def _sparsify(self, sparsity_type, epsilon=0.01):
     sparse_vector = self._params[str(sparsity_type) + "_sparsity_vector"]
     sparse_vector = sparse_vector - sparse_vector.mean()
     sparse_vector = sparse_vector * (sparse_vector.var() + epsilon)
     sparse_vector = sparse_vector * torch.exp(
         self._params[str(sparsity_type) + "_sparsity_coef"])
     return torch.sigmoid(sparse_vector)
Exemplo n.º 2
0
    def predict(self, img, model, gpu_arg, topk=5):
        """
        Predicts the class (or classes) of an image using a trained deep learning model.
        INPUTS:
            1. Numpy image array
            2. Network model                    <model object>
            3. GPU user selection:              <bool>
            4. Requested top K results:         <int>
        RETURNS:
            1. List of top K probabilities:     <list>
            2. List of top K classes:           <list>
        """
        # Predict the class from an image file
        
        # push model to correct processor
        device = self.gpu_status(gpu_arg)
        model.to(device)

        # turn off gradient calc for testing
        model.eval()
        with torch.no_grad():

            # send image to correct environment (GPU vs CPU) and
            # perform a forward pass
            logps = model.forward(img.to(device))
            
            # get the log softmax values and convert to probabilities
            probs = torch.exp(logps)
        
        # convert to the top (k) labels
        probs, classes = probs.topk(topk)

        return probs.tolist()[0], classes.tolist()[0]
 def _inversion_forward(self, constants, feature_sparsity):
     X, y, XTX, XTy = constants.values()
     if feature_sparsity:
         sparse_vector = torch.diag(self._sparsify("feature"))
         sparse_X = X @ sparse_vector
         sparse_XTX = sparse_vector @ XTX @ sparse_vector
         sparse_XTy = sparse_vector @ XTy
         penality = torch.exp(self._params["lambda"]) * torch.diag(
             torch.ones(XTX.shape[0])).float().cuda()
         inv = torch.inverse(sparse_XTX + penality)
         projection_matrix = sparse_X @ inv
         y_hat = projection_matrix @ sparse_XTy
         return y_hat, permuted_y_hat
     else:
         penality = torch.exp(self._params["lambda"]) * torch.diag(
             torch.ones(XTX.shape[0])).float().cuda()
         inv = torch.inverse(XTX + penality)
         projection_matrix = X @ inv
         y_hat = projection_matrix @ XTy
         return y_hat
 def _inversion_coef(self, constants):
     X, y, permuted_y, XTX, XTy, XTmy = constants.values()
     feature_sparsity = self.feature_sparsity
     if self.GPU:
         identity = torch.diag(torch.ones(XTX.shape[0])).float().cuda()
     else:
         identity = torch.diag(torch.ones(XTX.shape[0])).float()
     penality = torch.exp(self._params["lambda"]) * identity
     if self.elastic_feature_sparsity:
         mu = torch.sigmoid(self._params["feature_elastic_coef"])
         coef = self._inversion_coef_without_sparsity(penality, XTX,
                                                      XTy) * mu
         coef += self._inversion_coef_with_sparsity(penality, XTX,
                                                    XTy) * (1 - mu)
     elif feature_sparsity:
         coef = self._inversion_coef_with_sparsity(penality, XTX, XTy)
     else:
         coef = self._inversion_coef_without_sparsity(penality, XTX, XTy)
     self.coef_ = self._tensor_to_array(coef)
 def _get_diag(self, eigen, epsilon=1e-8):
     penality = torch.exp(self._params["lambda"])
     return (eigen + penality + epsilon)**(-1)
Exemplo n.º 6
0
    def train_network(self, gpu_arg, model, optimizer, criterion, epochs=1, top_k=1):
        """
        Performs training of the network's features only along with validation
        accuracy and loss rates while conducting the training operation.
        INPUTS:
            1. GPU user selection:      <bool>
            2. Network model:           <model object>
            3. Gradient descent def:    <optimizer object>
            4. Predefined loss def:     <criterion object>
            5. User's epoch value:      <int>
            6. Top K id's for error:    <int>
        RETURNS:
            None
        """
        # update the requested epochs value
        self.epochs = epochs

        # push model to correct processor
        device = self.gpu_status(gpu_arg)
        model.to(device)

        # now for the training and validation process
        print(f"Training the model with the following parameters:\n"
              f"\tmodel archit.: \t{self.arch}\n"
              f"\thidden units: \t{self.hidden_size}\n"
              f"\tlearning rate: \t{self.learning_rate}\n"
              f"\ttotal epochs: \t{self.epochs}\n"
              f"\tGPU processing: \t{self.device_location.upper()}\n"
             ) 

        print("Starting epoch: 1 of {}...".format(self.epochs))
        
        # loop thru based on total epochs desired
        for epoch in range(self.epochs):
            
            # reset loss and accuracy counters for each new epoch
            self.training_loss = 0
            valid_loss = 0
            valid_accuracy = 0
            
            # train the model with the training data 
            model.train()
            for inputs, labels in self.train_loader:
                
                # forward pass with inputs and labels to correct environment (GPU vs CPU)
                inputs, labels = inputs.to(device), labels.to(device)

                # turn off gradient
                optimizer.zero_grad()
                
                # use network outputs to calculate loss
                log_ps = model.forward(inputs)
                loss = criterion(log_ps, labels)

                # perform backward pass to calc gradients and take step to update weights
                loss.backward()
                optimizer.step()
                self.training_loss += loss.item()
            
            else:
                # evaluate the model with the validation data
                # turn off gradient calc for validation
                model.eval()
                with torch.no_grad():

                    # test the model with the validation data
                    for inputs, labels in self.valid_loader:

                        # send inputs and labels to correct environment (GPU vs CPU)
                        inputs, labels = inputs.to(device), labels.to(device)

                        # perform a forward pass & get loss rate for batch
                        logps = model.forward(inputs)
                        batch_loss = criterion(logps, labels)

                        # accumulate validation total loss from current batch
                        valid_loss += batch_loss.item()

                        # Calculate accuracy values
                        ps = torch.exp(logps)
                        _, top_class = ps.topk(top_k, dim=1)
                        equals = top_class == labels.view(*top_class.shape)
                        valid_accuracy += torch.mean(equals.type(torch.FloatTensor)).item()

                # output the results as we go to watch for productive progress
                print(f"Epoch {epoch + 1} / {self.epochs}.. "
                      f"Train loss: {self.training_loss / len(self.train_loader):.3f}.. "
                      f"Valid loss: {valid_loss / len(self.valid_loader):.3f}.. "
                      f"Valid accuracy: {valid_accuracy / len(self.valid_loader):.2f}")