Exemplo n.º 1
0
def avg_pool2d(g,
               input,
               kernel_size,
               stride,
               padding,
               ceil_mode,
               count_include_pad,
               divisor_override=None):
    if input not in sym_help._quantized_ops:
        from torch.onnx.symbolic_opset9 import avg_pool2d
        return avg_pool2d(g, input, kernel_size, stride, padding, ceil_mode,
                          count_include_pad, divisor_override)
    kwargs = {
        "strides_i": stride,
        "pads_i": padding + padding,
        "kernel_i": kernel_size[0],
        "order_s": "NHWC",
        "Y_scale_f": input.node()["Y_scale"],
        "Y_zero_point_i": input.node()["Y_zero_point"],
    }
    input = nchw2nhwc(g, input)
    output = g.op("_caffe2::Int8AveragePool", input, **kwargs)
    output = nhwc2nchw(g, output)
    sym_help._quantized_ops.add(output)
    return output
Exemplo n.º 2
0
def avg_pool2d(
    g,
    input,
    kernel_size,
    stride,
    padding,
    ceil_mode,
    count_include_pad,
    divisor_override=None,
):
    if input not in symbolic_helper._quantized_ops:
        return opset9.avg_pool2d(
            g,
            input,
            kernel_size,
            stride,
            padding,
            ceil_mode,
            count_include_pad,
            divisor_override,
        )
    kwargs = {
        "strides_i": stride,
        "pads_i": padding + padding,
        "kernel_i": kernel_size[0],
        "order_s": "NHWC",
        "Y_scale_f": symbolic_helper._node_get(input.node(), "Y_scale"),
        "Y_zero_point_i": symbolic_helper._node_get(input.node(),
                                                    "Y_zero_point"),
    }
    input = nchw2nhwc(g, input)
    output = g.op("_caffe2::Int8AveragePool", input, **kwargs)
    output = nhwc2nchw(g, output)
    symbolic_helper._quantized_ops.add(output)
    return output