Exemplo n.º 1
0
    def _compute_prob_feas(self, X: Tensor, means: Tensor, sigmas: Tensor) -> Tensor:
        r"""Compute feasibility probability for each batch of X.

        Args:
            X: A `(b) x 1 x d`-dim Tensor of `(b)` t-batches of `d`-dim design
                points each.
            means: A `(b) x t`-dim Tensor of means.
            sigmas: A `(b) x t`-dim Tensor of standard deviations.
        Returns:
            A `(b) x 1 x 1`-dim tensor of feasibility probabilities

        Note: This function does case-work for upper bound, lower bound, and both-sided
        bounds. Another way to do it would be to use 'inf' and -'inf' for the
        one-sided bounds and use the logic for the both-sided case. But this
        causes an issue with autograd since we get 0 * inf.
        TODO: Investigate further.
        """
        output_shape = list(X.shape)
        output_shape[-1] = 1
        prob_feas = torch.ones(output_shape, device=X.device, dtype=X.dtype)

        if len(self.constraint_lower_inds) > 0:
            normal_lower = _construct_dist(means, sigmas, self.constraint_lower_inds)
            prob_l = 1 - normal_lower.cdf(self.constraint_lower)
            prob_feas = prob_feas.mul(torch.prod(prob_l, dim=-1, keepdim=True))
        if len(self.constraint_upper_inds) > 0:
            normal_upper = _construct_dist(means, sigmas, self.constraint_upper_inds)
            prob_u = normal_upper.cdf(self.constraint_upper)
            prob_feas = prob_feas.mul(torch.prod(prob_u, dim=-1, keepdim=True))
        if len(self.constraint_both_inds) > 0:
            normal_both = _construct_dist(means, sigmas, self.constraint_both_inds)
            prob_u = normal_both.cdf(self.constraint_both[:, 1])
            prob_l = normal_both.cdf(self.constraint_both[:, 0])
            prob_feas = prob_feas.mul(torch.prod(prob_u - prob_l, dim=-1, keepdim=True))
        return prob_feas
Exemplo n.º 2
0
    def forward(self,inputs):
        if isinstance(self.output_shape,int):
            size = [self.output_shape]
        else:
            size = list(self.output_shape)

        assert torch.prod(torch.LongTensor(list(inputs.size())[1:])).item() == torch.prod(torch.LongTensor(size)).item()

        size = list(size)
        size = tuple([-1] + size)
        outputs = inputs.view(size)

        return outputs
Exemplo n.º 3
0
def iou_matrix(yx_min1, yx_max1, yx_min2, yx_max2, min=float(np.finfo(np.float32).eps)):
    """
    Calculates the IoU of two lists of bounding boxes.
    :author 申瑞珉 (Ruimin Shen)
    :param yx_min1: The top left coordinates (y, x) of the first list (size [N1, 2]) of bounding boxes.
    :param yx_max1: The bottom right coordinates (y, x) of the first list (size [N1, 2]) of bounding boxes.
    :param yx_min2: The top left coordinates (y, x) of the second list (size [N2, 2]) of bounding boxes.
    :param yx_max2: The bottom right coordinates (y, x) of the second list (size [N2, 2]) of bounding boxes.
    :return: The matrix (size [N1, N2]) of the IoU.
    """
    intersect_area = intersection_area(yx_min1, yx_max1, yx_min2, yx_max2)
    area1 = torch.prod(yx_max1 - yx_min1, -1).unsqueeze(-1)
    area2 = torch.prod(yx_max2 - yx_min2, -1).unsqueeze(-2)
    union_area = torch.clamp(area1 + area2 - intersect_area, min=min)
    return intersect_area / union_area
Exemplo n.º 4
0
def vector_to_parameters(vec, parameters):
    r"""Convert one vector to the parameters

    Arguments:
        vec (Variable): a single vector represents the parameters of a model.
        parameters (Iterable[Variable]): an iterator of Variables that are the
            parameters of a model.
    """
    # Ensure vec of type Variable
    if not isinstance(vec, Variable):
        raise TypeError('expected torch.autograd.Variable, but got: {}'
                        .format(torch.typename(vec)))
    # Flag for the device where the parameter is located
    param_device = None

    # Pointer for slicing the vector for each parameter
    pointer = 0
    for param in parameters:
        # Ensure the parameters are located in the same device
        param_device = _check_param_device(param, param_device)

        # The length of the parameter
        num_param = torch.prod(torch.LongTensor(list(param.size())))
        # Slice the vector, reshape it, and replace the old data of the parameter
        param.data = vec[pointer:pointer + num_param].view(param.size()).data

        # Increment the pointer
        pointer += num_param
Exemplo n.º 5
0
def batch_iou_pair(yx_min1, yx_max1, yx_min2, yx_max2, min=float(np.finfo(np.float32).eps)):
    """
    Pairwisely calculates the IoU of two lists (at the same size M) of bounding boxes for N independent batches.
    :author 申瑞珉 (Ruimin Shen)
    :param yx_min1: The top left coordinates (y, x) of the first lists (size [N, M, 2]) of bounding boxes.
    :param yx_max1: The bottom right coordinates (y, x) of the first lists (size [N, M, 2]) of bounding boxes.
    :param yx_min2: The top left coordinates (y, x) of the second lists (size [N, M, 2]) of bounding boxes.
    :param yx_max2: The bottom right coordinates (y, x) of the second lists (size [N, M, 2]) of bounding boxes.
    :return: The lists (size [N, M]) of the IoU.
    """
    yx_min = torch.max(yx_min1, yx_min2)
    yx_max = torch.min(yx_max1, yx_max2)
    size = torch.clamp(yx_max - yx_min, min=0)
    intersect_area = torch.prod(size, -1)
    area1 = torch.prod(yx_max1 - yx_min1, -1)
    area2 = torch.prod(yx_max2 - yx_min2, -1)
    union_area = torch.clamp(area1 + area2 - intersect_area, min=min)
    return intersect_area / union_area
def get_normal_loglik(x, mean, std, scale = False):
    recon_losses = \
        Normal(mean, std + 1e-8).log_prob(x)

    if scale:
        factor = torch.prod(torch.Tensor([x.size()])) / x.size()[0]
    else:
        factor = 1.0

    return (recon_losses / factor).view(x.size(0), -1).sum(1)
Exemplo n.º 7
0
 def reset_parameters(self):
     n_trainable_params, n_nontrainable_params = 0, 0
     for p in self.model.parameters():
         n_params = torch.prod(torch.tensor(p.shape))  # 参数数量
         if p.requires_grad:
             n_trainable_params += n_params
             if len(p.shape) > 1:
                 self.opt.initializer(p)  # 参数初始化
         else:
             n_nontrainable_params += n_params
     print('n_trainable_params: {0}, n_nontrainable_params: {1}'.format(n_trainable_params, n_nontrainable_params))
Exemplo n.º 8
0
            def hook(module, input, output):
                class_name = str(module.__class__).split('.')[-1].split("'")[0]
                module_idx = len(summary)

                m_key = '%s-%i' % (class_name, module_idx+1)
                summary[m_key] = OrderedDict()
                summary[m_key]['input_shape'] = list(input[0].size())
                summary[m_key]['input_shape'][0] = -1
                summary[m_key]['output_shape'] = list(output.size())
                summary[m_key]['output_shape'][0] = -1

                params = 0
                if hasattr(module, 'weight'):
                    params += th.prod(th.LongTensor(list(module.weight.size())))
                    if module.weight.requires_grad:
                        summary[m_key]['trainable'] = True
                    else:
                        summary[m_key]['trainable'] = False
                if hasattr(module, 'bias'):
                    params +=  th.prod(th.LongTensor(list(module.bias.size())))
                summary[m_key]['nb_params'] = params
Exemplo n.º 9
0
            def hook(module, input, output):

                class_name = str(module.__class__.__name__)

                instance_index = 1
                if class_name not in layer_instances:
                    layer_instances[class_name] = instance_index
                else:
                    instance_index = layer_instances[class_name] + 1
                    layer_instances[class_name] = instance_index

                layer_name = class_name + "_" + str(instance_index)

                params = 0
                if hasattr(module, "weight"):
                    weight_size = module.weight.data.size()
                    weight_params = torch.prod(torch.LongTensor(list(weight_size)))
                    params += weight_params.item()

                    if hasattr(module, "bias"):
                        try:
                            bias_size = module.bias.data.size()
                            bias_params = torch.prod(torch.LongTensor(list(bias_size)))
                            params += bias_params.item()
                        except:
                            pass

                flops = "Not Available"
                if class_name.find("Conv")!= -1 and hasattr(module,"weight") :
                    flops = (
                    torch.prod(torch.LongTensor(list(module.weight.data.size()))) * output.size(2) * output.size(
                        3)).item()

                elif isinstance(module, nn.Linear):
                   
                    flops = (torch.prod(torch.LongTensor(list(output.size()))) * input[0].size(1)).item()

                summary.append(
                    ModuleDetails(name=layer_name, input_size=list(input[0].size()), output_size=list(output.size()),
                                  num_parameters=params, multiply_adds=flops))
Exemplo n.º 10
0
def fit_positive(rows, cols, yx_min, yx_max, anchors):
    device_id = anchors.get_device() if torch.cuda.is_available() else None
    batch_size, num, _ = yx_min.size()
    num_anchors, _ = anchors.size()
    valid = torch.prod(yx_min < yx_max, -1)
    center = (yx_min + yx_max) / 2
    ij = torch.floor(center)
    i, j = torch.unbind(ij.long(), -1)
    index = i * cols + j
    anchors2 = anchors / 2
    iou_matrix = utils.iou.torch.iou_matrix((yx_min - center).view(-1, 2), (yx_max - center).view(-1, 2), -anchors2, anchors2).view(batch_size, -1, num_anchors)
    iou, index_anchor = iou_matrix.max(-1)
    _positive = []
    cells = rows * cols
    for valid, index, index_anchor in zip(torch.unbind(valid), torch.unbind(index), torch.unbind(index_anchor)):
        index, index_anchor = (t[valid] for t in (index, index_anchor))
        t = utils.ensure_device(torch.ByteTensor(cells, num_anchors).zero_(), device_id)
        t[index, index_anchor] = 1
        _positive.append(t)
    return torch.stack(_positive)
Exemplo n.º 11
0
    def forward(self,xlist,coordlist):
#         xlist: n x k x 1x 96 x 96 x 96
#         coordlist: n x k x 3 x 24 x 24 x 24
        xsize = xlist.size()
        corrdsize = coordlist.size()
        xlist = xlist.view(-1,xsize[2],xsize[3],xsize[4],xsize[5])
        coordlist = coordlist.view(-1,corrdsize[2],corrdsize[3],corrdsize[4],corrdsize[5])
        
        noduleFeat,nodulePred = self.NoduleNet(xlist,coordlist)
        nodulePred = nodulePred.contiguous().view(corrdsize[0],corrdsize[1],-1)
        
        featshape = noduleFeat.size()#nk x 128 x 24 x 24 x24
        centerFeat = self.pool(noduleFeat[:,:,featshape[2]/2-1:featshape[2]/2+1,
                                          featshape[3]/2-1:featshape[3]/2+1,
                                          featshape[4]/2-1:featshape[4]/2+1])
        centerFeat = centerFeat[:,:,0,0,0]
        out = self.dropout(centerFeat)
        out = self.Relu(self.fc1(out))
        out = torch.sigmoid(self.fc2(out))
        out = out.view(xsize[0],xsize[1])
        base_prob = torch.sigmoid(self.baseline)
        casePred = 1-torch.prod(1-out,dim=1)*(1-base_prob.expand(out.size()[0]))
        return nodulePred,casePred,out
Exemplo n.º 12
0
    def _parameter_and_gradient_statistics_to_tensorboard(self, # pylint: disable=invalid-name
                                                          epoch: int,
                                                          batch_grad_norm: float) -> None:
        """
        Send the mean and std of all parameters and gradients to tensorboard, as well
        as logging the average gradient norm.
        """
        # Log parameter values to Tensorboard
        for name, param in self._model.named_parameters():
            self._tensorboard.add_train_scalar("parameter_mean/" + name,
                                               param.data.mean(),
                                               epoch)
            self._tensorboard.add_train_scalar("parameter_std/" + name, param.data.std(), epoch)
            if param.grad is not None:
                if is_sparse(param.grad):
                    # pylint: disable=protected-access
                    grad_data = param.grad.data._values()
                else:
                    grad_data = param.grad.data

                # skip empty gradients
                if torch.prod(torch.tensor(grad_data.shape)).item() > 0: # pylint: disable=not-callable
                    self._tensorboard.add_train_scalar("gradient_mean/" + name,
                                                       grad_data.mean(),
                                                       epoch)
                    self._tensorboard.add_train_scalar("gradient_std/" + name,
                                                       grad_data.std(),
                                                       epoch)
                else:
                    # no gradient for a parameter with sparse gradients
                    logger.info("No gradient for %s, skipping tensorboard logging.", name)
        # norm of gradients
        if batch_grad_norm is not None:
            self._tensorboard.add_train_scalar("gradient_norm",
                                               batch_grad_norm,
                                               epoch)
Exemplo n.º 13
0
 def test_prod(self):
     x = Variable(torch.randn(1, 2, 3, 4), requires_grad=True)
     self.assertONNX(lambda x: torch.prod(x), x)
Exemplo n.º 14
0
 def __init__(self, latent_dim: int, out_dim: Tuple[int]) -> None:
     super(latent_to_features, self).__init__()
     self.reshape_ = out_dim
     self.fc = nn.Linear(latent_dim, torch.prod(tt(out_dim)).item())
Exemplo n.º 15
0
    def initialize(self, image, info: dict) -> dict:
        # Initialize some stuff
        self.frame_num = 1
        if not self.params.has('device'):
            self.params.device = 'cuda' if self.params.use_gpu else 'cpu'

        # Initialize network
        self.initialize_features()

        # The DiMP network
        self.net = self.params.net

        # Time initialization
        tic = time.time()

        # Convert image
        im = numpy_to_torch(image)

        # Get target position and size
        state = info['init_bbox']
        self.pos = torch.Tensor(
            [state[1] + (state[3] - 1) / 2, state[0] + (state[2] - 1) / 2])
        self.target_sz = torch.Tensor([state[3], state[2]])

        # Get object id
        self.object_id = info.get('object_ids', [None])[0]
        self.id_str = '' if self.object_id is None else ' {}'.format(
            self.object_id)

        # Set sizes
        self.image_sz = torch.Tensor([im.shape[2], im.shape[3]])
        sz = self.params.image_sample_size
        sz = torch.Tensor([sz, sz] if isinstance(sz, int) else sz)
        if self.params.get('use_image_aspect_ratio', False):
            sz = self.image_sz * sz.prod().sqrt() / self.image_sz.prod().sqrt()
            stride = self.params.get('feature_stride', 32)
            sz = torch.round(sz / stride) * stride
        self.img_sample_sz = sz
        self.img_support_sz = self.img_sample_sz

        # Set search area
        search_area = torch.prod(self.target_sz *
                                 self.params.search_area_scale).item()
        self.target_scale = math.sqrt(
            search_area) / self.img_sample_sz.prod().sqrt()

        # Target size in base scale
        self.base_target_sz = self.target_sz / self.target_scale

        # Setup scale factors
        if not self.params.has('scale_factors'):
            self.params.scale_factors = torch.ones(1)
        elif isinstance(self.params.scale_factors, (list, tuple)):
            self.params.scale_factors = torch.Tensor(self.params.scale_factors)

        # Setup scale bounds
        self.min_scale_factor = torch.max(10 / self.base_target_sz)
        self.max_scale_factor = torch.min(self.image_sz / self.base_target_sz)

        # Extract and transform sample
        init_backbone_feat = self.generate_init_samples(im)

        # Initialize classifier
        self.init_classifier(init_backbone_feat)

        # Initialize IoUNet
        if self.params.get('use_iou_net', True):
            self.init_iou_net(init_backbone_feat)

        out = {'time': time.time() - tic}
        return out
Exemplo n.º 16
0
 def product(self, tensor_in, axis=None):
     return torch.prod(tensor_in) if axis is None else torch.prod(
         tensor_in, axis)
Exemplo n.º 17
0
import torch

from main import Resnet50Classifier

if __name__ == "__main__":
    net = Resnet50Classifier().to("cuda:0")
    criterion = torch.nn.NLLLoss()

    image = torch.randn((1, 3, 224, 224))
    label = torch.LongTensor([10])

    output = net(image.to("cuda:0")).cpu()
    loss = criterion(output, label)
    loss.backward()

    total_nn_size = 0
    for name, p in list(net.named_parameters()):
        layer_size = (p.grad.element_size() * torch.prod(torch.LongTensor(list(p.grad.size())))).numpy()
        total_nn_size += layer_size

    print(f"NN size in mbytes: {total_nn_size * 1e-6}")
Exemplo n.º 18
0
    def test_resplit(self):
        # resplitting with same axis, should leave everything unchanged
        shape = (ht.MPI_WORLD.size, ht.MPI_WORLD.size)
        data = ht.zeros(shape, split=None)
        data.resplit_(None)

        self.assertIsInstance(data, ht.DNDarray)
        self.assertEqual(data.shape, shape)
        self.assertEqual(data.lshape, shape)
        self.assertEqual(data.split, None)

        # resplitting with same axis, should leave everything unchanged
        shape = (ht.MPI_WORLD.size, ht.MPI_WORLD.size)
        data = ht.zeros(shape, split=1)
        data.resplit_(1)

        self.assertIsInstance(data, ht.DNDarray)
        self.assertEqual(data.shape, shape)
        self.assertEqual(data.lshape, (data.comm.size, 1))
        self.assertEqual(data.split, 1)

        # splitting an unsplit tensor should result in slicing the tensor locally
        shape = (ht.MPI_WORLD.size, ht.MPI_WORLD.size)
        data = ht.zeros(shape)
        data.resplit_(-1)

        self.assertIsInstance(data, ht.DNDarray)
        self.assertEqual(data.shape, shape)
        self.assertEqual(data.lshape, (data.comm.size, 1))
        self.assertEqual(data.split, 1)

        # unsplitting, aka gathering a tensor
        shape = (ht.MPI_WORLD.size + 1, ht.MPI_WORLD.size)
        data = ht.ones(shape, split=0)
        data.resplit_(None)

        self.assertIsInstance(data, ht.DNDarray)
        self.assertEqual(data.shape, shape)
        self.assertEqual(data.lshape, shape)
        self.assertEqual(data.split, None)

        # assign and entirely new split axis
        shape = (ht.MPI_WORLD.size + 2, ht.MPI_WORLD.size + 1)
        data = ht.ones(shape, split=0)
        data.resplit_(1)

        self.assertIsInstance(data, ht.DNDarray)
        self.assertEqual(data.shape, shape)
        self.assertEqual(data.lshape[0], ht.MPI_WORLD.size + 2)
        self.assertTrue(data.lshape[1] == 1 or data.lshape[1] == 2)
        self.assertEqual(data.split, 1)

        # test sorting order of resplit
        a_tensor = self.reference_tensor.copy()
        N = ht.MPI_WORLD.size

        # split along axis = 0
        a_tensor.resplit_(axis=0)
        local_shape = (1, N + 1, 2 * N)
        local_tensor = self.reference_tensor[ht.MPI_WORLD.rank, :, :]
        self.assertEqual(a_tensor.lshape, local_shape)
        self.assertTrue(
            (a_tensor._DNDarray__array == local_tensor._DNDarray__array).all())

        # unsplit
        a_tensor.resplit_(axis=None)
        self.assertTrue((a_tensor._DNDarray__array ==
                         self.reference_tensor._DNDarray__array).all())

        # split along axis = 1
        a_tensor.resplit_(axis=1)
        if ht.MPI_WORLD.rank == 0:
            local_shape = (N, 2, 2 * N)
            local_tensor = self.reference_tensor[:, 0:2, :]
        else:
            local_shape = (N, 1, 2 * N)
            local_tensor = self.reference_tensor[:, ht.MPI_WORLD.rank +
                                                 1:ht.MPI_WORLD.rank + 2, :]

        self.assertEqual(a_tensor.lshape, local_shape)
        self.assertTrue(
            (a_tensor._DNDarray__array == local_tensor._DNDarray__array).all())

        # unsplit
        a_tensor.resplit_(axis=None)
        self.assertTrue((a_tensor._DNDarray__array ==
                         self.reference_tensor._DNDarray__array).all())

        # split along axis = 2
        a_tensor.resplit_(axis=2)
        local_shape = (N, N + 1, 2)
        local_tensor = self.reference_tensor[:, :, 2 * ht.MPI_WORLD.rank:2 *
                                             ht.MPI_WORLD.rank + 2]

        self.assertEqual(a_tensor.lshape, local_shape)
        self.assertTrue(
            (a_tensor._DNDarray__array == local_tensor._DNDarray__array).all())

        expected = torch.ones((ht.MPI_WORLD.size, 100),
                              dtype=torch.int64,
                              device=self.device.torch_device)
        data = ht.array(expected, split=1)
        data.resplit_(None)

        self.assertTrue(torch.equal(data._DNDarray__array, expected))
        self.assertFalse(data.is_distributed())
        self.assertIsNone(data.split)
        self.assertEqual(data.dtype, ht.int64)
        self.assertEqual(data._DNDarray__array.dtype, expected.dtype)

        expected = torch.zeros((100, ht.MPI_WORLD.size),
                               dtype=torch.uint8,
                               device=self.device.torch_device)
        data = ht.array(expected, split=0)
        data.resplit_(None)

        self.assertTrue(torch.equal(data._DNDarray__array, expected))
        self.assertFalse(data.is_distributed())
        self.assertIsNone(data.split)
        self.assertEqual(data.dtype, ht.uint8)
        self.assertEqual(data._DNDarray__array.dtype, expected.dtype)

        # "in place"
        length = torch.tensor([i + 20 for i in range(2)],
                              device=self.device.torch_device)
        test = torch.arange(torch.prod(length),
                            dtype=torch.float64,
                            device=self.device.torch_device).reshape(
                                [i + 20 for i in range(2)])
        a = ht.array(test, split=1)
        a.resplit_(axis=0)
        self.assertTrue(ht.equal(a, ht.array(test, split=0)))
        self.assertEqual(a.split, 0)
        self.assertEqual(a.dtype, ht.float64)
        del a

        test = torch.arange(torch.prod(length),
                            device=self.device.torch_device)
        a = ht.array(test, split=0)
        a.resplit_(axis=None)
        self.assertTrue(ht.equal(a, ht.array(test, split=None)))
        self.assertEqual(a.split, None)
        self.assertEqual(a.dtype, ht.int64)
        del a

        a = ht.array(test, split=None)
        a.resplit_(axis=0)
        self.assertTrue(ht.equal(a, ht.array(test, split=0)))
        self.assertEqual(a.split, 0)
        self.assertEqual(a.dtype, ht.int64)
        del a

        a = ht.array(test, split=0)
        resplit_a = ht.manipulations.resplit(a, axis=None)
        self.assertTrue(ht.equal(resplit_a, ht.array(test, split=None)))
        self.assertEqual(resplit_a.split, None)
        self.assertEqual(resplit_a.dtype, ht.int64)
        del a

        a = ht.array(test, split=None)
        resplit_a = ht.manipulations.resplit(a, axis=0)
        self.assertTrue(ht.equal(resplit_a, ht.array(test, split=0)))
        self.assertEqual(resplit_a.split, 0)
        self.assertEqual(resplit_a.dtype, ht.int64)
        del a
Exemplo n.º 19
0
    def initialize(self, image, state, gt, *args, **kwargs):
        if len(gt) == 8:
            ww = gt[2] - gt[0]
            hh = gt[7] - gt[1]
        else:
            ww = gt[2]
            hh = gt[3]
        # Initialize some stuff
        self.frame_num = 1
        if not hasattr(self.params, 'device'):
            self.params.device = 'cuda' if self.params.use_gpu else 'cpu'
        if ww < 25 and hh < 25:
            self.feature_sz = TensorList([torch.Tensor([28., 28.])])
            self.output_layer = TensorList(['layer2'])
        else:
            self.feature_sz = TensorList([torch.Tensor([14., 14.])])
            #     self.output_layer = TensorList(['layer3'])
            self.output_layer = TensorList(['layer3'])
        # Initialize some stuff
        if not hasattr(self.params, 'device'):
            self.params.device = 'cuda' if self.params.use_gpu else 'cpu'

        # Initialize features
        self.initialize_features(self.output_layer)

        # Check if image is color
        self.params.features.set_is_color(image.shape[2] == 3)

        # Get feature specific params
        self.fparams = self.params.features.get_fparams('feature_params')

        self.time = 0
        tic = time.time()

        # Get position and size
        self.pos = torch.Tensor(
            [state[1] + (state[3] - 1) / 2, state[0] + (state[2] - 1) / 2])
        self.target_sz = torch.Tensor([state[3], state[2]])
        if state[3] > 50 or state[2] > 50:

            self.target_sz = torch.Tensor(
                [state[3] - state[3] / 8, state[2] - state[2] / 4])
        else:
            self.target_sz = torch.Tensor([state[3], state[2]])
        # Set search area
        self.target_scale = 1.0
        search_area = torch.prod(self.target_sz *
                                 self.params.search_area_scale).item()
        if search_area > self.params.max_image_sample_size:
            self.target_scale = math.sqrt(search_area /
                                          self.params.max_image_sample_size)
        elif search_area < self.params.min_image_sample_size:
            self.target_scale = math.sqrt(search_area /
                                          self.params.min_image_sample_size)

        # Check if IoUNet is used
        self.use_iou_net = getattr(self.params, 'use_iou_net', True)

        # Target size in base scale
        self.base_target_sz = self.target_sz / self.target_scale

        # Use odd square search area and set sizes
        feat_max_stride = max(self.params.features.stride())
        if getattr(self.params, 'search_area_shape', 'square') == 'square':
            self.img_sample_sz = torch.round(
                torch.sqrt(
                    torch.prod(self.base_target_sz *
                               self.params.search_area_scale))) * torch.ones(2)
        elif self.params.search_area_shape == 'initrect':
            self.img_sample_sz = torch.round(self.base_target_sz *
                                             self.params.search_area_scale)
        else:
            raise ValueError('Unknown search area shape')
        if self.params.feature_size_odd:
            self.img_sample_sz += feat_max_stride - self.img_sample_sz % (
                2 * feat_max_stride)
        else:
            self.img_sample_sz += feat_max_stride - (
                self.img_sample_sz + feat_max_stride) % (2 * feat_max_stride)

        # Set sizes
        self.img_support_sz = self.img_sample_sz
        self.feature_sz = self.params.features.size(self.img_sample_sz)
        self.output_sz = self.params.score_upsample_factor * self.img_support_sz  # Interpolated size of the output
        self.kernel_size = self.fparams.attribute('kernel_size')

        self.iou_img_sample_sz = self.img_sample_sz

        # Optimization options
        self.params.precond_learning_rate = self.fparams.attribute(
            'learning_rate')
        if self.params.CG_forgetting_rate is None or max(
                self.params.precond_learning_rate) >= 1:
            self.params.direction_forget_factor = 0
        else:
            self.params.direction_forget_factor = (
                1 - max(self.params.precond_learning_rate)
            )**self.params.CG_forgetting_rate

        self.output_window = None
        if getattr(self.params, 'window_output', False):
            if getattr(self.params, 'use_clipped_window', False):
                self.output_window = dcf.hann2d_clipped(
                    self.output_sz.long(),
                    self.output_sz.long() * self.params.effective_search_area /
                    self.params.search_area_scale,
                    centered=False).to(self.params.device)
            else:
                self.output_window = dcf.hann2d(self.output_sz.long(),
                                                centered=False).to(
                                                    self.params.device)

        # Initialize some learning things
        self.init_learning()

        # Convert image
        im = numpy_to_torch(image)
        self.im = im  # For debugging only

        # Setup scale bounds
        self.image_sz = torch.Tensor([im.shape[2], im.shape[3]])
        self.min_scale_factor = torch.max(10 / self.base_target_sz)
        self.max_scale_factor = torch.min(self.image_sz / self.base_target_sz)

        # Extract and transform sample
        x = self.generate_init_samples(im)

        # Initialize iounet
        if self.use_iou_net:
            self.init_iou_net()

        # Initialize projection matrix
        self.init_projection_matrix(x)

        # Transform to get the training sample
        train_x = self.preprocess_sample(x)

        # Generate label function
        init_y = self.init_label_function(train_x)

        # Init memory
        self.init_memory(train_x)

        # Init optimizer and do initial optimization
        self.init_optimization(train_x, init_y)

        self.pos_iounet = self.pos.clone()

        self.time += time.time() - tic
        self.pool1 = torch.nn.AdaptiveMaxPool2d((1, 224))
        self.pool2 = torch.nn.AdaptiveMaxPool2d((224, 1))
Exemplo n.º 20
0
 def test_prod(self):
     x = torch.randn(1, 2, 3, 4, requires_grad=True)
     self.assertONNX(lambda x: torch.prod(x), x)
Exemplo n.º 21
0
def bboxes_iou(bboxes_a,
               bboxes_b,
               xyxy=True,
               GIoU=False,
               DIoU=False,
               CIoU=False):
    """Calculate the Intersection of Unions (IoUs) between bounding boxes.
    IoU is calculated as a ratio of area of the intersection
    and area of the union.

    Args:
        bbox_a (array): An array whose shape is :math:`(N, 4)`.
            :math:`N` is the number of bounding boxes.
            The dtype should be :obj:`numpy.float32`.
        bbox_b (array): An array similar to :obj:`bbox_a`,
            whose shape is :math:`(K, 4)`.
            The dtype should be :obj:`numpy.float32`.
    Returns:
        array:
        An array whose shape is :math:`(N, K)`. \
        An element at index :math:`(n, k)` contains IoUs between \
        :math:`n` th bounding box in :obj:`bbox_a` and :math:`k` th bounding \
        box in :obj:`bbox_b`.

    from: https://github.com/chainer/chainercv
    https://github.com/ultralytics/yolov3/blob/eca5b9c1d36e4f73bf2f94e141d864f1c2739e23/utils/utils.py#L262-L282
    """
    if bboxes_a.shape[1] != 4 or bboxes_b.shape[1] != 4:
        raise IndexError

    if xyxy:
        # intersection top left
        tl = torch.max(bboxes_a[:, None, :2], bboxes_b[:, :2])
        # intersection bottom right
        br = torch.min(bboxes_a[:, None, 2:], bboxes_b[:, 2:])
        # convex (smallest enclosing box) top left and bottom right
        con_tl = torch.min(bboxes_a[:, None, :2], bboxes_b[:, :2])
        con_br = torch.max(bboxes_a[:, None, 2:], bboxes_b[:, 2:])
        # centerpoint distance squared
        rho2 = ((bboxes_a[:, None, 0] + bboxes_a[:, None, 2]) -
                (bboxes_b[:, 0] + bboxes_b[:, 2]))**2 / 4 + (
                    (bboxes_a[:, None, 1] + bboxes_a[:, None, 3]) -
                    (bboxes_b[:, 1] + bboxes_b[:, 3]))**2 / 4

        w1 = bboxes_a[:, 2] - bboxes_a[:, 0]
        h1 = bboxes_a[:, 3] - bboxes_a[:, 1]
        w2 = bboxes_b[:, 2] - bboxes_b[:, 0]
        h2 = bboxes_b[:, 3] - bboxes_b[:, 1]

        area_a = torch.prod(bboxes_a[:, 2:] - bboxes_a[:, :2], 1)
        area_b = torch.prod(bboxes_b[:, 2:] - bboxes_b[:, :2], 1)
    else:
        # intersection top left
        tl = torch.max((bboxes_a[:, None, :2] - bboxes_a[:, None, 2:] / 2),
                       (bboxes_b[:, :2] - bboxes_b[:, 2:] / 2))
        # intersection bottom right
        br = torch.min((bboxes_a[:, None, :2] + bboxes_a[:, None, 2:] / 2),
                       (bboxes_b[:, :2] + bboxes_b[:, 2:] / 2))

        # convex (smallest enclosing box) top left and bottom right
        con_tl = torch.min((bboxes_a[:, None, :2] - bboxes_a[:, None, 2:] / 2),
                           (bboxes_b[:, :2] - bboxes_b[:, 2:] / 2))
        con_br = torch.max((bboxes_a[:, None, :2] + bboxes_a[:, None, 2:] / 2),
                           (bboxes_b[:, :2] + bboxes_b[:, 2:] / 2))
        # centerpoint distance squared
        rho2 = ((bboxes_a[:, None, :2] - bboxes_b[:, :2])**2 / 4).sum(dim=-1)

        w1 = bboxes_a[:, 2]
        h1 = bboxes_a[:, 3]
        w2 = bboxes_b[:, 2]
        h2 = bboxes_b[:, 3]

        area_a = torch.prod(bboxes_a[:, 2:], 1)
        area_b = torch.prod(bboxes_b[:, 2:], 1)
    en = (tl < br).type(tl.type()).prod(dim=2)
    area_i = torch.prod(br - tl, 2) * en  # * ((tl < br).all())
    area_u = area_a[:, None] + area_b - area_i
    iou = area_i / area_u

    if GIoU or DIoU or CIoU:
        if GIoU:  # Generalized IoU https://arxiv.org/pdf/1902.09630.pdf
            area_c = torch.prod(con_br - con_tl, 2)  # convex area
            return iou - (area_c - area_u) / area_c  # GIoU
        if DIoU or CIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            # convex diagonal squared
            c2 = torch.pow(con_br - con_tl, 2).sum(dim=2) + 1e-16
            if DIoU:
                return iou - rho2 / c2  # DIoU
            elif CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi**2) * torch.pow(
                    torch.atan(w1 / h1).unsqueeze(1) - torch.atan(w2 / h2), 2)
                with torch.no_grad():
                    alpha = v / (1 - iou + v)
                return iou - (rho2 / c2 + v * alpha)  # CIoU
    return iou
Exemplo n.º 22
0
def ms_ssim_loss(input,
                 target,
                 max_val,
                 filter_size=11,
                 k1=0.01,
                 k2=0.03,
                 sigma=1.5,
                 size_average=None,
                 reduce=None,
                 reduction='mean'):
    # type: (Tensor, Tensor, float, int, float, float, float, Optional[bool], Optional[bool], str) -> Tensor
    r"""ms_ssim_loss(input, target, max_val, filter_size, k1, k2,
                     sigma, size_average=None, reduce=None, reduction='mean') -> Tensor
    Measures the multi-scale structural similarity index (MS-SSIM) error.
    See :class:`~torch.nn.MSSSIMLoss` for details.
    """

    if input.size() != target.size():
        raise ValueError(
            'Expected input size ({}) to match target size ({}).'.format(
                input.size(0), target.size(0)))

    if input.device != target.device:
        raise RuntimeError(
            f'The input device {input.device} and target device {target.device} do not match.'
        )

    dim = input.dim()
    if dim == 2:  # Expand does not copy data.
        input = input.expand(1, 1, input.dim(-2), input.dim(-1))
        target = target.expand(1, 1, target.dim(-2), target.dim(-1))
    elif dim == 3:
        input = input.expand(1, input.dim(-3), input.dim(-2), input.dim(-1))
        target = target.expand(1, target.dim(-3), target.dim(-2),
                               target.dim(-1))
    elif dim != 4:
        raise ValueError('Expected 2, 3, or 4 dimensions (got {})'.format(dim))

    if size_average is not None or reduce is not None:
        reduction = _Reduction.legacy_get_string(size_average, reduce)

    channel = input.size(1)
    kernel = _fspecial_gaussian(filter_size, channel, sigma, input.device)

    # It would be nice if this did not have to be initialized every time that the function was called.
    # Copying from host (CPU) to device (GPU) is a major bottleneck.
    weights = torch.tensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333],
                           device=input.device)
    weights = weights.unsqueeze(-1).unsqueeze(-1)
    levels = weights.size(0)
    mssim = list()
    mcs = list()
    for _ in range(levels):
        ssim, cs = _ssim(input, target, max_val, k1, k2, channel, kernel)
        ssim = ssim.mean((2, 3))
        cs = cs.mean((2, 3))
        mssim.append(ssim)
        mcs.append(cs)

        input = avg_pool2d(input, (2, 2))
        target = avg_pool2d(target, (2, 2))

    mssim = torch.stack(mssim)
    mcs = torch.stack(mcs)
    p1 = mcs**weights
    p2 = mssim**weights

    ret = torch.prod(p1[:-1], 0) * p2[-1]

    if reduction != 'none':
        ret = torch.mean(ret) if reduction == 'mean' else torch.sum(ret)
    return ret
Exemplo n.º 23
0
    def __init__(self,
                 d,
                 input_dim=1,
                 output_dim=1,
                 latent_size=8,
                 img_size=28,
                 DEVICE='cuda'):
        super(SparseVAE, self).__init__()
        self.d = d
        self.opt_basis = nn.Parameter(torch.zeros(self.d).to(DEVICE),
                                      requires_grad=True)

        self.latent_size = latent_size
        self.img_size = img_size
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.linear_size = int(16 * (img_size / 4)**2)

        self.layers = torch.nn.ModuleDict()

        self.layers['enc_conv1'] = nn.Conv2d(self.input_dim,
                                             32,
                                             kernel_size=5,
                                             stride=1,
                                             padding=2,
                                             bias=False)
        self.layers['enc_bn1'] = nn.BatchNorm2d(32, track_running_stats=True)
        self.layers['enc_act1'] = nn.ELU()
        self.layers['enc_conv2'] = nn.Conv2d(32,
                                             32,
                                             kernel_size=4,
                                             stride=2,
                                             padding=1,
                                             bias=False)
        self.layers['enc_bn2'] = nn.BatchNorm2d(32, track_running_stats=True)
        self.layers['enc_act2'] = nn.ELU()
        self.layers['enc_conv3'] = nn.Conv2d(32,
                                             64,
                                             kernel_size=3,
                                             stride=2,
                                             padding=1,
                                             bias=False)
        self.layers['enc_bn3'] = nn.BatchNorm2d(64, track_running_stats=True)
        self.layers['enc_act3'] = nn.ELU()
        self.layers['enc_conv4'] = nn.Conv2d(64,
                                             16,
                                             kernel_size=5,
                                             stride=1,
                                             padding=2,
                                             bias=True)

        self.layers['dec_conv1'] = nn.ConvTranspose2d(16,
                                                      32,
                                                      kernel_size=4,
                                                      stride=1,
                                                      padding=2,
                                                      output_padding=0,
                                                      bias=False)
        self.layers['dec_bn1'] = nn.BatchNorm2d(32, track_running_stats=True)
        self.layers['dec_act1'] = nn.ELU()
        self.layers['dec_conv2'] = nn.ConvTranspose2d(32,
                                                      16,
                                                      kernel_size=5,
                                                      stride=2,
                                                      padding=1,
                                                      output_padding=1,
                                                      bias=False)
        self.layers['dec_bn2'] = nn.BatchNorm2d(16, track_running_stats=True)
        self.layers['dec_act2'] = nn.ELU()
        self.layers['dec_conv3'] = nn.ConvTranspose2d(16,
                                                      16,
                                                      kernel_size=5,
                                                      stride=2,
                                                      padding=2,
                                                      output_padding=1,
                                                      bias=False)
        self.layers['dec_bn3'] = nn.BatchNorm2d(16, track_running_stats=True)
        self.layers['dec_act3'] = nn.ELU()
        self.layers['dec_conv4'] = nn.ConvTranspose2d(16,
                                                      self.output_dim,
                                                      kernel_size=3,
                                                      stride=1,
                                                      padding=1,
                                                      output_padding=0,
                                                      bias=True)

        self.layers['fc_mu_logvar'] = nn.Linear(self.linear_size,
                                                2 * self.latent_size)
        self.layers['fc_dec'] = nn.Linear(self.latent_size, self.linear_size)

        self.config = {}
        self.config['fc_mu_logvar'] = 'linear'
        self.config['fc_dec'] = 'linear'
        self.config['enc_conv1'] = 'conv2d'
        self.config['enc_bn1'] = 'batch_norm'
        self.config['enc_act1'] = 'elu'
        self.config['enc_conv2'] = 'conv2d'
        self.config['enc_bn2'] = 'batch_norm'
        self.config['enc_act2'] = 'elu'
        self.config['enc_conv3'] = 'conv2d'
        self.config['enc_bn3'] = 'batch_norm'
        self.config['enc_act3'] = 'elu'
        self.config['enc_conv4'] = 'conv2d'
        self.config['dec_conv1'] = 'conv_transpose2d'
        self.config['dec_bn1'] = 'batch_norm'
        self.config['dec_act1'] = 'elu'
        self.config['dec_conv2'] = 'conv_transpose2d'
        self.config['dec_bn2'] = 'batch_norm'
        self.config['dec_act2'] = 'elu'
        self.config['dec_conv3'] = 'conv_transpose2d'
        self.config['dec_bn3'] = 'batch_norm'
        self.config['dec_act3'] = 'elu'
        self.config['dec_conv4'] = 'conv_transpose2d'

        # get full dimension
        self.D = 0
        for name, layer in self.layers.items():
            if hasattr(layer, 'weight'):
                self.D += torch.prod(torch.tensor(layer.weight.size()))
                if layer.bias is not None:
                    self.D += torch.prod(torch.tensor(layer.bias.size()))
                layer.requires_grad = False  # none of the layers will be updated

        self.DEVICE = DEVICE
        self.D = self.D.item()
        self.get_projection_matrix()
Exemplo n.º 24
0
def validate(loader, model, criterion, criterion_seg, 
            criterion_line_class, criterion_horizon, M_inv, epoch=0):

    # Define container to keep track of metric and loss
    losses = AverageMeter()
    avg_area = AverageMeter()
    avg_trapezium_rule = AverageMeter()
    acc_hor_tot = AverageMeter()
    acc_line_tot = AverageMeter()

    # Evaluate model
    model.eval()

    # Only forward pass, hence no gradients needed
    with torch.no_grad():
        
        # Start validation loop
        for i, (input_data, gt, params, idx, gt_line, gt_horizon, index) in tqdm(enumerate(loader)):
            if not args.no_cuda:
                input_data, params = input_data.cuda(non_blocking=True), params.cuda(non_blocking=True)
                input_data = input_data.float()
            gt0, gt1, gt2, gt3 = params[:, 0, :], params[:, 1, :], params[:, 2, :], params[:, 3, :]

            # Evaluate model
            try:
                beta0, beta1, beta2, beta3, weightmap_zeros, M, \
                output_net, outputs_line, outputs_horizon = model(input_data, args.end_to_end)
                '''
                beta0_np = beta0.cpu().numpy()
                beta1_np = beta1.cpu().numpy()
                left_lane = polynomial(beta0)
                right_lane = polynomial(beta1)
                l_a1_np = left_lane.a1.cpu().numpy()
                l_b1_np = left_lane.b1.cpu().numpy()
                l_c1_np = left_lane.c1.cpu().numpy()
                r_a1_np = right_lane.a1.cpu().numpy()
                r_b1_np = right_lane.b1.cpu().numpy()
                r_c1_np = right_lane.c1.cpu().numpy()
                input_data_np = input_data.cpu().numpy()
                gt_np = gt.cpu().numpy()
                print(type(input_data_np))
                print('input_data.shape: {}'.format(input_data_np.shape))
                print('gt.shape: {}'.format(gt_np.shape))
                print('beta0.shape: {}'.format(beta0_np.shape))
                l_x_pts = np.arange(0, 512)
                r_x_pts = np.arange(0, 512)
                for index in range(input_data_np.shape[0]):
                    processed_img = input_data_np[index]
                    gt_img = gt_np[index]
                    processed_img = np.moveaxis(processed_img, 0, -1)
                    r,g,b = cv2.split(processed_img)
                    rgb_img = cv2.merge([b,g,r])
                    l_y_pts = l_a1_np[index]*l_x_pts**2 + l_b1_np[index]*l_x_pts + l_c1_np[index]
                    r_y_pts = r_a1_np[index]*r_x_pts**2 + r_b1_np[index]*r_x_pts + r_c1_np[index]
                    l_pts = np.vstack((l_x_pts,l_y_pts)).astype(np.int32).T
                    r_pts = np.vstack((r_x_pts,r_y_pts)).astype(np.int32).T
                    cv2.polylines(rgb_img,  [l_pts],  False,  (0, 255, 0),  1)
                    cv2.polylines(rgb_img,  [r_pts],  False,  (0, 255, 0),  1)
                    cv2.imshow("input image", rgb_img)
                    cv2.waitKey(1)
                '''

            except RuntimeError as e:
                print("Batch with idx {} skipped due to singular matrix".format(idx.numpy()))
                print(e)
                continue

            # Compute losses on parameters or segmentation
            if args.end_to_end:
                loss = criterion(beta0, gt0) + criterion(beta1, gt1)
                if args.nclasses > 3:
                    # Masks to create zero in the loss when lane line is not present
                    mask_llhs = torch.prod(gt2 != 0, 1) \
                            .unsqueeze(1).unsqueeze(1).expand_as(beta2).type(torch.FloatTensor)
                    mask_rrhs = torch.prod(gt3 != 0, 1) \
                            .unsqueeze(1).unsqueeze(1).expand_as(beta3).type(torch.FloatTensor)
                    if not args.no_cuda:
                        mask_llhs = mask_llhs.cuda()
                        mask_rrhs = mask_rrhs.cuda()
                    beta2 = beta2*mask_llhs
                    beta3 = beta3*mask_rrhs

                    # add losses of further lane lines
                    loss += criterion(beta2, gt2) + criterion(beta3, gt3)
            else:
                gt = gt.cuda(non_blocking=True)
                loss = criterion_seg(output_net, gt)
                area = criterion(beta0, gt0) + criterion(beta1, gt1)
                avg_area.update(area.item(), input_data.size(0))

            # Horizon task & Line classification task
            if args.clas:
                gt_horizon, gt_line = gt_horizon.cuda(non_blocking=True), \
                                      gt_line.cuda(non_blocking=True)
                horizon_pred = torch.round(nn.Sigmoid()(outputs_horizon))
                acc = torch.eq(horizon_pred, gt_horizon)
                acc_hor = torch.sum(acc).float()/(args.resize*args.batch_size)
                acc_hor_tot.update(acc_hor.item())
                _, line_pred = torch.max(outputs_line, 1)
                acc = torch.eq(line_pred, gt_line)
                acc_line = torch.sum(acc).float()/(args.nclasses*args.batch_size)
                acc_line_tot.update(acc_line.item())
                loss_horizon = criterion_horizon(outputs_horizon, gt_horizon)
                loss_line = criterion_line_class(outputs_line, gt_line)
                loss = loss*args.weight_fit + (loss_line + loss_horizon)*args.weight_class
            else:
                line_pred = gt_line

            # Exact area computation
            gt_left_lines = polynomial(gt0.cpu())
            gt_right_lines = polynomial(gt1.cpu())
            pred_left_lines = polynomial(beta0.cpu())
            pred_right_lines = polynomial(beta1.cpu())
            trap_left = pred_left_lines.trapezoidal(gt_left_lines)
            trap_right = pred_right_lines.trapezoidal(gt_right_lines)
            avg_trapezium_rule.update(((trap_left + trap_right)/2).mean().item(), input_data.size(0))
            losses.update(loss.item(), input_data.size(0))

            #Write predictions to json file
            if args.clas:
                num_el = input_data.size(0)
                if args.nclasses > 2:
                    params_batch = torch.cat((beta0, beta1, beta2, beta3),2) \
                        .transpose(1, 2).data.tolist()
                else: 
                    params_batch = torch.cat((beta0, beta1),2).transpose(1, 2).data.tolist()
                    
                line_type = line_pred.data.tolist()
                horizon_pred = horizon_pred.data.tolist()
                with open(val_set_path, 'w') as jsonFile:
                    for j in range(num_el):
                        im_id = index[j]
                        json_line = valid_set_labels[im_id]
                        line_id = line_type[j]
                        horizon_est = horizon_pred[j]
                        params = params_batch[j]
                        json_line["params"] = params
                        json_line["line_id"] = line_id
                        json_line["horizon_est"] = horizon_est
                        json.dump(json_line, jsonFile)
                        jsonFile.write('\n')

            # Print info
            if (i + 1) % args.print_freq == 0:
                    print('Test: [{0}/{1}]\t'
                          'Loss {loss.val:.8f} ({loss.avg:.8f})\t'
                          'Area {metric.val:.8f} ({metric.avg:.8f})'.format(
                           i+1, len(loader), loss=losses, metric=avg_area))

            # Plot weightmap and curves
            batch_size = input_data.cpu().numpy().shape[0]
            print('saving results for batch {}'.format(i))
            for idx in range(batch_size):
                print('\tsaving results for image {} of batch {}'.format(idx, i))
                save_weightmap('valid', M, M_inv,
                               weightmap_zeros, beta0, beta1, beta2, beta3,
                               gt0, gt1, gt2, gt3, line_pred, gt, idx, i, input_data,
                               args.no_ortho, args.resize, args.save_path)

        # Compute x, y coordinates for accuracy later
        if args.clas and args.nclasses > 3:
            write_lsq_results(val_set_path, ls_result_path, args.nclasses, 
                    False, False, args.resize, no_ortho=args.no_ortho)
            acc_seg = LaneEval.bench_one_submit(ls_result_path, val_set_path)
            print("===> Average ACC_SEG on val is {:.8}".format(acc_seg[0]))

        if args.evaluate:
            print("===> Average {}-loss on validation set is {:.8}".format(crit_string, 
                                                                           losses.avg))
            print("===> Average exact area on validation set is {:.8}".format(
                avg_trapezium_rule.avg))
            if not args.end_to_end:
                print("===> Average area**2 on validation set is {:.8}".format(avg_area.avg))
            if args.clas:
                print("===> Average HORIZON ACC on val is {:.8}".format(acc_hor_tot.avg))
                print("===> Average LINE ACC on val is {:.8}".format(acc_hor_tot.avg))

        return losses.avg, avg_area.avg, avg_trapezium_rule.avg, acc_hor_tot.avg, acc_line_tot.avg
Exemplo n.º 25
0
def main():
    global args
    global mse_policy
    parser = define_args()
    args = parser.parse_args()
    if not args.end_to_end:
        assert args.pretrained == False
    mse_policy = args.loss_policy == 'homography_mse'
    if args.clas:
        assert args.nclasses == 4

    # Check GPU availability
    if not args.no_cuda and not torch.cuda.is_available():
        raise Exception("No gpu available for usage")
    torch.backends.cudnn.benchmark = args.cudnn

    # Define save path
    save_id = 'Mod_{}_opt_{}_loss_{}_lr_{}_batch_{}_end2end_{}_lanes_{}_resize_{}_pretrain{}_clas{}' \
            .format(args.mod, args.optimizer,
                    args.loss_policy,
                    args.learning_rate,
                    args.batch_size,
                    args.end_to_end,
                    args.nclasses,
                    args.resize,
                    args.pretrained,
                    args.clas)

    # Get homography
    M_inv = get_homography(args.resize)


    # Dataloader for training and validation set
    train_loader, valid_loader, valid_idx = get_loader(args.num_train,
                                                       args.json_file, args.image_dir, 
                                                       args.gt_dir,
                                                       args.flip_on, args.batch_size,
                                                       shuffle=True, num_workers=args.nworkers,
                                                       end_to_end=args.end_to_end,
                                                       resize=args.resize,
                                                       split_percentage=args.split_percentage)

    # Define network
    model = Net(args)
    define_init_weights(model, args.weight_init)

    if not args.no_cuda:
        # Load model on gpu before passing params to optimizer
        model = model.cuda()

    # Define optimizer and scheduler
    optimizer = define_optim(args.optimizer, model.parameters(),
                             args.learning_rate, args.weight_decay)
    scheduler = define_scheduler(optimizer, args)

    # Define loss criteria for multiple tasks
    criterion, criterion_seg = define_loss_crit(args)
    criterion_line_class = nn.CrossEntropyLoss().cuda()
    criterion_horizon = nn.BCEWithLogitsLoss().cuda()

    # Name
    global crit_string
    crit_string = 'AREA**2' if args.end_to_end else 'ENTROPY'
    if args.clas:
        crit_string = 'TOT LOSS' 

    # Logging setup
    best_epoch = 0
    lowest_loss = np.inf
    log_file_name = 'log_train_start_0.txt'
    args.save_path = os.path.join(args.save_path, save_id)
    mkdir_if_missing(args.save_path)
    mkdir_if_missing(os.path.join(args.save_path, 'example/'))
    mkdir_if_missing(os.path.join(args.save_path, 'example/train'))
    mkdir_if_missing(os.path.join(args.save_path, 'example/valid'))

    # Computes the file with lane data of the validation set
    validation_set_path = os.path.join(args.save_path , 'validation_set.json')
    load_valid_set_file_all(valid_idx, validation_set_path, args.image_dir) 
    global valid_set_labels
    global val_set_path
    global ls_result_path
    valid_set_labels = [json.loads(line) for line in open(validation_set_path).readlines()]
    val_set_path = os.path.join(args.save_path, 'validation_set_dst.json')
    ls_result_path = os.path.join(args.save_path, 'ls_result.json')

    # Tensorboard writer
    if not args.no_tb:
        global writer
        writer = SummaryWriter(os.path.join(args.save_path, 'Tensorboard/'))
    # Train, evaluate or resume
    args.resume = first_run(args.save_path)
    if args.resume and not args.test_mode and not args.evaluate:
        path = os.path.join(args.save_path, 'checkpoint_model_epoch_{}.pth.tar'.format(
            int(args.resume)))
        if os.path.isfile(path):
            log_file_name = 'log_train_start_{}.txt'.format(args.resume)
            # Redirect stdout
            sys.stdout = Logger(os.path.join(args.save_path, log_file_name))
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(path)
            args.start_epoch = checkpoint['epoch']
            lowest_loss = checkpoint['loss']
            best_epoch = checkpoint['best epoch']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
        else:
            log_file_name = 'log_train_start_0.txt'
            # Redirect stdout
            sys.stdout = Logger(os.path.join(args.save_path, log_file_name))
            print("=> no checkpoint found at '{}'".format(path))

    # Only evaluate
    elif args.evaluate:
        best_file_name = glob.glob(os.path.join(args.save_path, 'model_best*'))[0]
        if os.path.isfile(best_file_name):
            sys.stdout = Logger(os.path.join(args.save_path, 'Evaluate.txt'))
            print("=> loading checkpoint '{}'".format(best_file_name))
            checkpoint = torch.load(best_file_name)
            model.load_state_dict(checkpoint['state_dict'])
        else:
            print("=> no checkpoint found at '{}'".format(best_file_name))
        validate(valid_loader, model, criterion, criterion_seg, 
                criterion_line_class, criterion_horizon, M_inv)
        return
    elif args.test_mode:
        best_file_name = glob.glob(os.path.join(args.save_path, 'model_best*'))[0]
        if os.path.isfile(best_file_name):
            sys.stdout = Logger(os.path.join(args.save_path, 'Evaluate.txt'))
            print("=> loading checkpoint '{}'".format(best_file_name))
            checkpoint = torch.load(best_file_name)
            model.load_state_dict(checkpoint['state_dict'])
        else:
            print("=> no checkpoint found at '{}'".format(best_file_name))
        test(valid_loader, model, criterion, criterion_seg, 
             criterion_line_class, criterion_horizon, M_inv)
        return

    # Start training from clean slate
    else:
        # Redirect stdout
        sys.stdout = Logger(os.path.join(args.save_path, log_file_name))

    # INIT MODEL
    print(40*"="+"\nArgs:{}\n".format(args)+40*"=")
    print("Init model: '{}'".format(args.mod))
    print("Number of parameters in model {} is {:.3f}M".format(
        args.mod.upper(), sum(tensor.numel() for tensor in model.parameters())/1e6))

    # Start training and validation for nepochs
    for epoch in range(args.start_epoch, args.nepochs):
        print("\n => Start train set for EPOCH {}".format(epoch + 1))
        # Adjust learning rate
        if args.lr_policy is not None and args.lr_policy != 'plateau':
            scheduler.step()
            lr = optimizer.param_groups[0]['lr']
            print('lr is set to {}'.format(lr))

        if args.pretrained:
            if (epoch < args.pretrain_epochs):
                args.end_to_end = False
                print("Pretraining so set args.end_to_end to {}".format(args.end_to_end))
            else:
                args.end_to_end = True

        # Define container objects to keep track of multiple losses/metrics
        batch_time = AverageMeter()
        data_time = AverageMeter()
        losses = AverageMeter()
        avg_area = AverageMeter()
        exact_area = AverageMeter()

        # Specfiy operation modus
        model.train()

        # compute timing
        end = time.time()

        # Start training loop
        for i, (input, gt, params, idx, gt_line, gt_horizon) in tqdm(enumerate(train_loader)):

            # Time dataloader
            data_time.update(time.time() - end)

            # Put inputs on gpu if possible
            if not args.no_cuda:
                input, params = input.cuda(non_blocking=True), params.cuda(non_blocking=True)
                input = input.float()
            assert params.size(1) == 4
            gt0, gt1, gt2, gt3 = params[:, 0, :], params[:, 1, :], params[:, 2, :], params[:, 3, :]

            # Run model
            try:
                beta0, beta1, beta2, beta3, weightmap_zeros, M, \
                output_net, outputs_line, outputs_horizon = model(input, args.end_to_end)
            except RuntimeError as e:
                print("Batch with idx {} skipped due to singular matrix".format(idx.numpy()))
                print(e)
                continue

            # Compute losses on parameters or on segmentation
            if args.end_to_end:
                loss = criterion(beta0, gt0) + criterion(beta1, gt1)
                if args.nclasses > 3:
                    # Masks to create zero in the loss when lane line is not present
                    mask_llhs = torch.prod(gt2 != 0, 1) \
                            .unsqueeze(1).unsqueeze(1).expand_as(beta2).type(torch.FloatTensor)
                    mask_rrhs = torch.prod(gt3 != 0, 1) \
                            .unsqueeze(1).unsqueeze(1).expand_as(beta3).type(torch.FloatTensor)
                    if not args.no_cuda:
                        mask_llhs = mask_llhs.cuda()
                        mask_rrhs = mask_rrhs.cuda()
                    beta2 = beta2*mask_llhs
                    beta3 = beta3*mask_rrhs

                    # add losses of further lane lines
                    loss += criterion(beta2, gt2) + criterion(beta3, gt3)

            else:
                gt = gt.cuda(non_blocking=True)
                loss = criterion_seg(output_net, gt)
                with torch.no_grad():
                    area = criterion(beta0, gt0) + criterion(beta1, gt1)
                    avg_area.update(area.item(), input.size(0))

            # Horizon task & Line classification task
            if args.clas:
                gt_horizon, gt_line = gt_horizon.cuda(non_blocking=True), \
                                      gt_line.cuda(non_blocking=True)
                _, line_pred = torch.max(outputs_line, 1)
                loss_horizon = criterion_horizon(outputs_horizon, gt_horizon)
                loss_line = criterion_line_class(outputs_line, gt_line)
                loss = loss*args.weight_fit + (loss_line + loss_horizon)*args.weight_class
            else:
                line_pred = gt_line

            losses.update(loss.item(), input.size(0))

            # Clip gradients (usefull for instabilities or mistakes in ground truth)
            if args.clip_grad_norm != 0:
                nn.utils.clip_grad_norm(model.parameters(), args.clip_grad_norm)

            # Setup backward pass
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            # Time trainig iteration
            batch_time.update(time.time() - end)
            end = time.time()

            # Exact AREA computation for egolines on cpu
            with torch.no_grad():
                gt_left_lines = polynomial(gt0.cpu())
                gt_right_lines = polynomial(gt1.cpu())
                pred_left_lines = polynomial(beta0.cpu())
                pred_right_lines = polynomial(beta1.cpu())
                trap_left = pred_left_lines.trapezoidal(gt_left_lines)
                trap_right = pred_right_lines.trapezoidal(gt_right_lines)
                exact_area.update(((trap_left + trap_right)/2).mean().item(), input.size(0))

            # Print info
            if (i + 1) % args.print_freq == 0:
                print('Epoch: [{0}][{1}/{2}]\t'
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      'Loss {loss.val:.8f} ({loss.avg:.8f})'.format(
                       epoch+1, i+1, len(train_loader), batch_time=batch_time,
                       data_time=data_time, loss=losses))

            # Plot weightmap and curves
            if (i + 1) % args.save_freq == 0:
                save_weightmap('train', M, M_inv,
                               weightmap_zeros, beta0, beta1, beta2, beta3,
                               gt0, gt1, gt2, gt3, line_pred, gt, 0, i, input,
                               args.no_ortho, args.resize, args.save_path)

        losses_valid, avg_area_valid, avg_exact_area, \
        acc_hor_tot, acc_line_tot = validate(valid_loader,
                                             model, criterion,
                                             criterion_seg, 
                                             criterion_line_class,
                                             criterion_horizon,
                                             M_inv,
                                             epoch)
        if not args.end_to_end:
            print("===> Average AREA**2 from segmentation  on training set is {:.8f}" \
                    .format(avg_area.avg))
            print("===> Average AREA**2 from segmetnation validation set is {:.8f}" \
                    .format(avg_area_valid))
        print("===> Average {}-loss on training set is {:.8f}".format(crit_string, losses.avg))
        print("===> Average {}-loss on validation set is {:.8f}".format(crit_string, losses_valid))
        print("===> Average exact area on training set is {:.8f}".format(exact_area.avg))
        print("===> Average exact area on validation set is {:.8f}".format(avg_exact_area))

        if args.clas:
            print("===> Average HORIZON ACC on val is {:.8}".format(acc_hor_tot))
            print("===> Average LINE ACC on val is {:.8}".format(acc_line_tot))

        print("===> Last best {}-loss was {:.8f} in epoch {}".format(
            crit_string, lowest_loss, best_epoch))

        if not args.no_tb:
            if args.end_to_end:
                writer.add_scalars('Loss/Area**2', {'Training': losses.avg}, epoch)
                writer.add_scalars('Loss/Area**2', {'Validation': losses_valid}, epoch)
            else:
                writer.add_scalars('Loss/Area**2', {'Training': avg_area.avg}, epoch)
                writer.add_scalars('Loss/Area**2', {'Validation': avg_area_valid}, epoch)
                writer.add_scalars('CROSS-ENTROPY', {'Training': losses.avg}, epoch)
                writer.add_scalars('CROSS-ENTROPY', {'Validation': losses_valid}, epoch)
            writer.add_scalars('Metric', {'Training': exact_area.avg}, epoch)
            writer.add_scalars('Metric', {'Validation': avg_exact_area}, epoch)

        total_score = avg_exact_area

        # Adjust learning_rate if loss plateaued
        if args.lr_policy == 'plateau':
            scheduler.step(total_score)
            lr = optimizer.param_groups[0]['lr']
            print('LR plateaued, hence is set to {}'.format(lr))

        # File to keep latest epoch
        with open(os.path.join(args.save_path, 'first_run.txt'), 'w') as f:
            f.write(str(epoch))
        # Save model
        to_save = False
        if total_score < lowest_loss:
            to_save = True
            best_epoch = epoch+1
            lowest_loss = total_score
        save_checkpoint({
            'epoch': epoch + 1,
            'best epoch': best_epoch,
            'arch': args.mod,
            'state_dict': model.state_dict(),
            'loss': lowest_loss,
            'optimizer': optimizer.state_dict()}, to_save, epoch)
    if not args.no_tb:
        writer.close()
Exemplo n.º 26
0
 def prod(a, dim=-1):
     return torch.prod(a, dim=dim)
Exemplo n.º 27
0
 def test_reduced_prod_keepdim(self):
     x = torch.randn(1, 2, 3, 4, requires_grad=True)
     self.assertONNX(lambda x: torch.prod(x, dim=2, keepdim=True), x)
Exemplo n.º 28
0
def get_fourier_fn_k(new_k, U_shape):
    # only torch one because we need gradient
    h_k = torch.tensor(get_h_k(new_k, U_shape))
    return lambda x: (1 / h_k) * torch.prod(torch.cos(x * torch.tensor(new_k)))
Exemplo n.º 29
0
 def test_reduced_prod_dtype(self):
     x = torch.randn(1, 2, 3, 4, requires_grad=True)
     self.assertONNXRaisesRegex(
         RuntimeError, 'Couldn\'t export operator aten::prod',
         lambda x: torch.prod(x, dim=0, dtype=torch.double), x)
Exemplo n.º 30
0
 def forward(self, x):
     shape = torch.prod(torch.tensor(x.shape[1:])).item()
     return x.view(-1, shape)
Exemplo n.º 31
0
def count_maxpool(m, x, y):
    kernel_ops = torch.prod(torch.Tensor([m.kernel_size])) - 1
    num_elements = y.numel()
    total_ops = kernel_ops * num_elements

    return int(total_ops)
Exemplo n.º 32
0
    print("Using MLTN")
    model = MLTN(input_dim=dim,
                 output_dim=output_dim,
                 nCh=nCh,
                 kernel=kernel,
                 bn=args.bn,
                 dropout=args.dropout,
                 bond_dim=args.bond_dim,
                 feature_dim=feature_dim,
                 adaptive_mode=adaptive_mode,
                 periodic_bc=periodic_bc,
                 virtual_dim=1)
elif args.tenetx:
    print("Tensornet-X baseline")
    #       pdb.set_trace()
    model = MPS(input_dim=torch.prod(dim),
                output_dim=output_dim,
                bond_dim=args.bond_dim,
                feature_dim=feature_dim,
                adaptive_mode=adaptive_mode,
                periodic_bc=periodic_bc,
                tenetx=args.tenetx)
elif args.densenet:
    print("Densenet Baseline!")
    model = DenseNet(depth=40,
                     growthRate=12,
                     reduction=0.5,
                     bottleneck=True,
                     nClasses=output_dim)
elif args.mlp:
    print("MLP Baseline!")
Exemplo n.º 33
0
    def forward(self,inputs):
        size = torch.prod(torch.LongTensor(list(inputs.size())[1:])).item()

        return inputs.view((-1,size))
Exemplo n.º 34
0
def validate(model,
             pair_dataloader,
             device,
             criterion,
             n_iterations=1,
             read_level_info=False):
    """
    extract all the features from a given dataset
    """
    model.eval()
    all_y_true = None
    all_y_pred = []
    all_y_pred_read = []
    start = time.time()

    with torch.no_grad():
        for n in range(n_iterations):
            y_true_tmp = []
            y_pred_tmp = []
            y_pred_read_tmp = []
            for batch in pair_dataloader:
                y_true = batch.pop('y').to(device).flatten()
                X = {key: val.to(device) for key, val in batch.items()}
                y_pred = model(X).detach().cpu().numpy()

                if all_y_true is None:
                    y_true_tmp.extend(y_true.detach().cpu().numpy())

                if (len(y_pred.shape) == 1) or (y_pred.shape[1] == 1):
                    y_pred_tmp.extend(y_pred.flatten())
                else:
                    y_pred_tmp.extend(y_pred[:, 1])

                if read_level_info:
                    y_pred_read = model.get_read_probability(X)
                    y_pred_read = 1 - torch.prod(1 - y_pred_read, axis=1)
                    y_pred_read = y_pred_read.detach().cpu().numpy()
                    y_pred_read_tmp.extend(y_pred_read)

            if all_y_true is None:
                all_y_true = y_true_tmp

            all_y_pred.append(y_pred_tmp)

            if read_level_info:
                all_y_pred_read.append(y_pred_read_tmp)

    compute_time = time.time() - start
    y_pred_avg = np.mean(all_y_pred, axis=0)
    all_y_true = np.array(all_y_true).flatten()

    val_results = {}

    val_results['y_pred'] = all_y_pred
    val_results['y_true'] = all_y_true
    val_results['compute_time'] = compute_time
    val_results['accuracy'] = get_accuracy(all_y_true,
                                           (y_pred_avg.flatten() > 0.5) * 1)
    val_results['roc_auc'] = get_roc_auc(all_y_true, y_pred_avg)
    val_results['pr_auc'] = get_pr_auc(all_y_true, y_pred_avg)
    val_results["avg_loss"] = criterion(torch.Tensor(y_pred_avg),
                                        torch.Tensor(all_y_true)).item()

    if len(all_y_pred_read) > 0:
        all_y_pred_read = np.mean(all_y_pred_read, axis=0)
        all_y_pred_read = np.array(all_y_pred_read)

        val_results['accuracy_read'] = get_accuracy(
            all_y_true.flatten(), (all_y_pred_read.flatten() > 0.5) * 1)
        val_results['roc_auc_read'] = get_roc_auc(all_y_true, all_y_pred_read)
        val_results['pr_auc_read'] = get_pr_auc(all_y_true, all_y_pred_read)
        val_results["avg_loss_read"] = criterion(
            torch.Tensor(all_y_pred_read), torch.Tensor(all_y_true)).item()

    return val_results
Exemplo n.º 35
0
def getProb(sample, pVec):
    #sample is 0-1 set and pVec is a probability distribution
    temp = pVec * sample + (1 - pVec) * (1 - sample)
    return torch.prod(temp, 1)
Exemplo n.º 36
0
def ms_ssim(X, Y,
            data_range=255,
            size_average=True,
            win_size=11,
            win_sigma=1.5,
            win=None,
            weights=None,
            K=(0.01, 0.03)):
    r""" interface of ms-ssim
    Args:
        X (torch.Tensor): a batch of images, (N,C,H,W)
        Y (torch.Tensor): a batch of images, (N,C,H,W)
        data_range (float or int, optional): value range of input images. (usually 1.0 or 255)
        size_average (bool, optional): if size_average=True, ssim of all images will be averaged as a scalar
        win_size: (int, optional): the size of gauss kernel
        win_sigma: (float, optional): sigma of normal distribution
        win (torch.Tensor, optional): 1-D gauss kernel. if None, a new kernel will be created according to win_size and win_sigma
        weights (list, optional): weights for different levels
        K (list or tuple, optional): scalar constants (K1, K2). Try a larger K2 constant (e.g. 0.4) if you get a negative or NaN results_nuclear_real_denoise.
    Returns:
        torch.Tensor: ms-ssim results_nuclear_real_denoise
    """
    if len(X.shape) != 4:
        raise ValueError('Input images should be 4-d tensors.')

    if not X.type() == Y.type():
        raise ValueError('Input images should have the same dtype.')

    if not X.shape == Y.shape:
        raise ValueError('Input images should have the same dimensions.')

    if win is not None:  # set win_size
        win_size = win.shape[-1]

    if not (win_size % 2 == 1):
        raise ValueError('Window size should be odd.')

    smaller_side = min(X.shape[-2:])
    assert smaller_side > (win_size - 1) * (2 ** 4), \
        "Image size should be larger than %d due to the 4 downsamplings in ms-ssim" % ((win_size - 1) * (2 ** 4))

    if weights is None:
        weights = [0.0448, 0.2856, 0.3001, 0.2363, 0.1333]
    weights = torch.FloatTensor(weights).to(X.device, dtype=X.dtype)

    if win is None:
        win = _fspecial_gauss_1d(win_size, win_sigma)
        win = win.repeat(X.shape[1], 1, 1, 1)

    levels = weights.shape[0]
    mcs = []
    for i in range(levels):
        ssim_per_channel, cs = _ssim(X, Y,
                                     win=win,
                                     data_range=data_range,
                                     size_average=False,
                                     K=K)

        if i < levels - 1:
            mcs.append(torch.relu(cs))
            padding = (X.shape[2] % 2, X.shape[3] % 2)
            X = F.avg_pool2d(X, kernel_size=2, padding=padding)
            Y = F.avg_pool2d(Y, kernel_size=2, padding=padding)

    ssim_per_channel = torch.relu(ssim_per_channel)  # (batch, channel)
    mcs_and_ssim = torch.stack(mcs + [ssim_per_channel], dim=0)  # (level, batch, channel)
    ms_ssim_val = torch.prod(mcs_and_ssim ** weights.view(-1, 1, 1), dim=0)

    if size_average:
        return ms_ssim_val.mean()
    else:
        return ms_ssim_val.mean(1)
Exemplo n.º 37
0
    def Run(self, variables):
        all_F = variables['all_F']
        num_objects = variables['info']['num_objs']
        num_frames = variables['info']['num_frames']
        height = variables['info']['height']
        width = variables['info']['width']
        prev_targets = variables['prev_targets']
        scribbles = variables['scribbles']
        target = scribbles['annotated_frame']

        loss = 0
        masks = torch.zeros(num_objects, num_frames, height, width)
        for n_obj in range(1, num_objects + 1):

            # variables for current obj
            all_E_n = variables['mask_objs'][n_obj-1:n_obj].data if variables['mask_objs'][n_obj-1:n_obj] is not None \
                else variables['mask_objs'][n_obj-1:n_obj]
            a_ref = variables['ref'][n_obj - 1]
            prev_E_n = all_E_n.clone()
            all_M_n = (variables['all_M'] == n_obj).long()

            # divide scribbles for current object
            n_scribble = copy.deepcopy(scribbles)
            n_scribble['scribbles'][target] = []
            for p in scribbles['scribbles'][target]:
                if p['object_id'] == n_obj:
                    n_scribble['scribbles'][target].append(copy.deepcopy(p))
                    n_scribble['scribbles'][target][-1]['object_id'] = 1
                else:
                    if p['object_id'] == 0:
                        n_scribble['scribbles'][target].append(
                            copy.deepcopy(p))

            scribble_mask = scribbles2mask(n_scribble, (height, width))[target]
            scribble_mask_N = (prev_E_n[0, target].cpu() >
                               0.5) & (torch.tensor(scribble_mask) == 0)
            scribble_mask[scribble_mask == 0] = -1
            scribble_mask[scribble_mask_N] = 0
            scribble_mask = Dilate_mask(scribble_mask, 1)

            # interaction
            tar_P, tar_N = ToCudaPN(scribble_mask)
            all_E_n[:, target], batch_CE, ref = self.model_I(
                all_F[:, :, target], all_E_n[:, target], tar_P, tar_N,
                all_M_n[:, target], [1, 1, 1, 1, 1])  # [batch, 256,512,2]
            loss += batch_CE

            # propagation
            left_end, right_end, weight = Get_weight(target,
                                                     prev_targets,
                                                     num_frames,
                                                     at_least=-1)

            # Prop_forward
            next_a_ref = None
            for n in range(target + 1, right_end + 1):  #[1,2,...,N-1]
                all_E_n[:, n], batch_CE, next_a_ref = self.model_P(
                    ref, a_ref, all_F[:, :, n], prev_E_n[:, n],
                    all_E_n[:, n - 1], all_M_n[:,
                                               n], [1, 1, 1, 1, 1], next_a_ref)
                loss += batch_CE

            # Prop_backward
            for n in reversed(range(left_end, target)):
                all_E_n[:, n], batch_CE, next_a_ref = self.model_P(
                    ref, a_ref, all_F[:, :, n], prev_E_n[:, n],
                    all_E_n[:, n + 1], all_M_n[:,
                                               n], [1, 1, 1, 1, 1], next_a_ref)
                loss += batch_CE

            for f in range(num_frames):
                all_E_n[:, f, :, :] = weight[f] * all_E_n[:, f, :, :] + (
                    1 - weight[f]) * prev_E_n[:, f, :, :]

            masks[n_obj - 1] = all_E_n[0]
            variables['ref'][n_obj - 1] = next_a_ref

        loss /= num_objects

        em = torch.zeros(1, num_objects + 1, num_frames, height,
                         width).to(masks.device)
        em[0, 0, :, :, :] = torch.prod(1 - masks, dim=0)  # bg prob
        em[0, 1:num_objects + 1, :, :] = masks  # obj prob
        em = torch.clamp(em, 1e-7, 1 - 1e-7)
        all_E = torch.log((em / (1 - em)))

        all_E = F.softmax(all_E, dim=1)
        final_masks = all_E[0].max(0)[1].float()

        variables['prev_targets'].append(target)
        variables['masks'] = final_masks
        variables['mask_objs'] = masks
        variables['probs'] = all_E
        variables['loss'] = loss
Exemplo n.º 38
0
 def __init__(self, input_dim: Tuple[int], latent_dim: int = 2) -> None:
     super(features_to_latent, self).__init__()
     self.reshape_ = torch.prod(tt(input_dim))
     self.fc_latent = nn.Linear(self.reshape_, latent_dim)
Exemplo n.º 39
0
 def evaluate_true(self, X: Tensor) -> Tensor:
     part1 = torch.sum(X**2 / 4000.0, dim=1)
     d = X.shape[1]
     part2 = -(torch.prod(
         torch.cos(X / torch.sqrt(X.new(range(1, d + 1))).view(1, -1))))
     return part1 + part2 + 1.0
Exemplo n.º 40
0
    def backward(ctx, grad_output):
        '''
        There are two algorithms to do this. The first one
        is very efficient, but works only when there are no
        nonzero elements in the input.

        The second one is much more complex, but it doesn't
        assume anything on the input. The main downside is
        that it takes time O(n^2), where n = input.size(self.dim)
        (i.e. the length of the cumulative product). This is in
        contrast to the forward pass and the efficient algorithm,
        which are both O(n).

        The second algorithm is a simple application of the chain
        rule. If x is an n-dimensional vector, and y = cumprod(x),
        and F is the final cost, then

        dF / dx_k = sum_j (dF / dy_j) * (dy_j / dx_k)   (1)

        The term dF / dy_j is just grad_output[j] (assuming again
        everything is one-dimensional).

        The term (dy_j / dx_k) is easilly seen to be

        if j >= k
            dy_j / dx_k = prod_{1 <= i <= j, i != k} x_i
        else:
            dy_j / dx_k = 0

        Note that the indicator (j>=k) can be taken out
        by replacing the sum in (1) with a sum from
        j = k to n.

        Thus,
        df / dx_k = sum_{k <= j <= n} grad_output[j] * (dy_j / dx_k)

        with
        dy_j / dx_k = prod_{1 <= i <= j, i != k} x_i     (2)

        Note that this last term is just the cumulative product
        with k omitted. Thus, if x_k (the input) is nonzero, we can
        just express this as

        dy_j / dx_k = (prod_{1 <= i <= j} x_i) / x_k
                    = y_j / x_k

        So therefore,

        df / dx_k = sum_{k <= j <= n} grad_output[j] * y_j / x_k

        so

        grad_output = sum_scan_exclusiv(grad_output * output) / input

        If the input is nonzero, we need to calculate the dy_j / dx_k
        by using the formula (2), called in the code omitted_products.

        The way the code calculates it is simply by noting that

        prod_{1 <= i <= j, i != k} x_i
            = (prod_{1 <= i <= k} x_i) * (prod_{k + 1 <= i <= j} x_i)

        the first term is calculated as prods_until_k, which since
        doesn't depend in j is easy to vectorize.

        The second term (indexed by j) is the cumulative product of
        x_{k+1}, x_{k+2}, ..., x_n, and it's named in the code
        prods_from_k_pkus_1, and it's calculated as a cumprod.

        In order to vectorize this properly, we need to add to
        omitted_products the dimensions where k > j, and therefore
        dy_j / dx_k = 0, which is done right after the assert.
        '''

        input, = ctx.saved_variables
        dim_size = input.size(ctx.dim)
        if dim_size == 1:
            return grad_output, None

        #  Simple case with nonzero elements in the input
        if (input != 0).data.all():
            output = torch.cumprod(input, dim=ctx.dim)
            return sum_scan_exclusive(output * grad_output, dim=ctx.dim) / input, None

        positive_dim = ctx.dim if ctx.dim >= 0 else input.dim() + ctx.dim
        dim_padding = (slice(None, None),) * (positive_dim)

        ones_size = list(input.size())
        ones_size[ctx.dim] = 1
        ones = Variable(input.data.new([1]).expand(ones_size))
        grad_input = Variable(grad_output.data.new(input.size()).zero_())
        for k in range(dim_size):
            if k == 0:
                prods_from_k_plus_1 = torch.cumprod(
                    input[dim_padding + (slice(k + 1, None),)],
                    dim=ctx.dim
                )

                omitted_products = torch.cat(
                    (ones, prods_from_k_plus_1),
                    dim=ctx.dim
                )

            elif k == dim_size - 1:
                prods_until_k = torch.prod(
                    input[dim_padding + (slice(None, k),)],
                    dim=ctx.dim,
                    keepdim=True
                )

                omitted_products = prods_until_k

            else:
                prods_until_k = torch.prod(
                    input[dim_padding + (slice(None, k),)],
                    dim=ctx.dim,
                    keepdim=True
                )

                prods_from_k_plus_1 = torch.cumprod(
                    input[dim_padding + (slice(k + 1, None),)],
                    dim=ctx.dim
                )

                omitted_products = prods_until_k.expand_as(
                    prods_from_k_plus_1) * prods_from_k_plus_1

                omitted_products = torch.cat(
                    (prods_until_k, omitted_products), ctx.dim)

            # At this point omitted_products is the same size
            # as input, except on the dimension dim where it's
            # dim_size - k
            assert omitted_products.size(ctx.dim) == dim_size - k

            # should we implement copy_ or _set_item in variable?
            index = tuple(slice(None, None) for _ in range(positive_dim)) + (k,)
            grad_input[index] = torch.sum(
                grad_output[dim_padding + (slice(k, None),)] * omitted_products,
                dim=ctx.dim)

        return grad_input, None
Exemplo n.º 41
0
    def forward(self, x):
        """
        此方法中实现了DNM的前向传播,输入X为二维矩阵
        """
        X_orig = torch.as_tensor(x, device='cuda', dtype=torch.float32)
        # x_split = torch.split(X_orig,self.max_Neuron,dim=1)
        y = torch.tensor([], device='cuda')
        X_orig = X_orig.unsqueeze(dim=1)
        X_orig = X_orig.expand(X_orig.shape[0], self.M,
                               X_orig.shape[2])  # 若输入X为多维矩阵,此处应修改
        y_temp_orig = F.leaky_relu(
            self.k1 * 1.0 * (torch.mul(X_orig, self.W_orig) - self.q_orig))
        y_temp_orig2 = F.leaky_relu(
            self.k1 * 1.0 * (torch.mul(X_orig, self.W2_orig) - self.q2_orig))
        y_temp_orig3 = F.leaky_relu(
            self.k1 * 1.0 * (torch.mul(X_orig, self.W3_orig) - self.q3_orig))

        y_split = torch.split(y_temp_orig, self.BN_internal, dim=2)
        batchnorm = nn.BatchNorm1d(9)
        batchnorm.cuda()
        y_group_out = torch.ones(y_temp_orig.shape[0],
                                 y_temp_orig.shape[1],
                                 1,
                                 device='cuda')

        y_split2 = torch.split(y_temp_orig2, self.BN_internal, dim=2)
        batchnorm2 = nn.BatchNorm1d(9)
        y_group_out2 = torch.ones(y_temp_orig2.shape[0], y_temp_orig2.shape[1],
                                  1)
        y_split3 = torch.split(y_temp_orig3, self.BN_internal, dim=2)
        batchnorm3 = nn.BatchNorm1d(9)
        y_group_out3 = torch.ones(y_temp_orig3.shape[0], y_temp_orig3.shape[1],
                                  1)

        for i in range(len(y_split)):
            y_split_temp = y_split[i]
            y_group_prod = y_group_out * torch.prod(
                y_split_temp, dim=2, keepdim=True
            )  # 将不同特征的维度相乘 此处因为sigmoid激活导致数据分布在0-1之间,在特征多时会导致相乘后为0  方法一:前面降维:lstm降维或全连接层降维,方法二:自剪特征降维
            y_group_out = batchnorm(y_group_prod)
        y_orig_prod = torch.squeeze(y_group_out, dim=2)
        y1_orig_sum = torch.sum(y_orig_prod, dim=1, keepdim=True)  # 并相加
        y2_orig_final = torch.sigmoid(self.k2 * 1.0 * (y1_orig_sum - 0.5))
        y = torch.cat([y, y2_orig_final], dim=1)

        for i in range(len(y_split2)):
            y_split_temp2 = y_split2[i]
            y_group_prod2 = y_group_out * torch.prod(
                y_split_temp2, dim=2, keepdim=True
            )  # 将不同特征的维度相乘 此处因为sigmoid激活导致数据分布在0-1之间,在特征多时会导致相乘后为0  方法一:前面降维:lstm降维或全连接层降维,方法二:自剪特征降维
            y_group_out2 = batchnorm(y_group_prod2)
        y_orig_prod2 = torch.squeeze(y_group_out2, dim=2)
        y1_orig_sum2 = torch.sum(y_orig_prod2, dim=1, keepdim=True)  # 并相加
        y2_orig_final2 = torch.sigmoid(self.k2 * 1.0 * (y1_orig_sum2 - 0.5))
        y2 = torch.cat([y, y2_orig_final2], dim=1)

        for i in range(len(y_split3)):
            y_split_temp3 = y_split3[i]
            y_group_prod3 = y_group_out * torch.prod(
                y_split_temp3, dim=2, keepdim=True
            )  # 将不同特征的维度相乘 此处因为sigmoid激活导致数据分布在0-1之间,在特征多时会导致相乘后为0  方法一:前面降维:lstm降维或全连接层降维,方法二:自剪特征降维
            y_group_out3 = batchnorm(y_group_prod3)
        y_orig_prod3 = torch.squeeze(y_group_out3, dim=2)
        y1_orig_sum3 = torch.sum(y_orig_prod3, dim=1, keepdim=True)  # 并相加
        y2_orig_final3 = torch.sigmoid(self.k2 * 1.0 * (y1_orig_sum3 - 0.5))
        y3 = torch.cat([y, y2_orig_final3], dim=1)

        y_hat = torch.cat([y2_orig_final, y2_orig_final2, y2_orig_final3],
                          dim=1)
        # print("W的梯度:{}    q的梯度: {}".format(self.W_orig.grad,self.q_orig.grad))
        return y_hat
Exemplo n.º 42
0
 def test_reduced_prod_keepdim(self):
     x = Variable(torch.randn(1, 2, 3, 4), requires_grad=True)
     self.assertONNX(lambda x: torch.prod(x, dim=2, keepdim=True), x)
    def __init__(
            self,
            env,
            train_tasks,
            eval_tasks,
            latent_dim,
            nets,

            policy_lr=3e-4,
            qf_lr=1e-3,
            vf_lr=1e-3,
            alpha = 0.15,
            automatic_entropy_tuning = True,
            lr=3e-4,
            context_lr=3e-4,
            kl_lambda=1.,
            policy_mean_reg_weight=1e-3,
            policy_std_reg_weight=1e-3,
            policy_pre_activation_weight=0.,
            optimizer_class=optim.Adam,
            recurrent=False,
            use_information_bottleneck=True,
            sparse_rewards=False,

            #soft_target_tau=1e-2,
            soft_target_tau=0.005,
            plotter=None,
            render_eval_paths=False,
            **kwargs
    ):
        super().__init__(
            env=env,
            agent=nets[0],
            train_tasks=train_tasks,
            eval_tasks=eval_tasks,
            **kwargs
        )

        self.soft_target_tau = soft_target_tau
        self.policy_mean_reg_weight = policy_mean_reg_weight
        self.policy_std_reg_weight = policy_std_reg_weight
        self.policy_pre_activation_weight = policy_pre_activation_weight
        self.plotter = plotter
        self.render_eval_paths = render_eval_paths
        self.alpha = alpha
        self.automatic_entropy_tuning = automatic_entropy_tuning

        self.recurrent = recurrent
        self.latent_dim = latent_dim
        # self.qf_criterion = nn.MSELoss()
        # self.vf_criterion = nn.MSELoss()
        self.vib_criterion = nn.MSELoss()
        self.l2_reg_criterion = nn.MSELoss()
        self.kl_lambda = kl_lambda

        self.use_information_bottleneck = use_information_bottleneck
        self.sparse_rewards = sparse_rewards

        # self.qf1, self.qf2, self.vf = nets[1:]
        self.critic,self.critic_target = nets[1:]#q1,q2,target q1,target q2
        # self.target_vf = self.vf.copy()
        self.critic_optimizer = Adam(self.critic.parameters(), lr=lr)
        hard_update(self.critic_target,self.critic)
        self.policy_optimizer = Adam(self.agent.policy.parameters(), lr=policy_lr)


        self.target_entropy = -torch.prod(torch.Tensor(env.action_space.shape)).to("cuda").item()  # torch.prod(input) : 返回所有元素的乘积
        self.log_alpha = torch.zeros(1, requires_grad=True, device="cuda")
        self.alpha_optim = Adam([self.log_alpha], lr=lr)

        # self.policy_optimizer = optimizer_class(
        #     self.agent.policy.parameters(),
        #     lr=policy_lr,
        # )
        # self.qf1_optimizer = optimizer_class(
        #     self.qf1.parameters(),
        #     lr=qf_lr,
        # )
        # self.qf2_optimizer = optimizer_class(
        #     self.qf2.parameters(),
        #     lr=qf_lr,
        # )
        # self.vf_optimizer = optimizer_class(
        #     self.vf.parameters(),
        #     lr=vf_lr,
        # )
        self.context_optimizer = optimizer_class(
            self.agent.context_encoder.parameters(),
            lr=context_lr,
        )
Exemplo n.º 44
0
 def prod(self, value, axis=None):
     if isinstance(axis, (tuple, list)):
         for dim in reversed(sorted(axis)):
             value = torch.prod(value, dim=dim)
         return value
     return torch.prod(value, dim=axis)
Exemplo n.º 45
0
def prod(x, axis=None):
    if axis is None:
        return torch.prod(x)
    return torch.prod(x, dim=axis)
Exemplo n.º 46
0
def dummy_predict(model, X):
    # Add column to X that is a product of previous elements.
    mean = torch.cat([X, torch.prod(X, dim=1).reshape(-1, 1)], dim=1)
    cov = torch.zeros(mean.shape[0], mean.shape[1], mean.shape[1])
    return mean, cov
Exemplo n.º 47
0
y = torch.squeeze(x); print(y.shape)  # torch.Size([2, 2, 2]); 所有维度是 1 的去掉
y = torch.squeeze(x, 0); print(y.shape)  # torch.Size([2, 1, 2, 1, 2]); 只对第 0 维操作
y = torch.squeeze(x, 1); print(y.shape)  # torch.Size([2, 2, 1, 2]); 只对第 1 维操作

## Operation; 和 np 的区别就是 torch 需要变量都是 tensor 类型的
# 求和以及按索引求和: torch.sum() torch.Tensor.indexadd()
# 元素乘积: torch.prod(input)
# 求均值、方差、极值: torch.mean() torch.var() torch.max() torch.min()
# 在 NLP 领域经常用到的:
# 平方根倒数、线性插值、双曲正切 torch.rsqrt(input) torch.lerp(star,end,weight) torch.tanh(input, out=None)
a, b = torch.Tensor([1, 2]), torch.Tensor([3, 4])
print(torch.add(a, b), a.add_(b))
print(torch.max(torch.Tensor([1, 2, 5, 3])))  # tensor(5.); Returns the maximum value of all elements in the :attr:`input` tensor.
print(torch.max(torch.arange(1, 13).view(3, 4), 1))  # (tensor([  4.,   8.,  12.]), tensor([ 3,  3,  3])); the latter is the indexs
_, idx = torch.max(torch.arange(1, 13).view(3, 4), 1); print(idx)  # tensor([ 3,  3,  3])
print(torch.prod(torch.Tensor([2, 3, 4])))  # tensor(24.); Returns the product of all elements

## log
a = torch.Tensor([[1, 2], [3, 4]])
print(torch.log(a))  # tensor([[0.0000, 0.6931], [1.0986, 1.3863]])

## min max sum
a = torch.tensor([[1, 2, 3], [4, 5, 6]]); print(a)  # tensor([[1, 2, 3], [4, 5, 6]]); (B, L)
b = torch.tensor([[1, 3, 2], [4, 6, 4]]); print(b)  # tensor([[1, 3, 2], [4, 6, 4]])
print(torch.min(a, b))  # tensor([[1, 2, 2], [4, 5, 4]]); 相同位置依次比较
print(torch.max(a, b))  # tensor([[1, 3, 3], [4, 6, 6]])
print(torch.max(a, dim=1))  # (tensor([3, 6]), tensor([2, 2])); 第二个是 index
print(a.max(), a.max(0), a.max(1))  # tensor(6); (tensor([4, 5, 6]), tensor([1, 1, 1])); (tensor([3, 6]), tensor([2, 2]))
print(a.max(), a.max(0)[1], a.max(1)[1])  # tensor(6) tensor([1, 1, 1]) tensor([2, 2]); [1] is index
print(torch.sum(a, 0))  # tensor([5, 7, 9])
print(torch.sum(a, 1))  # tensor([ 6, 15])