Exemplo n.º 1
0
 def _unpack(self, dlpack):
     if self.device == "cpu":
         return torch.Tensor(dlpack.values).squeeze(1)
     return from_dlpack(dlpack)
Exemplo n.º 2
0
    def beforeForwardPass(self, retrievedPosIndexes, retrievedNegIndexes=None):
        reshapedRetrieval = self._getReshapedRetrieval(retrievedPosIndexes,
                                                       retrievedNegIndexes)

        self.model_variable.weight.data = (from_dlpack(
            self.CUPYmemmap[reshapedRetrieval].toDlpack()))
Exemplo n.º 3
0
 def getData(self):
     return from_dlpack(self.CUPYmemmap[reshapedRetrieval].toDlpack())
Exemplo n.º 4
0
def to_pt(a):
    return from_dlpack(a.toDlpack())
Exemplo n.º 5
0
    def execute(self, requests):
        responses = []
        for request in requests:
            input0 = pb_utils.get_input_tensor_by_name(request, "INPUT0")
            print('ISCPU', input0.is_cpu())
            gpu_output = pb_utils.get_input_tensor_by_name(
                request, "GPU_OUTPUT").as_numpy()

            if input0.is_cpu():
                if not gpu_output[0]:
                    output0 = pb_utils.Tensor.from_dlpack(
                        "OUTPUT0", input0.to_dlpack())
                else:
                    outptu0_pytorch = from_dlpack(input0.to_dlpack()).cuda()
                    output0 = pb_utils.Tensor.from_dlpack(
                        "OUTPUT0", to_dlpack(outptu0_pytorch))
            else:
                if gpu_output[0]:
                    output0 = pb_utils.Tensor.from_dlpack(
                        "OUTPUT0", input0.to_dlpack())
                else:
                    outptu0_pytorch = from_dlpack(input0.to_dlpack()).cpu()
                    output0 = pb_utils.Tensor.from_dlpack(
                        "OUTPUT0", to_dlpack(outptu0_pytorch))

            next_gpu_output = pb_utils.Tensor("NEXT_GPU_OUTPUT",
                                              gpu_output[1:])

            # Do not perform BLS inference if it is the first
            # model in the pipeline.
            if self._model_name != 'dlpack_io_identity_1':
                infer_request = pb_utils.InferenceRequest(
                    model_name='dlpack_io_identity_1',
                    inputs=[
                        input0,
                        pb_utils.get_input_tensor_by_name(
                            request, "GPU_OUTPUT")
                    ],
                    requested_output_names=['OUTPUT0'])
                infer_response = infer_request.exec()

                if infer_response.has_error():
                    raise pb_utils.TritonModelException(
                        infer_response.error().message())

                bls_output0 = pb_utils.get_output_tensor_by_name(
                    infer_response, 'OUTPUT0')
                if not output0.is_cpu():
                    bls_output0 = from_dlpack(
                        bls_output0.to_dlpack()).detach().cpu().numpy()
                else:
                    bls_output0 = bls_output0.as_numpy()

                if not input0.is_cpu():
                    input0 = from_dlpack(
                        input0.to_dlpack()).detach().cpu().numpy()
                else:
                    input0 = input0.as_numpy()

                if not np.allclose(bls_output0, input0):
                    raise pb_utils.TritonModelException(
                        'BLS input and output tensors are not equal')

            responses.append(
                pb_utils.InferenceResponse([output0, next_gpu_output]))

        return responses
Exemplo n.º 6
0
import tch
import torch
from torch.utils.dlpack import from_dlpack, to_dlpack

dlt = tch.eye(10)

x = from_dlpack(dlt)

print(x)

y = torch.rand(2, 3)

tch.print(to_dlpack(y))
Exemplo n.º 7
0
def encodes(self, to: TabularGPU):
    return from_dlpack(to.cats.to_dlpack()).long(), from_dlpack(
        to.conts.to_dlpack()).float(), from_dlpack(to.targ.to_dlpack()).long()
Exemplo n.º 8
0
def zerocopy_from_dlpack(dlpack_tensor):
    return dlpack.from_dlpack(dlpack_tensor)