Exemplo n.º 1
0
def compute_acc(y_true: torch.tensor, y_pred: torch.tensor) -> float:
    y_t_np = y_true.clone().detach().numpy()
    y_p_np = y_pred.clone().detach().numpy()
    n = np.shape(y_t_np)[0]
    count = 0
    for i in range(0, n):
        if np.argmax(y_p_np[i]) == np.argmax(y_t_np[i]):
            count += 1
    return count / n
Exemplo n.º 2
0
def calculate_epe_statistics(
    predictions: torch.tensor,
    ground_truth: torch.tensor,
    dim: int,
    validitiy_flags=None,
) -> dict:
    """Calculates the eucledian diatnce statistics between the all coordinates. In case of 2.5 D

    Args:
        predictions (torch.tensor): Predicted coordinates  of shape (#sample x 21 x 3)
        ground_truth (torch.tensor): True coordinates of shape (#samples x 21 x3)
        dim (int): to denote if the predictions and ground truth are 2.5D or 3D.
            If 2 is passed .

    Returns:
        dict: Returns a dictionary containing following keys
                'mean_epe', 'median_epe', 'min_epe', 'max_epe'
    """
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if dim == 2:
        predictions_ = predictions[:, :, :2].clone()
        ground_truth_ = ground_truth[:, :, :2].clone()
    else:
        if dim != 3:
            print("Coordinates treated as 3D")
        predictions_ = predictions.clone()
        ground_truth_ = ground_truth.clone()

    with torch.no_grad():
        eucledian_dist = (torch.sum(
            ((predictions_.to(device) - ground_truth_.to(device))**2), 2)**0.5)
        if validitiy_flags is not None:
            mean_epe = torch.mean(eucledian_dist[validitiy_flags.view(-1, 21)])
            median_epe = torch.median(eucledian_dist[validitiy_flags.view(
                -1, 21)])
            max_epe = torch.max(eucledian_dist[validitiy_flags.view(-1, 21)])
            min_epe = torch.min(eucledian_dist[validitiy_flags.view(-1, 21)])
        else:
            mean_epe = torch.mean(eucledian_dist)
            median_epe = torch.median(eucledian_dist)
            max_epe = torch.max(eucledian_dist)
            min_epe = torch.min(eucledian_dist)

    return {
        "eucledian_dist": eucledian_dist,
        "mean": mean_epe,
        "median": median_epe,
        "min": min_epe,
        "max": max_epe,
    }
Exemplo n.º 3
0
def generate_fix_step_permutation_for_finding_boundary(input_data: torch.
                                                       tensor,
                                                       variance=0.1,
                                                       steps=10):
    all_permutations = []
    for s in range(input_data.size()[0]):
        for i in range(steps):
            distance = (variance * (i + 1))
            plus_data = input_data.clone()
            plus_data[s] = plus_data[s] + distance
            all_permutations.append(plus_data)
            minus_data = input_data.clone()
            minus_data[s] = minus_data[s] - distance
            all_permutations.append(minus_data)
    return all_permutations
Exemplo n.º 4
0
def generate_permutation_for_numerical(
    input_data: torch.tensor,
    num_samples_per_feature,
    variance=0.5,
):
    '''
    [input_data]: Normalised data. should be a 1-D tensor.
    --------------------------
    Return: all permutations.
    '''

    all_permutations = []

    input_backup = input_data.clone()

    max_range = torch.clip(input_data + variance, -1, 1)
    min_range = torch.clip(input_data - variance, -1, 1)

    for i in range(input_data.size(-1)):
        input_to_permute = input_backup.clone()
        input_to_permute = input_to_permute.unsqueeze(0).repeat(
            num_samples_per_feature, 1)
        input_to_permute[:, i] = torch.zeros(num_samples_per_feature).uniform_(
            min_range[i], max_range[i])
        all_permutations.extend(
            list(torch.chunk(input_to_permute, num_samples_per_feature,
                             dim=0)))

    ########## append the original data ##########
    all_permutations.append(input_backup.unsqueeze(0))

    return all_permutations
Exemplo n.º 5
0
    def ista(self, x: torch.tensor, r: torch.tensor):
        """ISTA steps for sparsification

        Args:
            x ([torch.tensor]): Input for reconstruction
            r ([torch.tensor]): Initialization of the code

        Returns:
            [torch.tensor]: the sparse code fitted to x
        """
        r.requires_grad_(True)
        converged = False
        # update R
        optim = torch.optim.SGD([{'params': r, "lr": self.lr_r}])
        # train
        while not converged:
            old_r = r.clone().detach()
            # prediction
            x_hat = self.U(r)
            # loss
            loss = ((x - x_hat)**2).sum()
            loss.backward()
            # update R in place
            optim.step()
            # print(r.grad)
            # zero grad
            optim.zero_grad()
            self.zero_grad()
            # prox
            r.data = self.soft_thresholding_(r, self.lmda)
            # convergence
            converged = torch.norm(r - old_r) / torch.norm(old_r) < 0.01
            #print(torch.norm(r - old_r) / torch.norm(old_r))
        return r
Exemplo n.º 6
0
    def forward(ctx, inputs: torch.tensor, threshold: float, sigmoid: bool):
        """
        Args:
            inputs (`torch.FloatTensor`)
                The input matrix from which the binarizer computes the binary mask.
            threshold (`float`)
                The percentage of weights to keep (the rest is pruned).
                `threshold` is a float between 0 and 1.
            sigmoid (`bool`)
                Whether to apply a sigmoid on the threshold
        Returns:
            mask (`torch.FloatTensor`)
                Binary matrix of the same size as `inputs` acting as a mask (1 - the associated weight is
                retained, 0 - the associated weight is pruned).
        """
        # Get the subnetwork by sorting the inputs and using the top threshold
        if sigmoid:
            threshold = torch.sigmoid(threshold).item()
        ctx.sigmoid = sigmoid
        mask = inputs.clone()

        _, idx = inputs.flatten().sort(descending=True)
        j = math.ceil(threshold * inputs.numel())

        # flat_out and mask access the same memory.
        flat_out = mask.flatten()
        flat_out[idx[j:]] = 0.
        flat_out[idx[:j]] = 1.
        ctx.save_for_backward(mask)

        return mask
Exemplo n.º 7
0
    def forward(ctx, inputs: torch.tensor, threshold: float):
        """
        Args:
            inputs (`torch.FloatTensor`)
                The input matrix from which the binarizer computes the binary mask.
            threshold (`float`)
                The percentage of weights to keep (the rest is pruned).
                `threshold` is a float between 0 and 1.
        Returns:
            mask (`torch.FloatTensor`)
                Binary matrix of the same size as `inputs` acting as a mask (1 - the associated weight is
                retained, 0 - the associated weight is pruned).
        """
        # Get the subnetwork by sorting the inputs and using the top threshold %
        if not isinstance(threshold, float):
            threshold = threshold[0]
        mask = inputs.clone()
        _, idx = inputs.flatten().sort(descending=True)
        j = int(threshold * inputs.numel())

        # flat_out and mask access the same memory.
        flat_out = mask.flatten()
        flat_out[idx[j:]] = 0
        flat_out[idx[:j]] = 1
        return mask
Exemplo n.º 8
0
def heatmap_blend(img:torch.tensor, heatmap:torch.tensor, heatmap_blend_alpha=0.5, heatmap_clip_range=None, cmap='jet'):
    """
    Blend the colormap onto original image
    :param img: original image in RGB, dim (N, 3, H, W)
    :param heatmap: input heatmap, dim (N, H, W) or (N, 1, H, W)
    :param heatmap_blend_alpha: blend factor, 'heatmap_blend_alpha = 0' means the output is identical to original image
    :param cmap: colormap to blend
    :return: blended heatmap image, dim (N, 3, H, W)
    """
    if heatmap.dim() == 4:
        if heatmap.size(1) == 1:
            heatmap = heatmap.view(heatmap.size(0), heatmap.size(2), heatmap.size(3))
        else:
            raise Exception("The heatmap should be (N, 1, H, W) or (N, H, W)")
    N, C3, H, W = img.shape

    assert heatmap_blend_alpha < 1.0
    assert H == heatmap.size(1)
    assert W == heatmap.size(2)
    assert N == heatmap.size(0)
    assert C3 == 3                      # input image has three channel RGB

    color_map = colormap(heatmap, cmap=cmap, clip_range=heatmap_clip_range, chw_order=True).to(img.device)
    output_heat_map = img.clone()*(1.0 - heatmap_blend_alpha) + color_map * heatmap_blend_alpha
    return output_heat_map
Exemplo n.º 9
0
    def __init__(self,
                 initial_centroids: torch.tensor,
                 lm_model,
                 tokenizer,
                 metric=lp_distance,
                 embedding_extractor=cls_embedding_extractor,
                 do_language_modeling=True,
                 device='cpu'):
        super(ClusterLM, self).__init__()

        self.initial_centroids = initial_centroids

        self.add_module('lm_model', lm_model)
        self.register_parameter(
            'centroids',
            nn.Parameter(initial_centroids.clone().float(),
                         requires_grad=True))

        self.tokenizer = tokenizer
        self.metric = metric
        self.embedding_extractor = embedding_extractor
        self.do_language_modeling = do_language_modeling
        self.device = device

        self.to(self.device)
Exemplo n.º 10
0
def cxcywh_to_x1y1x2y2(cxcywh: torch.tensor) -> torch.tensor:
    assert cxcywh.shape[-1] >= 4
    x1y1x2y2 = cxcywh.clone()
    x1y1x2y2[..., 0] = (cxcywh[..., 0] - cxcywh[..., 2] / 2)
    x1y1x2y2[..., 1] = (cxcywh[..., 1] - cxcywh[..., 3] / 2)
    x1y1x2y2[..., 2] = (cxcywh[..., 0] + cxcywh[..., 2] / 2)
    x1y1x2y2[..., 3] = (cxcywh[..., 1] + cxcywh[..., 3] / 2)
    return x1y1x2y2
Exemplo n.º 11
0
    def result(output: torch.tensor, labels: torch.tensor):
        bats = output.shape[0]
        adj_output = output.clone()
        adj_output[torch.arange(bats), labels] -= 1

        loss_mse = torch.mean(adj_output ** 2)
        loss_noise = (np.pi*noise_strength*noise_strength)/2 * torch.sum(output ** 2)

        return loss_mse + loss_noise
Exemplo n.º 12
0
def get_mask(labels: torch.tensor) -> torch.tensor:
    """ Returns mask from labels
    Args:
        labels: tensor containing labels
    """
    labels = labels.clone()
    zero_mask = labels[:, :, 0]

    return zero_mask
Exemplo n.º 13
0
def mask_tokens(
    inputs: torch.tensor,
    tokenizer: TextEncoderBase,
    mlm_probability: float = 0.15,
    ignore_index: int = -100,
):
    """ Mask tokens function from Hugging Face that prepares masked tokens inputs/labels for 
    masked language modeling.

    :param inputs: Input tensor to be masked.
    :param tokenizer: COMET text encoder.
    :param mlm_probability: Probability of masking a token (default: 15%).
    :param ignore_index: Specifies a target value that is ignored and does not contribute to 
        the input gradient (default: -100).

    Returns:
        - Tuple with input to the model and the target.
    """
    if tokenizer.mask_index is None:
        raise ValueError(
            "This tokenizer does not have a mask token which is necessary for masked language"
            "modeling. Remove the --mlm flag if you want to use this tokenizer."
        )

    labels = inputs.clone()
    probability_matrix = torch.full(labels.shape, mlm_probability)
    special_tokens_mask = [
        tokenizer.get_special_tokens_mask(val) for val in labels.tolist()
    ]
    probability_matrix.masked_fill_(torch.tensor(special_tokens_mask,
                                                 dtype=torch.bool),
                                    value=0.0)
    padding_mask = labels.eq(tokenizer.padding_index)
    probability_matrix.masked_fill_(padding_mask, value=0.0)

    masked_indices = torch.bernoulli(probability_matrix).bool()
    labels[
        ~masked_indices] = ignore_index  # We only compute loss on masked tokens

    # 80% of the time, we replace masked input tokens with ([MASK])
    indices_replaced = (torch.bernoulli(torch.full(labels.shape, 0.8)).bool()
                        & masked_indices)

    inputs[indices_replaced] = tokenizer.mask_index

    # 10% of the time, we replace masked input tokens with random word
    indices_random = (torch.bernoulli(torch.full(labels.shape, 0.5)).bool()
                      & masked_indices
                      & ~indices_replaced)
    random_words = torch.randint(tokenizer.vocab_size,
                                 labels.shape,
                                 dtype=torch.long)
    inputs[indices_random] = random_words[indices_random]

    # The rest of the time (10% of the time) we keep the masked input tokens unchanged
    return inputs, labels
def to_sparse_by_cdf(t: torch.tensor, lens, cdf: float):
    _t = t.clone().detach()
    _t = list(_t.split(lens, dim=0))

    for i, this_t in enumerate(_t):
        this_t_sorted, indices = torch.sort(this_t, descending=True)
        mask = torch.cumsum(this_t_sorted, dim=-1) < cdf
        mask[torch.sum(mask)] = True
        _t[i][indices[mask]] = 1
        _t[i][indices[~mask]] = 0

    return torch.cat(_t, dim=0).long()
Exemplo n.º 15
0
def cross_entropy(outputs: torch.tensor, labels: torch.tensor,
                  mask: torch.tensor) -> torch.tensor:
    """ Returns cross entropy loss using masking
    Args:
        outputs: tensor with predictions
        labels: tensor with labels
        mask: tensor with masking
    """
    labels = labels.clone()
    labels[mask == 0] = -1

    return nn.CrossEntropyLoss(ignore_index=-1)(outputs, labels.long())
Exemplo n.º 16
0
 def initialize_inducing(self,init_Z: torch.tensor) -> None:
     """Initializes inducing points using the argument init_Z. It prepares this inducing points
        to be or not to be shared by all kernels.
     """
     if self.Z_is_shared:
         self.Z = nn.Parameter(init_Z.unsqueeze(dim = 0)) # this parameter is repeated when needed
     else:
         Z = torch.zeros(self.out_dim,self.M,self.inp_dim)
         for l in range(self.out_dim):
             aux_init = init_Z.clone()
             Z[l,:] = aux_init
         self.Z = nn.Parameter(Z)
Exemplo n.º 17
0
    def insert(self, observation: torch.tensor, hidden_state: torch.tensor,
               reward: torch.tensor, action: torch.tensor, done: torch.tensor,
               true_terminal: torch.tensor) -> None:
        """
        Store single experience. Inserted in such a way so that the same
        index across all the buffers should contain:
            o_{t}, h_{t-1}, a_{t}, log_p_a_{t}, hat_V_{t}, r_{t+1},
            done_{t}, true_terminal_{t}

        Where the time index is determined by whether the variable was
        generated before or after the env.step() step

        :param observation: observation tensor, at {t+1}
        :param hidden_state: hidden state tensor, at {t}
        :param reward: reward tensor, at {t+1}
        :param action: action tensor, at {t}
        :param done: done tensor, at {t+1}
        :param true_terminal: true termination state tensor, at {t+1}
        :param pred_value: predicted value tensor, at {t}
        :param action_log_prob: action log probability tensor, at {t}
        :return: None
        """

        # ==
        # Save copy of experiences
        self.obs_buffer[self.step + 1] = observation.clone().detach()
        self.hid_buffer[self.step + 1] = hidden_state.clone().detach()
        self.don_buffer[self.step + 1] = done.clone().detach()
        self.true_termin[self.step + 1] = true_terminal.clone().detach()

        self.rew_buffer[self.step] = reward.clone().detach()
        self.act_buffer[self.step] = action.clone().detach()

        self.step += 1  # potential TODO confirm correctness
Exemplo n.º 18
0
 def __init__(self, data: torch.tensor, intervals_te_rew, column_to_time_features, window_size,
              device=None, scaler=PaperScaler()):
     if device is None:
         device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
     self.scaler = scaler
     self.device = device
     self.data = data.clone().detach().to(self.device)
     self.pred_counter = window_size
     self.trace_index = None
     self.intervals = intervals_te_rew
     self.column_feature = column_to_time_features
     self.win = window_size
     self.given_state = None
Exemplo n.º 19
0
def xywh_to_xyXY(boxes_xywh: torch.tensor) -> torch.tensor:
    '''
    Get bounding box coordinates in [ x_top_left, y_top_left, x_bottom_right, y_bottom_right] format.

    Parameters
    ----------
    boxes : Bounding Box, a tensor in [ x_top_left, y_top_left, bb_width, bb_height] format.

    '''
    boxes_xyXY = boxes_xywh.clone()
    boxes_xyXY[:, 2] = boxes_xyXY[:, 2] + boxes_xyXY[:, 0]
    boxes_xyXY[:, 3] = boxes_xyXY[:, 3] + boxes_xyXY[:, 1]
    return boxes_xyXY
Exemplo n.º 20
0
    def transform(self, x: torch.tensor, inplace=True):
        if not inplace:
            out = x.clone()
        else:
            out = x

        if len(x.shape) == 3:
            for _cf in self.column_features:
                out[:, :, self.column_features[_cf]] = out[:, :, self.column_features[_cf]] / self.scales[_cf]
        if type(out) == pd.DataFrame:
            for _cf in self.column_features:
                out[_cf] = out[_cf] / self.scales[_cf]
        return out
Exemplo n.º 21
0
    def get_corrupted_batch_unfiltered(self, batch: torch.tensor,
                                       device: torch.device):
        corrupted_batch = batch.clone().to()
        head_tail_indexes = torch.randint(2, (batch.shape[0], )).to(device) * 2
        corrupted_batch[torch.arange(corrupted_batch.shape[0]),
                        head_tail_indexes] = torch.randint(
                            self.num_of_entities,
                            (corrupted_batch.shape[0], )).to(device)

        # torch.randint statement randomly generates 0 or 1. The outcome is multiplied with 2 to get 0 or 2
        # which is the column index for either the head_id or tail_id. Hence, we create a tensor defining
        # whether we corrupt the head or tail for the corrupted batch and transmit it as an input

        ## print batch and corr batch in forward() to dismiss the possibility that they are refering to the same tensor instance
        return corrupted_batch
Exemplo n.º 22
0
    def __init__(self, dist: torch.tensor, num_utterances: int, spub: list):
        """Trade Comm public belief state

        Args:
            dist [num_items, num_items]: Joint probability distribution over
                player items
            num_utterances: Number of utterances in game
            spub: Public state (list of public observations)

        Attributes:
            See args
        """
        assert_joint_probability(dist, dist.shape)
        self.dist = dist.clone()
        self.num_utterances = num_utterances
        self.spub = list(spub)
Exemplo n.º 23
0
    def log_non_linear(self, f: torch.tensor, Y: torch.tensor, noise_var: torch.tensor, flow: list, X: torch.tensor, **kwargs):
        """ Return the log likelihood of S Gaussian distributions, each of this S correspond to a quadrature point.
            The only samples f have to be warped with the composite flow G().
            -> f is assumed to be stacked samples of the same dimension of Y. Here we compute (apply lotus rule):

          \int \log p(y|fK) q(fK) dfK = \int \log p(y|fk) q(f0) df0 \approx 1/sqrt(pi) sum_i w_i { \log[ p( y | G( sqrt(2)\sigma f_i + mu), sigma^2 ) ] };

          where q(f0) is the initial distribution. We just face the problem of computing the expectation under a log Gaussian of a 
          non-linear transformation of the mean, given by the flow.
      
                Args:
                        `f`         (torch.tensor)  :->:  Minibatched - latent function samples in (S,Dy,MB), being S the number of quadrature points and MB the minibatch.
                                                          This is directly given by the gpytorch.GaussHermiteQuadrature1D method in this format and corresponds to 
                                                          \sqrt(2)\sigma f_i + mu see https://en.wikipedia.org/wiki/Gauss%E2%80%93Hermite_quadrature
                        `Y`         (torch.tensor)  :->:  Minibatched Observations in Dy x MB.
                        `noise_var` (torch.tensor)  :->:  Observation noise
                        'flow'      (CompositeFlow) :->:  Sequence of flows to be applied to each of the outputs
                        'X'         (torch.tensor)  :->:  Input locations used for input dependent flows. Has shape [Dy,S*MB,Dx] or shape [S*MB,Dx]. N
        """
        assert len(flow) == self.out_dim, "This likelihood only supports a flow per output_dim. Got {} for Dy {}".format(self.out_dim,len(flow))
        assert len(X.shape) == 3, 'Bad input X, expected (out_dim,MB*S,Dx)'
        assert X.size(0) == self.out_dim, 'Wrong first dimension in X, expected out_dim'

        S  = self.quad_points
        MB = Y.size(1)
        Dy = self.out_dim

        Y = Y.view(Dy,MB,1).repeat((S,1,1,1))                 # S,Dy,MB,1
        noise_var = noise_var.view(Dy,MB,1).repeat((S,1,1,1)) # S,Dy,MB,1

        fK = f.clone()

        # Be aware that as we expand X we will be performing self.quad_points forwards through the NNets for each output. This might be inneficient unless pytorch only performs the operation once and returned the expanded dimension 

        # expanded_size = [self.quad_points] + [-1]*(len(X.size()))
        # X = X.expand(expanded_size) # no need for this broadcasting as pytorch will broadcast automatically

        for idx,fl in enumerate(flow):
            # warp the samples 
            fK[:,idx,:] = fl(f[:,idx,:],X[idx]) 

        fK = fK.view(S,Dy,MB,1) # we add extra dimension so that batched_log_gaussian does not reduce minibatch dimension. This will be reduced at the end as the
                              # GaussHermiteQudrature from gpytorch reduces S by default. Although sum is associative we prefer to separate for clarity.

        log_p_y = batched_log_Gaussian( obs = Y, mean = fK, cov = noise_var, diagonal = True, cov_is_inverse = False) # (S,Dy,MB)

        return log_p_y # return (S,Dy,MB) so that reduction is done for S.
Exemplo n.º 24
0
def compute_loss(args: argparse.Namespace,
                 model: DDP,
                 images: torch.tensor,
                 targets: torch.tensor,
                 num_classes: int) -> torch.tensor:
    """
    inputs:
        images  : shape [batch_size, C, h, w]
        logits : shape [batch_size, num_classes, h, w]
        targets : shape [batch_size, h, w]

    returns:
        loss: shape []
        logits: shape [batch_size]

    """
    batch, h, w = targets.size()
    one_hot_mask = torch.zeros(batch, num_classes, h, w).to(dist.get_rank())
    new_target = targets.clone().unsqueeze(1)
    new_target[new_target == 255] = 0

    one_hot_mask.scatter_(1, new_target, 1).long()
    if args.smoothing:
        eps = 0.1
        one_hot = one_hot_mask * (1 - eps) + (1 - one_hot_mask) * eps / (num_classes - 1)
    else:
        one_hot = one_hot_mask  # [batch_size, num_classes, h, w]

    if args.mixup:
        alpha = 0.2
        lam = np.random.beta(alpha, alpha)
        rand_index = torch.randperm(images.size()[0]).to(dist.get_rank())
        one_hot_a = one_hot
        targets_a = targets

        one_hot_b = one_hot[rand_index]
        target_b = targets[rand_index]
        mixed_images = lam * images + (1 - lam) * images[rand_index]

        logits = model(mixed_images)
        loss = cross_entropy(logits, one_hot_a, targets_a) * lam  \
            + cross_entropy(logits, one_hot_b, target_b) * (1. - lam)
    else:
        logits = model(images)
        loss = cross_entropy(logits, one_hot, targets)
    return loss
Exemplo n.º 25
0
    def score_subjects(self, p: torch.tensor, o: torch.tensor) -> torch.tensor:
        """
        Compute subject scores for all entities, given p and o.

        :param p: torch.tensor, scalar
            The predicate.
        :param o: torch.tensor, scalar
            The object.

        :return: torch.tensor, shape: (num_entities,)
            The scores for all entities.
        """
        new_p = p.clone()
        if self.inverse_model:
            new_p += self.num_relations // 2

        return self.predict_for_ranking(o, new_p)
Exemplo n.º 26
0
def meansqerr(output: torch.tensor, labels: torch.tensor):
    """This criterion evaluates a one-hot vector on mean-squared error when
    the labels are the indices of the output that should be 1. This is a drop-in
    replacement for cross-entropy loss whereas the default MSEError requires changing
    your encoding.

    Args:
        output (torch.tensor): the output
        labels (torch.tensor): the expected labels

    Returns:
        loss (torch.tensor): the loss of the network
    """
    bats = output.shape[0]

    adj_output = output.clone()
    adj_output[torch.arange(bats), labels] -= 1
    return torch.mean(adj_output ** 2)
Exemplo n.º 27
0
def argmax(module: nn.Module, arg: torch.tensor):
    print('Computing argmax')
    arg.requires_grad = True
    opt = torch.optim.Adam([arg], lr=0.1)
    for idx in range(1000):
        out = module(arg)
        loss = -out
        prev_arg = arg.clone()
        loss.backward()
        opt.step()
        opt.zero_grad()
        module.zero_grad()
        d = (arg - prev_arg).norm(2)
        if d < 1e-4:
            print('breaking')
            break
    #print(f'Final d: {d}')
    return arg, out
Exemplo n.º 28
0
    def __init__(self,
                 initial_centroids: torch.tensor,
                 metric=lp_distance,
                 device='cpu'):
        super(DifferentiableKMeans, self).__init__()

        self.initial_centroids = initial_centroids

        self.register_parameter(
            'centroids',
            nn.Parameter(initial_centroids.clone().float(),
                         requires_grad=True))

        self.metric = metric

        self.device = device

        self.to(self.device)
Exemplo n.º 29
0
def cummax(
        tensor: torch.tensor, dim: int = 0) -> torch.tensor:
    """Return the cumulative maximum of the elements along a given axis.

    Args:
        tensor (torch.tensor): input tensor
        dim (int, optional): Defaults to 0.
            Axis along which the cumulative maximum is computed

    Returns:
        max_tensor (torch.tensor):
        A tensor with the same size as the input holding the cumulative
            maximum of the input tensor.
    """
    ret_val = tensor.clone()
    ret_val_unbind = ret_val.unbind(dim)
    if len(ret_val_unbind):
        for current, last in zip(ret_val_unbind[1:], ret_val_unbind):
            current[()] = torch.max(current, last)
    return ret_val
Exemplo n.º 30
0
def remap_heading(data: torch.tensor, heading_map: Dict = None) -> torch.tensor:
    """ Remaps the values in data according to the map.

        Args:
            data: Data to remap.
            heading_map: Value map. Default remaping values:
                {0:0, 1:1, 85:2, 170:3, 255:4}

        Returns:
            Tensor with remaped values.
    """

    if heading_map is None:
        heading_map = {0: 0, 1: 1, 85: 2, 170: 3, 255: 4}

    remaped = data.clone().detach()
    for key, val in heading_map.items():
        remaped[remaped == key] = val

    return remaped