer." +
                        "This means a MovingAverage observer with averaging constant equal to 1"
                ):
                    model = ManualLinearDynamicQATModel(default_qat_qconfig)
                    model = prepare_qat(
                        model, mapping={torch.nn.Linear: nnqatd.Linear})

                model = ManualLinearDynamicQATModel()
                model = prepare_qat(model,
                                    mapping={torch.nn.Linear: nnqatd.Linear})
                self.assertEqual(type(model.fc1), nnqatd.Linear)
                self.assertEqual(type(model.fc2), nnqatd.Linear)
                self.checkObservers(model)
                test_only_train_fn(model, self.train_data)
                model = convert(model, mapping={nnqatd.Linear: nnqd.Linear})
                self.assertEqual(type(model.fc1), nnqd.Linear)
                self.assertEqual(type(model.fc2), nnqd.Linear)
                test_only_eval_fn(model, self.calib_data)
                self.checkScriptable(model, self.calib_data)
                self.checkNoQconfig(model)
Exemplo n.º 3
0
    def test_s_prep_before_qat_prep(self):
        (
            mod,
            sparsifier,
            sparse_config,
        ) = _get_model_and_sparsifier_and_sparse_config(
            tq.get_default_qat_qconfig("fbgemm")
        )
        sparsifier.prepare(mod, config=sparse_config)
        tq.prepare_qat(mod, inplace=True)
        self.assertTrue(hasattr(mod[0], "parametrizations"))
        self.assertTrue(hasattr(mod[5], "parametrizations"))

        # check that correct observers were inserted and that matching
        # occured successfully
        self.assertTrue(hasattr(mod[5], "activation_post_process"))
        self.assertTrue(isinstance(mod[5], torch.nn.qat.Linear))
        _squash_mask_calibrate_and_convert(
            mod, sparsifier, torch.randn(1, 4, 4, 4)
        )
        # check that final module is the expected quantized module and that the model runs
        self.assertTrue(isinstance(mod[5], torch.nn.quantized.Linear))
        self.assertEqual(mod(torch.randn(1, 4, 4, 4)).shape, torch.Size([1, 4, 4, 4]))

        # check that module was actually sparsified
        cur_sparsity = _calculate_sparsity(mod[5]._weight_bias()[0])
        self.assertGreaterAlmostEqual(cur_sparsity, sparse_config[0]["sparsity_level"])
Exemplo n.º 4
0
    def test_fusion_sequential_model_train(self):
        for qengine in supported_qengines:
            with override_quantized_engine(qengine):
                model = ModelWithSequentialFusion().train()
                model.to(torch.float)
                fuse_modules_qat(
                    model, [['conv1', 'relu1'] ,
                            ['features.0.0', 'features.0.1', 'features.0.2'],
                            ['features.1.0', 'features.1.1', 'features.1.2'],
                            ['features.2.0', 'features.2.1', 'features.2.2'],
                            ['classifier.0', 'classifier.1']],
                    inplace=True)
                self.assertEqual(type(model.conv1), nni.ConvReLU2d,
                                 msg="Fused Conv + Relu: nni.ConvReLU2d")
                self.assertEqual(type(model.conv1[0]), nn.Conv2d,
                                 msg="Fused Conv + Relu: Conv2d")
                self.assertEqual(type(model.conv1[1]), nn.ReLU,
                                 msg="Fused Conv + Relu: Relu")
                self.assertEqual(type(model.relu1), nn.Identity,
                                 msg="Fused Conv + Relu: Identity")
                for i in range(3):
                    self.assertEqual(type(model.features[i][0]), nni.ConvBnReLU2d,
                                     msg="Fused submodule Conv + folded BN")
                    self.assertEqual(type(model.features[i][1]), nn.Identity,
                                     msg="Fused submodule (skipped BN)")
                    self.assertEqual(type(model.features[i][2]), nn.Identity,
                                     msg="Non-fused submodule Conv")
                self.assertEqual(type(model.classifier[0]), nni.LinearReLU)
                self.assertEqual(type(model.classifier[1]), nn.Identity)
                model.qconfig = torch.ao.quantization.get_default_qat_qconfig(qengine)
                prepare_qat(model, inplace=True)
                self.checkObservers(model)
                model(self.img_data_2d[0][0])


                def checkQAT(model):
                    self.assertEqual(type(model.conv1), nniqat.ConvReLU2d)
                    self.assertEqual(type(model.relu1), nn.Identity)
                for i in range(3):
                    self.assertEqual(type(model.features[i][0]), nniqat.ConvBnReLU2d,
                                     msg="Fused submodule Conv + folded BN")
                    self.assertEqual(type(model.features[i][1]), nn.Identity,
                                     msg="Fused submodule (skipped BN)")
                    self.assertEqual(type(model.features[i][2]), nn.Identity,
                                     msg="Non-fused submodule Conv")
                self.assertEqual(type(model.classifier[0]), nniqat.LinearReLU)
                self.assertEqual(type(model.classifier[1]), nn.Identity)

                checkQAT(model)
                model(self.img_data_2d[1][0])
                convert(model, inplace=True)
                model(self.img_data_2d[1][0])
                self.checkModelWithSequentialQuantized(model)
Exemplo n.º 5
0
    def test_embedding_bag_linear(self):
        for qengine in supported_qengines:
            with override_quantized_engine(qengine):
                model = ManualEmbeddingBagLinear().train()
                model = prepare_qat(
                    model, mapping=get_embedding_qat_module_mappings())
                self.checkObservers(model)

                test_only_train_fn(model, self.embed_linear_data_train)
                # make sure not activation_post_process is inserted for EmbeddingBag
                self.assertFalse(hasattr(model, "activation_post_process"))
                # make sure that FakeQuant zero_points are correct dtype
                self.assertEqual(model.emb.weight_fake_quant.zero_point.dtype,
                                 torch.float32)
                self.assertEqual(
                    model.linear.weight_fake_quant.zero_point.dtype,
                    torch.int32)
                model = convert(
                    model,
                    mapping=get_embedding_static_quant_module_mappings())

                def checkQuantized(model):
                    # Make sure EmbeddingBag is now a quantized EmbeddingBag.
                    self.assertTrue(type(model.emb), nn.quantized.EmbeddingBag)
                    # Also test that Linear has been quantized.
                    self.assertTrue(type(model.linear), nnq.Linear)

                    test_only_eval_fn(model, self.embed_data)
                    self.checkScriptable(model, self.embed_data)
                    self.checkNoQconfig(model)

                checkQuantized(model)

                model = ManualEmbeddingBagLinear()
Exemplo n.º 6
0
    def test_defused_embedding_bag_linear(self):
        for qengine in supported_qengines:
            with override_quantized_engine(qengine):
                model = DeFusedEmbeddingBagLinear().train()
                model = prepare_qat(
                    model, mapping=get_embedding_qat_module_mappings())
                self.checkObservers(model)

                test_only_train_fn(model, self.embed_linear_data_train)
                # make sure activation_post_process is inserted after Linear.
                self.assertEqual(type(model.linear.activation_post_process),
                                 FusedMovingAvgObsFakeQuantize)
                # make sure that Embedding has a noop for activation.
                self.assertEqual(type(model.emb.activation_post_process),
                                 NoopObserver)

                model = convert(
                    model,
                    mapping=get_embedding_static_quant_module_mappings())

                def checkQuantized(model):
                    # make sure Embedding is now a QuantizedEmbedding
                    self.assertEqual(type(model.emb), nn.quantized.Embedding)
                    # make sure Linear is now a QuantizedLinear
                    self.assertEqual(type(model.linear), nn.quantized.Linear)

                    test_only_eval_fn(model, self.embed_data)
                    self.checkScriptable(model, self.embed_data)
                    self.checkNoQconfig(model)

                checkQuantized(model)
Exemplo n.º 7
0
    def test_embedding_bag_linear(self):
        for qengine in supported_qengines:
            with override_quantized_engine(qengine):
                model = ManualEmbeddingBagLinear().train()
                model = prepare_qat(model)
                self.checkObservers(model)

                train_indices = [[
                    torch.randint(0, 10, (12, 12)),
                    torch.randn((12, 1))
                ] for _ in range(2)]
                eval_output = [[torch.randint(0, 10, (12, 1))]]

                test_only_train_fn(model, train_indices)
                # make sure not activation_post_process is inserted for EmbeddingBag
                self.assertFalse(hasattr(model, "activation_post_process"))
                model = convert(model)

                def checkQuantized(model):
                    # Make sure EmbeddingBag is now a quantized EmbeddingBag.
                    self.assertTrue(type(model.emb), nn.quantized.EmbeddingBag)
                    # Also test that Linear has been quantized.
                    self.assertTrue(type(model.linear), nnq.Linear)

                    test_only_eval_fn(model, eval_output)
                    self.checkScriptable(model, eval_output)
                    self.checkNoQconfig(model)

                checkQuantized(model)

                model = ManualEmbeddingBagLinear()
                model = quantize_qat(model, test_only_train_fn,
                                     [train_indices])
                checkQuantized(model)
Exemplo n.º 8
0
    def test_conv_linear(self):
        for qengine in supported_qengines:
            with override_quantized_engine(qengine):
                model = ManualConvLinearQATModel()

                model = prepare_qat(model)
                self.checkObservers(model)

                test_only_train_fn(model, self.img_data_2d_train)
                model = convert(model)

                def checkQuantized(model):
                    self.assertEqual(type(model.conv), nnq.Conv2d)
                    self.assertEqual(type(model.fc1), nnq.Linear)
                    self.assertEqual(type(model.fc2), nnq.Linear)
                    test_only_eval_fn(model, self.img_data_2d)
                    self.checkScriptable(model, self.img_data_2d)
                    self.checkNoQconfig(model)

                checkQuantized(model)

                model = ManualConvLinearQATModel()
                model = quantize_qat(model, test_only_train_fn,
                                     [self.img_data_2d_train])
                checkQuantized(model)
Exemplo n.º 9
0
    def test_fuse_module_train(self):
        model = ModelForFusion(default_qat_qconfig).train()
        # Test step by step fusion
        model = fuse_modules_qat(model, ['conv1', 'bn1', 'relu1'])
        model = fuse_modules_qat(model, ['sub1.conv', 'sub1.bn'])
        self.assertEqual(type(model.conv1), nni.ConvBnReLU2d,
                         msg="Fused Conv + BN + Relu first layer")
        self.assertEqual(type(model.bn1), torch.nn.Identity,
                         msg="Fused Conv + BN + Relu (skipped BN)")
        self.assertEqual(type(model.relu1), torch.nn.Identity,
                         msg="Fused Conv + BN + Relu (skipped Relu)")

        self.assertEqual(type(model.sub1.conv), nni.ConvBn2d,
                         msg="Fused submodule Conv + BN")
        self.assertEqual(type(model.sub1.bn), torch.nn.Identity,
                         msg="Fused submodule Conv + BN (skipped BN)")
        self.assertEqual(type(model.sub2.conv), torch.nn.Conv2d,
                         msg="Non-fused submodule Conv")
        self.assertEqual(type(model.sub2.relu), torch.nn.ReLU,
                         msg="Non-fused submodule ReLU")
        model = prepare_qat(model)
        self.checkObservers(model)

        def checkQAT(model):
            self.assertEqual(type(model.conv1), nniqat.ConvBnReLU2d)
            self.assertEqual(type(model.bn1), nn.Identity)
            self.assertEqual(type(model.relu1), nn.Identity)
            self.assertEqual(type(model.sub1.conv), nniqat.ConvBn2d)
            self.assertEqual(type(model.sub1.bn), nn.Identity)
            self.assertEqual(type(model.sub2.conv), nn.Conv2d)
            self.assertEqual(type(model.sub2.relu), nn.ReLU)

        checkQAT(model)
        test_only_train_fn(model, self.img_data_1d_train)
        model = convert(model)

        def checkQuantized(model):
            self.assertEqual(type(model.conv1), nniq.ConvReLU2d)
            self.assertEqual(type(model.bn1), nn.Identity)
            self.assertEqual(type(model.relu1), nn.Identity)
            self.assertEqual(type(model.sub1.conv), nnq.Conv2d)
            self.assertEqual(type(model.sub1.bn), nn.Identity)
            self.assertEqual(type(model.sub2.conv), nn.Conv2d)
            self.assertEqual(type(model.sub2.relu), nn.ReLU)
            test_only_eval_fn(model, self.img_data_1d)
            self.checkNoQconfig(model)

        with self.assertRaisesRegex(RuntimeError, "Could not run 'aten::native_batch_norm' with arguments from the 'QuantizedCPU'"):
            checkQuantized(model)

        model = ModelForFusion(default_qat_qconfig).train()
        model = fuse_modules_qat(
            model,
            [['conv1', 'bn1', 'relu1'],
             ['sub1.conv', 'sub1.bn']])
        model = quantize_qat(model, test_only_train_fn, [self.img_data_1d_train])
        with self.assertRaisesRegex(RuntimeError, "Could not run 'aten::native_batch_norm' with arguments from the 'QuantizedCPU'"):
            checkQuantized(model)
Exemplo n.º 10
0
    def test_fusion_conv_with_bias(self):
        for qengine in supported_qengines:
            with override_quantized_engine(qengine):
                model_orig = ModelForFusionWithBias().train()

                # reference model
                model_ref = copy.deepcopy(model_orig)
                # output with no fusion.
                out_ref = model_ref(self.img_data_2d[0][0])

                # fused model
                model_orig.qconfig = QConfig(activation=torch.nn.Identity,
                                             weight=torch.nn.Identity)
                model = fuse_modules_qat(
                    model_orig,
                    [["conv1", "bn1", "relu1"],
                     ["conv2", "bn2"]])
                prep_model = prepare_qat(model, inplace=False)
                # output with fusion but no observers.
                out_fused = prep_model(self.img_data_2d[0][0])

                self.assertEqual(out_ref, out_fused)

                def checkBN(bn_ref, bn):
                    self.assertEqual(bn_ref.weight, bn.weight)
                    self.assertEqual(bn_ref.bias, bn.bias)
                    self.assertEqual(bn_ref.running_mean, bn.running_mean)
                    self.assertEqual(bn_ref.running_var, bn.running_var)

                checkBN(model_ref.bn1, prep_model.conv1.bn)
                checkBN(model_ref.bn2, prep_model.conv2.bn)

                model.qconfig = torch.ao.quantization.get_default_qconfig(qengine)
                prepare_qat(model, inplace=True)

                model(self.img_data_2d[0][0])

                def checkQAT(model):
                    self.assertEqual(type(model.conv1), nniqat.ConvBnReLU2d)
                    self.assertEqual(type(model.bn1), nn.Identity)
                    self.assertEqual(type(model.relu1), nn.Identity)
                    self.assertEqual(type(model.conv2), nniqat.ConvBn2d)
                    self.assertEqual(type(model.bn2), nn.Identity)

                checkQAT(model)
Exemplo n.º 11
0
    def test_embedding_qat_qconfig_equal(self):
        # Embedding QAT uses a NoopObserver class for activation,
        # and a FakeQuant for weight, make sure that qconfig comparison
        # functions properly for a mix of partial function and class in
        # qconfig.
        model = ManualEmbeddingBagLinear().train()
        model = prepare_qat(model)

        self.assertTrue(
            qconfig_equals(model.emb.qconfig, default_embedding_qat_qconfig))
Exemplo n.º 12
0
    def test_train_save_load_eval(self):
        r"""Test QAT flow of creating a model, doing QAT and saving the quantized state_dict
        During eval, we first call prepare_qat and conver on the model and then load the state_dict
        and compare results against original model
        """
        for qengine in supported_qengines:
            with override_quantized_engine(qengine):
                model = TwoLayerLinearModel()
                model = torch.ao.quantization.QuantWrapper(model)
                model.qconfig = torch.ao.quantization.get_default_qat_qconfig(
                    qengine)
                model = prepare_qat(model)

                fq_state_dict = model.state_dict()

                test_only_train_fn(model, self.train_data)
                model = convert(model)

                quant_state_dict = model.state_dict()

                x = torch.rand(2, 5, dtype=torch.float)
                ref = model(x)

                # Create model again for eval. Check result using quantized state_dict
                model = TwoLayerLinearModel()
                model = torch.ao.quantization.QuantWrapper(model)
                model.qconfig = torch.ao.quantization.get_default_qat_qconfig(
                    qengine)
                torch.ao.quantization.prepare_qat(model, inplace=True)
                new_state_dict = model.state_dict()

                # Check to make sure the model after prepare_qat has the same state_dict as original.
                self.assertEqual(set(fq_state_dict.keys()),
                                 set(new_state_dict.keys()))

                torch.ao.quantization.convert(model, inplace=True)
                model.eval()
                model.load_state_dict(quant_state_dict)
                out = model(x)
                self.assertEqual(ref, out)

                # Check model created using prepare has same state dict as quantized state_dict
                model = TwoLayerLinearModel()
                model.eval()
                model = torch.ao.quantization.QuantWrapper(model)
                model.qconfig = torch.ao.quantization.get_default_qconfig(
                    qengine)
                torch.ao.quantization.prepare(model, inplace=True)
                torch.ao.quantization.convert(model, inplace=True)
                self.assertEqual(set(model.state_dict().keys()),
                                 set(quant_state_dict.keys()))
                model.eval()
                model.load_state_dict(quant_state_dict)
                out = model(x)
                self.assertEqual(ref, out)
Exemplo n.º 13
0
    def test_qat_prep_before_s_prep(self):
        mod, sparsifier, _ = self._get_model_and_sparsifier_and_sparse_config(
            tq.get_default_qat_qconfig("fbgemm"))
        tq.prepare_qat(mod, inplace=True)

        # need to setup sparse_config on new modules
        sparse_config = [
            {
                "tensor_fqn": "5.weight",
                "sparsity_level": 0.7,
                "sparse_block_shape": (1, 4),
                "zeros_per_block": 4,
            },
            {
                "tensor_fqn": "0.weight"
            },
        ]
        sparsifier.prepare(mod, config=sparse_config)

        # check that correct modules had parametrizations added and
        # that none were lost during qat prepare
        self.assertTrue(hasattr(mod[0], "parametrizations"))
        self.assertTrue(hasattr(mod[5], "parametrizations"))

        # check that correct observers were inserted and that matching
        # occured successfully
        self.assertTrue(hasattr(mod[5], "activation_post_process"))
        self.assertTrue(isinstance(mod[5], torch.nn.qat.Linear))

        self._squash_mask_calibrate_and_convert(mod, sparsifier,
                                                torch.randn(1, 4, 4, 4))

        # check that final module is the expected quantized module and that the model runs
        self.assertTrue(isinstance(mod[5], torch.nn.quantized.Linear))
        self.assertEqual(
            mod(torch.randn(1, 4, 4, 4)).shape, torch.Size([1, 4, 4, 4]))

        # check that module was actually sparsified
        cur_sparsity = self._calculate_sparsity(mod[5]._weight_bias()[0])
        self.assertGreaterAlmostEqual(cur_sparsity,
                                      sparse_config[0]["sparsity_level"])
Exemplo n.º 14
0
    def test_fixed_qparam_ops(self):
        class M(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.sigmoid = torch.nn.Sigmoid()
                self.hardsigmoid = torch.nn.Hardsigmoid()
                self.tanh = torch.nn.Tanh()
                self.quant = QuantStub()
                self.dequant = DeQuantStub()

            def forward(self, x):
                x = self.quant(x)
                x = self.sigmoid(x)
                x = self.hardsigmoid(x)
                x = self.tanh(x)
                x = self.dequant(x)
                return x

        m = M().train()
        m.qconfig = default_qat_qconfig
        m = prepare_qat(m)
        for attr in ['sigmoid', 'hardsigmoid', 'tanh']:
            self.assertEqual(type(getattr(m, attr).activation_post_process),
                             FixedQParamsFakeQuantize)
        data = torch.randn(1, 3, 2, 4)
        before_convert = m(data)
        m = convert(m)
        after_convert = m(data)
        self.assertEqual(before_convert, after_convert)
        # make sure activation post process is removed
        for attr in ['sigmoid', 'hardsigmoid', 'tanh']:
            # verify fake quant module is removd
            self.assertFalse(
                hasattr(getattr(m, attr), 'activation_post_process'))
            # verify that hooks are removed
            self.assertTrue(len(getattr(m, attr)._forward_hooks.items()) == 0)

        # make sure no fake quantize module is inserted for eval mode

        def checkNoFQModule(m):
            for attr in ['sigmoid', 'hardsigmoid', 'tanh']:
                self.assertFalse(
                    hasattr(getattr(m, attr), "activation_post_process"))
                self.assertTrue(
                    len(getattr(m, attr)._forward_hooks.items()) == 0)

        m = M().eval()
        m.qconfig = default_qconfig
        m = prepare(m)
        checkNoFQModule(m)
        m = convert(m)
        checkNoFQModule(m)
Exemplo n.º 15
0
    def test_eval_only_fake_quant(self):
        r"""Using FakeQuant in evaluation only mode,
        this is useful for estimating accuracy loss when we quantize the
        network
        """
        for qengine in supported_qengines:
            with override_quantized_engine(qengine):
                model = ManualLinearQATModel(qengine)

                model = prepare_qat(model)
                self.checkObservers(model)

                model.eval()
                test_only_eval_fn(model, self.calib_data)
Exemplo n.º 16
0
 def test_linear_bn_workflow(self):
     qengine = torch.backends.quantized.engine
     m = nn.Sequential(
         QuantStub(),
         nn.Linear(4, 4),
         nn.BatchNorm1d(4),
     )
     data = torch.randn(4, 4)
     m.qconfig = torch.ao.quantization.get_default_qat_qconfig(qengine)
     m = torch.ao.quantization.fuse_modules_qat(m, [['1', '2']])
     mp = prepare_qat(m)
     mp(data)
     mq = convert(mp)
     self.assertTrue(type(mq[1]) == nnq.Linear)
     self.assertTrue(type(mq[2]) == nn.Identity)
Exemplo n.º 17
0
    def test_relu(self):
        class M(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.relu = nn.ReLU()

            def forward(self, x):
                x = self.relu(x)
                return x

        m = M().train()
        m.qconfig = default_qconfig
        m = prepare_qat(m)
        # make sure no activation_post_process is inserted for relu
        self.assertFalse(hasattr(m, "activation_post_process"))
        m = convert(m)
        # make sure ReLU module is not changed
        self.assertTrue(type(m.relu), nn.ReLU)
Exemplo n.º 18
0
    def test_forward_hooks_preserved(self):
        r"""Test QAT on preserving pre forward and post forward hooks of original model
        """
        qengine = torch.backends.quantized.engine
        model = QuantStubModel()
        counter = {
            'pre_forwards': 0,
            'forwards': 0,
        }

        def fw_pre_hook(h_module, input):
            counter['pre_forwards'] += 1

        def fw_hook(h_module, input, output):
            counter['forwards'] += 1

        model.fc.register_forward_pre_hook(fw_pre_hook)
        model.fc.register_forward_hook(fw_hook)

        model.qconfig = torch.ao.quantization.get_default_qat_qconfig(qengine)
        model = prepare_qat(model)

        def checkHooksIsPresent(model, before_convert=True):
            forward_hooks = 1
            if before_convert:
                self.assertEqual(len(model.quant._forward_hooks.values()), 1,
                                 "Quantization observer hook has disappeared")
                forward_hooks = 2
            self.assertObjectIn(fw_pre_hook,
                                model.fc._forward_pre_hooks.values())
            self.assertObjectIn(fw_hook, model.fc._forward_hooks.values())
            self.assertEqual(
                len(model.fc._forward_pre_hooks.values()), 1,
                "Extra pre forward hooks have appeared on a layer")
            self.assertEqual(
                len(model.fc._forward_hooks.values()), forward_hooks,
                "Extra post forward hooks have appeared on a layer")

        checkHooksIsPresent(model, True)
        x = torch.rand(2, 5, dtype=torch.float)
        model(x)
        torch.ao.quantization.convert(model, inplace=True)
        checkHooksIsPresent(model, False)
Exemplo n.º 19
0
    def test_dropout(self):
        for qengine in supported_qengines:
            with override_quantized_engine(qengine):
                model = ManualDropoutQATModel(qengine)
                model = prepare_qat(model)
                self.checkObservers(model)
                test_only_train_fn(model, self.train_data)
                model = convert(model)

                def checkQuantized(model):
                    self.assertEqual(type(model.fc1), nnq.Linear)
                    self.assertEqual(type(model.dropout), nnq.Dropout)
                    test_only_eval_fn(model, self.calib_data)
                    self.checkScriptable(model, self.calib_data)
                    self.checkNoQconfig(model)

                checkQuantized(model)

                model = quantize_qat(ManualDropoutQATModel(qengine),
                                     test_only_train_fn, [self.train_data])
                checkQuantized(model)
Exemplo n.º 20
0
    def _test_activation_convert_numerics_impl(self, Act, data):
        class M(torch.nn.Module):
            def __init__(self):
                super().__init__()
                self.act = Act()
                self.quant = QuantStub()
                self.dequant = DeQuantStub()

            def forward(self, x):
                x = self.quant(x)
                x = self.act(x)
                x = self.dequant(x)
                return x

        m = M().train()
        m.qconfig = default_qat_qconfig
        m = prepare_qat(m)
        before_convert = m(data)
        m = convert(m)
        after_convert = m(data)
        self.assertEqual(before_convert, after_convert)
Exemplo n.º 21
0
 def _get_model() -> torch.nn.Module:
     m = nn.Sequential(nn.Conv2d(2, 2, 1))
     m.qconfig = get_default_qat_qconfig("fbgemm")
     m = prepare_qat(m)
     return m