Exemplo n.º 1
0
 def __init__(
     self,
     in_channels: int,
     out_channels: int,
     kernel_size: Union[int, Tuple],
     stride: Union[int, Tuple] = 1,
     dilation: Union[int, Tuple] = 1,
     bias: bool = True,
 ) -> None:
     kernel_size = _ntuple(self._ndim)(kernel_size)
     stride = _ntuple(self._ndim)(stride)
     dilation = _ntuple(self._ndim)(dilation)
     nn.Conv2d.__init__(
         self,
         in_channels,
         out_channels,
         kernel_size,
         stride=stride,
         padding=_ntuple(self._ndim)(0),
         dilation=dilation,
         groups=1,
         bias=bias,
         padding_mode="zeros",
     )
     self.active_in_channels = in_channels
     self.active_out_channels = out_channels
Exemplo n.º 2
0
 def _output_size(dim):
     _check_size_scale_factor(dim)
     if size is not None:
         return size
     scale_factors = _ntuple(dim)(scale_factor)
     # math.floor might return float in py2.7
     return [int(math.floor(input.size(i + 2) * scale_factors[i])) for i in range(dim)]
Exemplo n.º 3
0
    def output_shape(self):
        if self.input_shape is None:
            return None

        scale_factor = _ntuple(len(self.input_shape) - 2)(self.scale_factor)
        shape = [np.nan if s is None else s for s in self.input_shape]
        return (tuple(shape[:2]) + tuple(self.size)) if self.size \
            else shape[:2] + [shape[i + 2] * scale_factor[i] for i in range(len(scale_factor))]
Exemplo n.º 4
0
 def forward(self, x):
     weight = self.weight
     weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
     weight = weight - weight_mean
     if x.numel() > 0:
         return nn.functional.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
     _pair = _ntuple(2)
     output_shape = [
         (i + 2 * p - (di * (k - 1) + 1)) // d + 1
         for i, p, di, k, d in zip(
             x.shape[-2:], _pair(self.padding), _pair(self.dilation), _pair(self.kernel_size), _pair(self.stride)
         )
     ]
     output_shape = [x.shape[0], self.weight.shape[0]] + output_shape
     return _NewEmptyTensorOp.apply(x, output_shape)  
Exemplo n.º 5
0
    def _output_size(dim):
        _check_size_scale_factor(dim)
        if size is not None:
            return size
        scale_factors = _ntuple(dim)(scale_factor)
        # math.floor might return float in py2.7

        # make scale_factor a tensor in tracing so constant doesn't get baked in
        """
        if torch._C._get_tracing_state():
            return [(torch.floor((input.size(i + 2) * torch.tensor(float(scale_factors[i]))).float())) for i in range(dim)]
        else:
            return [int(math.floor(float(input.size(i + 2)) * scale_factors[i])) for i in range(dim)]
        """
        return [(torch.floor((input.size(i + 2) *
                              torch.tensor(float(scale_factors[i]))).float()))
                for i in range(dim)]
Exemplo n.º 6
0
    def _output_size(dim):
        _check_size_scale_factor(dim)
        if size is not None:
            if is_tracing:
                return [torch.tensor(i) for i in size]
            else:
                return size
        scale_factors = _ntuple(dim)(scale_factor)
        # math.floor might return float in py2.7

        # make scale_factor a tensor in tracing so constant doesn't get baked in
        if is_tracing:
            return [
                (torch.floor((input.size(i + 2).float() * torch.tensor(scale_factors[i], dtype=torch.float32)).float()))
                for i in range(dim)
            ]
        else:
            return [int(math.floor(float(input.size(i + 2)) * scale_factors[i])) for i in range(dim)]
Exemplo n.º 7
0
    def _update_long_cycle(self, runner):
        """Before every epoch, check if long cycle shape should change. If it
        should, change the pipelines accordingly.

        change dataloader and model's subbn3d(split_bn)
        """
        base_b, base_t, base_s = self._get_schedule(runner.epoch)

        # rebuild dataset
        from mmaction.datasets import build_dataset
        resize_list = []
        for trans in self.cfg.data.train.pipeline:
            if trans['type'] == 'SampleFrames':
                curr_t = trans['clip_len']
                trans['clip_len'] = base_t
                trans['frame_interval'] = (curr_t *
                                           trans['frame_interval']) / base_t
            elif trans['type'] == 'Resize':
                resize_list.append(trans)
        resize_list[-1]['scale'] = _ntuple(2)(base_s)

        ds = build_dataset(self.cfg.data.train)

        from mmaction.datasets import build_dataloader

        dataloader = build_dataloader(
            ds,
            self.data_cfg.videos_per_gpu * base_b,
            self.data_cfg.workers_per_gpu,
            dist=True,
            num_gpus=len(self.cfg.gpu_ids),
            drop_last=True,
            seed=self.cfg.get('seed', None),
        )
        runner.data_loader = dataloader
        self.logger.info('Rebuild runner.data_loader')

        # the self._max_epochs is changed, therefore update here
        runner._max_iters = runner._max_epochs * len(runner.data_loader)

        # rebuild all the sub_batch_bn layers
        num_modifies = modify_subbn3d_num_splits(self.logger, runner.model,
                                                 base_b)
        self.logger.info(f'{num_modifies} subbns modified to {base_b}.')
Exemplo n.º 8
0
 def __init__(self,
              depth,
              num_segments=8,
              is_shift=True,
              non_local=(0, 0, 0, 0),
              non_local_cfg=dict(),
              shift_div=8,
              shift_place='blockres',
              temporal_pool=False,
              **kwargs):
     super().__init__(depth, **kwargs)
     self.num_segments = num_segments
     self.is_shift = is_shift
     self.shift_div = shift_div
     self.shift_place = shift_place
     self.temporal_pool = temporal_pool
     self.non_local = non_local
     self.non_local_stages = _ntuple(self.num_stages)(non_local)
     self.non_local_cfg = non_local_cfg
Exemplo n.º 9
0
import torch.nn as nn
import math
import torch.utils.model_zoo as model_zoo
import torch.nn.functional as F
from model.dsbn import DomainSpecificBatchNorm2d
from torch.nn.modules.conv import _ConvNd
from torch.nn.modules.utils import _ntuple

from collections import OrderedDict
import operator
from itertools import islice

_pair = _ntuple(2)

__all__ = ['resnet50dsbn', 'resnet101dsbn', 'resnet152dsbn']

model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
}


def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes,
                     out_planes,
                     kernel_size=3,
                     stride=stride,
Exemplo n.º 10
0
    def __init__(self,
                 depth,
                 pretrained,
                 pretrained2d=True,
                 in_channels=3,
                 num_stages=4,
                 base_channels=64,
                 out_indices=(3, ),
                 spatial_strides=(1, 2, 2, 2),
                 temporal_strides=(1, 1, 1, 1),
                 dilations=(1, 1, 1, 1),
                 conv1_kernel=(5, 7, 7),
                 conv1_stride_t=2,
                 pool1_stride_t=2,
                 with_pool2=True,
                 style='pytorch',
                 frozen_stages=-1,
                 inflate=(1, 1, 1, 1),
                 inflate_style='3x1x1',
                 conv_cfg=dict(type='Conv3d'),
                 norm_cfg=dict(type='BN3d', requires_grad=True),
                 act_cfg=dict(type='ReLU', inplace=True),
                 norm_eval=False,
                 with_cp=False,
                 non_local=(0, 0, 0, 0),
                 non_local_cfg=dict(),
                 zero_init_residual=True,
                 **kwargs):
        super().__init__()
        if depth not in self.arch_settings:
            raise KeyError(f'invalid depth {depth} for resnet')
        self.depth = depth
        self.pretrained = pretrained
        self.pretrained2d = pretrained2d
        self.in_channels = in_channels
        self.base_channels = base_channels
        self.num_stages = num_stages
        assert num_stages >= 1 and num_stages <= 4
        self.out_indices = out_indices
        assert max(out_indices) < num_stages
        self.spatial_strides = spatial_strides
        self.temporal_strides = temporal_strides
        self.dilations = dilations
        assert len(spatial_strides) == len(temporal_strides) == len(
            dilations) == num_stages
        self.conv1_kernel = conv1_kernel
        self.conv1_stride_t = conv1_stride_t
        self.pool1_stride_t = pool1_stride_t
        self.with_pool2 = with_pool2
        self.style = style
        self.frozen_stages = frozen_stages
        self.stage_inflations = _ntuple(num_stages)(inflate)
        self.non_local_stages = _ntuple(num_stages)(non_local)
        self.inflate_style = inflate_style
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.norm_eval = norm_eval
        self.with_cp = with_cp
        self.zero_init_residual = zero_init_residual

        self.block, stage_blocks = self.arch_settings[depth]
        self.stage_blocks = stage_blocks[:num_stages]
        self.inplanes = self.base_channels

        self.non_local_cfg = non_local_cfg

        self._make_stem_layer()

        self.res_layers = []
        for i, num_blocks in enumerate(self.stage_blocks):
            spatial_stride = spatial_strides[i]
            temporal_stride = temporal_strides[i]
            dilation = dilations[i]
            planes = self.base_channels * 2**i
            res_layer = self.make_res_layer(self.block,
                                            self.inplanes,
                                            planes,
                                            num_blocks,
                                            spatial_stride=spatial_stride,
                                            temporal_stride=temporal_stride,
                                            dilation=dilation,
                                            style=self.style,
                                            norm_cfg=self.norm_cfg,
                                            conv_cfg=self.conv_cfg,
                                            act_cfg=self.act_cfg,
                                            non_local=self.non_local_stages[i],
                                            non_local_cfg=self.non_local_cfg,
                                            inflate=self.stage_inflations[i],
                                            inflate_style=self.inflate_style,
                                            with_cp=with_cp,
                                            **kwargs)
            self.inplanes = planes * self.block.expansion
            layer_name = f'layer{i + 1}'
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)

        self.feat_dim = self.block.expansion * self.base_channels * 2**(
            len(self.stage_blocks) - 1)
Exemplo n.º 11
0
        return x
    keep_prob = 1 - drop_prob
    # work with diff dim tensors, not just 2D ConvNets
    shape = (x.shape[0],) + (1,) * (x.ndim - 1)
    random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
    random_tensor.floor_()  # binarize
    output = x.div(keep_prob) * random_tensor
    return output


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample (when applied in main path
    of residual blocks)."""

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)

    def extra_repr(self) -> str:
        return "p={}".format(self.drop_prob)


to_1tuple = _ntuple(1)
to_2tuple = _ntuple(2)
to_3tuple = _ntuple(3)
to_4tuple = _ntuple(4)
to_ntuple = _ntuple
Exemplo n.º 12
0
    def __init__(self,
                 depth,
                 pretrained,
                 in_channels=1,
                 num_stages=4,
                 base_channels=32,
                 strides=(1, 2, 2, 2),
                 dilations=(1, 1, 1, 1),
                 conv1_kernel=9,
                 conv1_stride=1,
                 frozen_stages=-1,
                 factorize=(1, 1, 0, 0),
                 norm_eval=False,
                 with_cp=False,
                 conv_cfg=dict(type='Conv'),
                 norm_cfg=dict(type='BN2d', requires_grad=True),
                 act_cfg=dict(type='ReLU', inplace=True),
                 zero_init_residual=True):
        super().__init__()
        if depth not in self.arch_settings:
            raise KeyError(f'invalid depth {depth} for resnet')
        self.depth = depth
        self.pretrained = pretrained
        self.in_channels = in_channels
        self.base_channels = base_channels
        self.num_stages = num_stages
        assert 1 <= num_stages <= 4
        self.dilations = dilations
        self.conv1_kernel = conv1_kernel
        self.conv1_stride = conv1_stride
        self.frozen_stages = frozen_stages
        self.stage_factorization = _ntuple(num_stages)(factorize)
        self.norm_eval = norm_eval
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg
        self.act_cfg = act_cfg
        self.zero_init_residual = zero_init_residual

        self.block, stage_blocks = self.arch_settings[depth]
        self.stage_blocks = stage_blocks[:num_stages]
        self.inplanes = self.base_channels

        self._make_stem_layer()

        self.res_layers = []
        for i, num_blocks in enumerate(self.stage_blocks):
            stride = strides[i]
            dilation = dilations[i]
            planes = self.base_channels * 2**i
            res_layer = self.make_res_layer(
                self.block,
                self.inplanes,
                planes,
                num_blocks,
                stride=stride,
                dilation=dilation,
                factorize=self.stage_factorization[i],
                norm_cfg=self.norm_cfg,
                with_cp=with_cp)
            self.inplanes = planes * self.block.expansion
            layer_name = f'layer{i + 1}'
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)

        self.feat_dim = self.block.expansion * self.base_channels * 2**(
            len(self.stage_blocks) - 1)
Exemplo n.º 13
0
 def __init__(self, padding: Union[int, Tuple[int]]):
     super(ReflectionPad3d, self).__init__()
     self.padding = _ntuple(6)(padding)
Exemplo n.º 14
0
    def __init__(self,
                 depth,
                 pretrained2d=True,
                 in_channels=3,
                 num_stages=4,
                 base_channels=64,
                 spatial_strides=(1, 2, 2, 2),
                 temporal_strides=(1, 1, 1, 1),
                 dilations=(1, 1, 1, 1),
                 conv1_kernel=(5, 7, 7),
                 conv1_stride_t=2,
                 pool1_stride_t=2,
                 with_pool2=True,
                 frozen_stages=-1,
                 inflate=(1, 1, 1, 1),
                 inflate_style='3x1x1',
                 norm_eval=True,
                 with_checkpoint=False,
                 zero_init_residual=True):

        super().__init__()
        if depth not in self.arch_settings:
            raise KeyError(f'invalid depth {depth} for resnet')
        self.depth = depth
        self.pretrained2d = pretrained2d
        self.in_channels = in_channels
        self.base_channels = base_channels
        self.num_stages = num_stages
        assert num_stages >= 1 and num_stages <= 4
        self.spatial_strides = spatial_strides
        self.temporal_strides = temporal_strides
        self.dilations = dilations
        assert len(spatial_strides) == len(temporal_strides) == len(
            dilations) == num_stages
        self.conv1_kernel = conv1_kernel
        self.conv1_stride_t = conv1_stride_t
        self.pool1_stride_t = pool1_stride_t
        self.with_pool2 = with_pool2
        self.frozen_stages = frozen_stages
        self.stage_inflations = _ntuple(num_stages)(inflate)
        self.inflate_style = inflate_style
        self.norm_eval = norm_eval
        self.with_checkpoint = with_checkpoint
        self.zero_init_residual = zero_init_residual
        self.log = None

        self.block, stage_blocks = self.arch_settings[depth]
        self.stage_blocks = stage_blocks[:num_stages]
        self.inplanes = self.base_channels

        self._make_stem_layer()

        self.res_layers = []
        for i, num_blocks in enumerate(self.stage_blocks):
            spatial_stride = spatial_strides[i]
            temporal_stride = temporal_strides[i]
            dilation = dilations[i]
            planes = self.base_channels * 2**i
            res_layer = self.make_res_layer(self.block,
                                            self.inplanes,
                                            planes,
                                            num_blocks,
                                            spatial_stride=spatial_stride,
                                            temporal_stride=temporal_stride,
                                            dilation=dilation,
                                            inflate=self.stage_inflations[i],
                                            inflate_style=self.inflate_style,
                                            with_checkpoint=with_checkpoint)
            self.inplanes = planes * self.block.expansion
            layer_name = f'layer{i + 1}'
            self.add_module(layer_name, res_layer)
            self.res_layers.append(layer_name)

        self.feat_dim = self.block.expansion * self.base_channels * 2**(
            len(self.stage_blocks) - 1)
Exemplo n.º 15
0
 def __init__(self, padding) -> None:
     super(PeriodicPad3d, self).__init__()
     self.padding = _ntuple(6)(padding)