Exemplo n.º 1
0
def binary_cross_entropy_with_logits(g, input, target, weight, pos_weight,
                                     reduction):
    from torch.onnx.symbolic_opset9 import sigmoid, log, sub, neg, mul, add
    p = g.op("Constant", value_t=torch.tensor([1]))
    sig_x = sigmoid(g, input)
    log_sig_x = log(g, sig_x)
    sub_1_x = sub(g, p, sig_x)
    sub_1_y = sub(g, p, target)
    log_1_x = log(g, sub_1_x)
    if pos_weight is None or sym_help._is_none(pos_weight):
        output = neg(
            g, add(g, mul(g, target, log_sig_x), mul(g, sub_1_y, log_1_x)))
    else:
        output = neg(
            g,
            add(g, mul(g, mul(g, target, log_sig_x), pos_weight),
                mul(g, sub_1_y, log_1_x)))

    if weight is not None and not sym_help._is_none(weight):
        output = mul(g, weight, output)

    reduction = sym_help._maybe_get_const(reduction, 'i')
    if reduction == 0:
        return output
    elif reduction == 1:
        return g.op("ReduceMean", output)
    elif reduction == 2:
        return g.op("ReduceSum", output)
    else:
        return sym_help._onnx_unsupported(
            "binary_cross_entropy_with_logits with reduction other than none, mean, or sum"
        )
Exemplo n.º 2
0
def binary_cross_entropy_with_logits(g, input, target, weight, pos_weight,
                                     reduction):
    p = g.op("Constant", value_t=torch.tensor([1]))
    sig_x = opset9.sigmoid(g, input)
    log_sig_x = opset9.log(g, sig_x)
    sub_1_x = opset9.sub(g, p, sig_x)
    sub_1_y = opset9.sub(g, p, target)
    log_1_x = opset9.log(g, sub_1_x)
    if pos_weight is None or symbolic_helper._is_none(pos_weight):
        output = opset9.neg(
            g,
            opset9.add(g, opset9.mul(g, target, log_sig_x),
                       opset9.mul(g, sub_1_y, log_1_x)),
        )
    else:
        output = opset9.neg(
            g,
            opset9.add(
                g,
                opset9.mul(g, opset9.mul(g, target, log_sig_x), pos_weight),
                opset9.mul(g, sub_1_y, log_1_x),
            ),
        )

    if weight is not None and not symbolic_helper._is_none(weight):
        output = opset9.mul(g, weight, output)

    reduction = symbolic_helper._maybe_get_const(reduction, "i")
    if reduction == 0:
        return output
    elif reduction == 1:
        return g.op("ReduceMean", output, keepdims_i=0)
    elif reduction == 2:
        return g.op("ReduceSum", output, keepdims_i=0)
    else:
        return symbolic_helper._onnx_unsupported(
            "binary_cross_entropy_with_logits with reduction other than none, mean, or sum",
            input,
        )
def logdet(g, input):
    from torch.onnx.symbolic_opset9 import log
    return log(g, linalg_det(g, input))
Exemplo n.º 4
0
def logdet(g, input):
    return opset9.log(g, linalg_det(g, input))