Exemplo n.º 1
0
    def forward(self, data):
        data.x = F.elu(self.conv1(data.x, data.edge_index))
        data.x = self.bn1(data.x)
        cluster = voxel_grid(data.pos, data.batch, size=[4,4])
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        data.x = F.elu(self.conv2(data.x, data.edge_index))
        data.x = self.bn2(data.x)
        cluster = voxel_grid(data.pos, data.batch, size=[6,6])
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))
        
        data.x = F.elu(self.conv3(data.x, data.edge_index))
        data.x = self.bn3(data.x)
        cluster = voxel_grid(data.pos, data.batch, size=[20,20])
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))
        
        data.x = F.elu(self.conv4(data.x, data.edge_index))
        data.x = self.bn4(data.x)
        cluster = voxel_grid(data.pos, data.batch, size=[32,32])
        x = max_pool_x(cluster, data.x, data.batch, size=32)
        
        x = x.view(-1, self.fc1.weight.size(1))

        x = F.elu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)

        return F.log_softmax(x, dim=1)
Exemplo n.º 2
0
    def forward(self, data):
        row, col = data.edge_index
        data.edge_attr = (data.pos[col] - data.pos[row]) / (2 * 28 *
                                                            cutoff) + 0.5

        # print(data.edge_index.shape)
        # print(data.edge_index[:, -20:])

        data.x = F.elu(self.conv1(data.x, data.edge_index, data.edge_attr))
        weight = normalized_cut_2d(data.edge_index, data.pos)
        cluster = graclus(data.edge_index, weight, data.x.size(0))
        data.edge_attr = None
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        row, col = data.edge_index
        data.edge_attr = (data.pos[col] - data.pos[row]) / (2 * 28 *
                                                            cutoff) + 0.5

        data.x = F.elu(self.conv2(data.x, data.edge_index, data.edge_attr))
        weight = normalized_cut_2d(data.edge_index, data.pos)
        cluster = graclus(data.edge_index, weight, data.x.size(0))
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        row, col = data.edge_index
        data.edge_attr = (data.pos[col] - data.pos[row]) / (2 * 28 *
                                                            cutoff) + 0.5

        data.x = F.elu(self.conv3(data.x, data.edge_index, data.edge_attr))

        x = global_mean_pool(data.x, data.batch)
        return self.fc1(x)

        x = F.elu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        return F.log_softmax(self.fc2(x), dim=1)
Exemplo n.º 3
0
    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = self.conv1(x, edge_index)
        x = x.relu()
        cluster1 = graclus(edge_index, num_nodes=x.shape[0])
        pooled_1 = data
        pooled_1.x = x
        pooled_1 = max_pool(cluster1, pooled_1)
        edge_index_2 = pooled_1.edge_index
        x2 = pooled_1.x
        x2 = self.conv2(x2, edge_index_2)
        x2 = x2.relu()
        cluster2 = graclus(edge_index_2, num_nodes=x2.shape[0])
        pooled_2 = pooled_1
        pooled_2.x = x2
        pooled_2 = max_pool(cluster2, pooled_2)
        edge_index_3 = pooled_2.edge_index
        x3 = pooled_2.x
        x3 = self.conv3(x3, edge_index_3)
        x3 = x3.relu()
        x3 = self.conv4(x3, edge_index_3)
        x3 = x3.relu()
        x3 = knn_interpolate(x3, pooled_2.pos, pooled_1.pos)
        x3 = torch.cat((x2, x3), dim=1)
        x3 = self.conv5(x3, edge_index_2)
        x3 = x3.relu()
        x3 = knn_interpolate(x3, pooled_1.pos, data.pos)
        x = torch.cat((x, x3), dim=1)
        x = self.lin1(x)
        x = x.relu()
        x = self.lin2(x)
        x = x.relu()
        x = torch.sigmoid(self.out(x))

        return x
    def forward(self, data):
        data.x = F.elu(
            self.bn1(self.conv1(data.x, data.edge_index, data.edge_attr)))
        cluster = voxel_grid(data.pos, data.batch, size=4)
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        data = self.block1(data)
        cluster = voxel_grid(data.pos, data.batch, size=6)
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        data = self.block2(data)
        cluster = voxel_grid(data.pos, data.batch, size=24)
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        data = self.block3(data)
        cluster = voxel_grid(data.pos, data.batch, size=64)
        x = max_pool_x(cluster, data.x, data.batch, size=8)

        # if your torch-geometric version is below 1.3.2(roughly, we do not test all versions), use x.view() instead of x[0].view()
        # x = x.view(-1, self.fc1.weight.size(1))
        x = x[0].view(-1, self.fc1.weight.size(1))
        x = self.fc1(x)
        x = F.elu(x)
        x = self.bn(x)
        x = self.drop_out(x)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)
Exemplo n.º 5
0
    def forward(self, data):
        data.x = F.elu(self.conv1(data.x, data.edge_index, data.edge_attr))
        weight = normalized_cut_2d(data.edge_index, data.pos)
        cluster = graclus(data.edge_index, weight, data.x.size(0))
        data.edge_attr = None
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        row, col = data.edge_index
        data.edge_attr = (data.pos[col] -
                          data.pos[row]) / (2 * self.args.cutoff) + 0.5

        data.x = F.elu(self.conv2(data.x, data.edge_index, data.edge_attr))
        weight = normalized_cut_2d(data.edge_index, data.pos)
        cluster = graclus(data.edge_index, weight, data.x.size(0))
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        row, col = data.edge_index
        data.edge_attr = (data.pos[col] -
                          data.pos[row]) / (2 * self.args.cutoff) + 0.5

        data.x = F.elu(self.conv3(data.x, data.edge_index, data.edge_attr))

        x = global_mean_pool(data.x, data.batch)
        x = F.elu(self.fc1(x))
        x = F.dropout(x, training=self.training, p=self.args.disc_dropout)
        y = self.fc2(x)

        if (self.args.wgan):
            return y

        return torch.sigmoid(y)
Exemplo n.º 6
0
    def forward(self, data):
        data.x = F.elu(
            self.bn1(self.conv0(data.x, data.edge_index, data.edge_attr)))
        cluster = voxel_grid(data.pos, data.batch, size=[4, 3])
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        data = self.conv1(data)
        cluster = voxel_grid(data.pos, data.batch, size=[16, 12])
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        data = self.conv2(data)
        cluster = voxel_grid(data.pos, data.batch, size=[30, 23])
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        data = self.conv3(data)
        cluster = voxel_grid(data.pos, data.batch, size=[60, 45])
        x = max_pool_x(cluster, data.x, data.batch, size=16)
        # x = max_pool_x(cluster, data.x, data.batch)

        x = x[0].view(-1, self.fc1.weight.size(1))
        x = self.fc1(x)
        x = F.elu(x)
        x = self.bn(x)
        x = self.drop_out(x)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)
Exemplo n.º 7
0
    def forward(self, data):
        data.x = F.elu(self.conv1a(data.x, data.edge_index, data.edge_attr))
        data.x = F.elu(self.conv1b(data.x, data.edge_index, data.edge_attr))
        # data.x = F.elu(self.conv1c(data.x, data.edge_index, data.edge_attr))
        # data.x = self.bn1(data.x)

        weight = normalized_cut_2d(data.edge_index, data.pos)
        cluster1 = graclus(data.edge_index, weight, data.x.size(0))
        pos1 = data.pos
        edge_index1 = data.edge_index
        batch1 = data.batch if hasattr(data, 'batch') else None
        # weights1 = bweights(data, cluster1)
        data = max_pool(cluster1, data, transform=T.Cartesian(cat=False))

        data.x = F.elu(self.conv2a(data.x, data.edge_index, data.edge_attr))
        data.x = F.elu(self.conv2b(data.x, data.edge_index, data.edge_attr))
        # data.x = F.elu(self.conv2c(data.x, data.edge_index, data.edge_attr))
        weight = normalized_cut_2d(data.edge_index, data.pos)
        cluster2 = graclus(data.edge_index, weight, data.x.size(0))
        pos2 = data.pos
        edge_index2 = data.edge_index
        batch2 = data.batch if hasattr(data, 'batch') else None
        # weights2 = bweights(data, cluster2)
        data = max_pool(cluster2, data, transform=T.Cartesian(cat=False))

        # upsample
        # data = recover_grid_barycentric(data, weights=weights2, pos=pos2, edge_index=edge_index2, cluster=cluster2,
        #                                  batch=batch2, transform=T.Cartesian(cat=False))
        data.x = F.elu(self.conv3a(data.x, data.edge_index, data.edge_attr))
        data.x = F.elu(self.conv3b(data.x, data.edge_index, data.edge_attr))

        data = recover_grid(data,
                            pos2,
                            edge_index2,
                            cluster2,
                            batch=batch2,
                            transform=T.Cartesian(cat=False))

        # data = recover_grid_barycentric(data, weights=weights1, pos=pos1, edge_index=edge_index1, cluster=cluster1,
        #                                  batch=batch1, transform=T.Cartesian(cat=False))
        data.x = F.elu(self.conv4a(data.x, data.edge_index, data.edge_attr))
        data.x = F.elu(self.conv4b(data.x, data.edge_index, data.edge_attr))
        data = recover_grid(data,
                            pos1,
                            edge_index1,
                            cluster1,
                            batch=batch1,
                            transform=T.Cartesian(cat=False))

        # TODO handle contract on trainer and  evaluator
        data.x = F.elu(self.convout(data.x, data.edge_index, data.edge_attr))

        x = data.x

        # return F.sigmoid(x)
        return x
Exemplo n.º 8
0
    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = self.pre_lin(x) if self.masif_descr else x
        x = self.conv1(x, edge_index)
        x = self.s1(x)
        x = self.conv2(x, edge_index)
        x = self.s2(x)
        x = self.conv3(x, edge_index)
        x = self.s3(x)

        cluster = graclus(edge_index, num_nodes=x.shape[0])
        inter = data
        inter.x = x
        inter = max_pool(cluster, inter)
        interx = self.inters1(self.interconv1(inter.x, inter.edge_index))
        inter = knn_interpolate(interx, inter.pos, data.pos)
        x1 = self.affine1(x)
        x1 += inter

        x = self.conv4(x, edge_index)
        x = self.s4(x)
        x = self.conv5(x, edge_index)
        x = self.s5(x)
        x = self.conv6(x, edge_index)
        x = self.s6(x)

        inter = data
        inter.x = x
        inter = max_pool(cluster, inter)
        interx = self.inters2(self.interconv1(inter.x, inter.edge_index))
        inter = knn_interpolate(interx, inter.pos, data.pos)
        x2 = self.affine1(x)
        x2 += inter

        x = self.conv7(x, edge_index)
        x = self.s7(x)
        x = self.conv8(x, edge_index)
        x = self.s8(x)
        x = self.conv9(x, edge_index)
        x = self.s9(x)
        x = x + x1 + x2
        x = self.conv10(x, edge_index)
        x = self.s10(x)
        x = self.lin1(x)
        x = self.s11(x)
        x = self.lin2(x)
        x = self.s12(x)
        x = self.out(x)
        x = torch.sigmoid(x)

        return x
    def forward(self, data):
        data.x = F.elu(self.conv1(data.x, data.edge_index, data.edge_attr))
        weight = normalized_cut_2d(data.edge_index, data.pos)
        cluster = graclus(data.edge_index, weight, data.x.size(0))
        data.edge_attr = None
        data = max_pool(cluster, data, transform=transform)

        data.x = F.elu(self.conv2(data.x, data.edge_index, data.edge_attr))
        weight = normalized_cut_2d(data.edge_index, data.pos)
        cluster = graclus(data.edge_index, weight, data.x.size(0))
        x, batch = max_pool_x(cluster, data.x, data.batch)

        #x = global_mean_pool(x, batch)
        x_min = torch_scatter.scatter_min(x, batch, dim=0)[0]
        gather_idxs = batch.expand(x.shape[1], -1).t()
        gather_mins = torch.gather(x_min, 0, gather_idxs)
        s = F.relu(-gather_mins)
        x = x + s
        x = self.aggregator(x, batch)
        s_out = self.aggregator(s, batch)
        x = x - s_out

        x = F.elu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        return F.log_softmax(self.fc2(x), dim=1)
Exemplo n.º 10
0
    def forward(self, data):
        data.x = self.datanorm * data.x
        data.x = self.inputnet(data.x)

        data.edge_index = to_undirected(
            knn_graph(data.x,
                      self.k,
                      data.batch,
                      loop=False,
                      flow=self.edgeconv1.flow))
        data.x = self.edgeconv1(data.x, data.edge_index)

        weight = normalized_cut_2d(data.edge_index, data.x)
        cluster = graclus(data.edge_index, weight, data.x.size(0))
        data.edge_attr = None
        data = max_pool(cluster, data)

        data.edge_index = to_undirected(
            knn_graph(data.x,
                      self.k,
                      data.batch,
                      loop=False,
                      flow=self.edgeconv2.flow))
        data.x = self.edgeconv2(data.x, data.edge_index)

        weight = normalized_cut_2d(data.edge_index, data.x)
        cluster = graclus(data.edge_index, weight, data.x.size(0))
        x, batch = max_pool_x(cluster, data.x, data.batch)

        x = global_max_pool(x, batch)

        return self.output(x).squeeze(-1)
    def forward(self, data):
        x, edge_index, batch = data.x, data.edge_index, data.batch

        if self.encode_edge:
            x = self.atom_encoder(x)
            x = self.conv1(x, edge_index, data.edge_attr)
        else:
            x = self.conv1(x, edge_index)
        x = F.relu(x)
        xs = [global_mean_pool(x, batch)]
        for i, conv in enumerate(self.convs):
            x = F.relu(conv(x, edge_index))
            xs += [global_mean_pool(x, batch)]
            if self.pooling_type != 'none':
                if self.pooling_type == 'complement':
                    complement = batched_negative_edges(edge_index=edge_index, batch=batch, force_undirected=True)
                    cluster = graclus(complement, num_nodes=x.size(0))
                elif self.pooling_type == 'graclus':
                    cluster = graclus(edge_index, num_nodes=x.size(0))
                data = Batch(x=x, edge_index=edge_index, batch=batch)
                data = max_pool(cluster, data)
                x, edge_index, batch = data.x, data.edge_index, data.batch

        if not self.no_cat:
            x = self.jump(xs)
        else:
            x = global_mean_pool(x, batch)
        x = F.relu(self.lin1(x))
        x = self.lin2(x)
        return x
Exemplo n.º 12
0
    def forward(self, data):

        inputs = data.x
        x = self.uconv0(inputs)
        x = self.activate_feature(x, self.bn0)

        if (not self.is_strided):
            x = self.kp_conv(pos=(data.points[self.layer_ind],
                                  data.points[self.layer_ind]),
                             neighbors=data.list_neigh[self.layer_ind],
                             x=x)
            x = self.activate_feature(x, self.bn1)
        else:
            x = self.kp_conv(pos=(data.points[self.layer_ind],
                                  data.points[self.layer_ind + 1]),
                             neighbors=data.list_pool[self.layer_ind],
                             x=x)
            x = self.activate_feature(x, self.bn1)
        x = self.uconv1(x)
        x = self.activate_feature(x, self.bn2)
        if (not self.is_strided):
            data.x = x + self.shortcut_op(inputs)
        else:
            data.x = x + self.shortcut_op(
                max_pool(inputs, data.list_pool[self.layer_ind]))
        return data
Exemplo n.º 13
0
    def forward(self, data):
        data.x = F.elu(self.conv1(data.x, data.edge_index, data.edge_attr))
        weight = normalized_cut_2d(data.edge_index, data.pos)
        cluster = graclus(data.edge_index, weight, data.x.size(0))
        data.edge_attr = None
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        data.x = F.elu(self.conv2(data.x, data.edge_index, data.edge_attr))
        weight = normalized_cut_2d(data.edge_index, data.pos)
        cluster = graclus(data.edge_index, weight, data.x.size(0))
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        data.x = F.elu(self.conv3(data.x, data.edge_index, data.edge_attr))

        x = global_mean_pool(data.x, data.batch)
        x = F.elu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        return F.log_softmax(self.fc2(x), dim=1)
Exemplo n.º 14
0
    def forward(self, data):
        data.x = F.elu(self.conv1(data.x, data.edge_index, data.edge_attr))
        cluster = voxel_grid(data.pos, data.batch, size=5, start=0, end=28)
        data = max_pool(cluster, data, transform=transform)

        data.x = F.elu(self.conv2(data.x, data.edge_index, data.edge_attr))
        cluster = voxel_grid(data.pos, data.batch, size=7, start=0, end=28)
        data = max_pool(cluster, data, transform=transform)

        data.x = F.elu(self.conv3(data.x, data.edge_index, data.edge_attr))
        cluster = voxel_grid(data.pos, data.batch, size=14, start=0, end=27.99)
        x = max_pool_x(cluster, data.x, data.batch, size=4)

        x = x.view(-1, self.fc1.weight.size(1))
        x = F.elu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)
Exemplo n.º 15
0
def cluster_grid(grid):
    data = grid
    # data.x = conv1(data.x, data.edge_index, data.edge_attr)
    weight = normalized_cut_2d(data.edge_index, data.pos)
    cluster = graclus(data.edge_index, weight, data.x.size(0))
    data.edge_attr = None
    data.batch = None
    data = max_pool(cluster, data, transform=T.Cartesian(cat=False))
    return data, cluster
Exemplo n.º 16
0
 def forward(self, data):
     inputs = data.x
     if (data.pools[self.layer_ind].shape[1] > 2):
         x = max_pool(inputs, data.pools[self.layer_ind])
     else:
         raise NotImplementedError("implement for list of edges")
         x = None
     data.x = x
     return data
Exemplo n.º 17
0
    def forward(self, data):
        x, edge_index = data.x, data.edge_index
        x = self.pre_lin(x) if self.masif_descr else x
        x = self.conv1(x, edge_index)
        x = self.s1(x)
        x = self.conv2(x, edge_index)
        x = self.s2(x)
        x = self.conv3(x, edge_index)
        x = self.s3(x)

        cluster1 = graclus(edge_index, num_nodes=x.shape[0])
        inter1 = data
        inter1.x = x
        inter1 = max_pool(cluster1, inter1)
        x = self.s4(self.conv4(inter1.x, inter1.edge_index))
        edge_index = inter1.edge_index
        x = self.conv5(x, edge_index)
        x = self.s5(x)
        x = self.conv6(x, edge_index)
        x = self.s6(x)
        cluster2 = graclus(edge_index, num_nodes=x.shape[0])
        inter2 = inter1
        inter2.x = x
        inter2 = max_pool(cluster2, inter2)
        x = self.s7(self.conv7(inter2.x, inter2.edge_index))
        x = knn_interpolate(x, inter2.pos, inter1.pos)
        x = self.conv8(x, edge_index)
        x = self.s8(x)
        x = knn_interpolate(x, inter1.pos, data.pos)
        edge_index = data.edge_index
        x = self.conv9(x, edge_index)
        x = self.s9(x)
        x = self.conv10(x, edge_index)
        x = self.s10(x)
        x = self.lin1(x)
        x = self.s11(x)
        x = self.lin2(x)
        x = self.s12(x)
        x = self.out(x)
        x = torch.sigmoid(x)

        return x
Exemplo n.º 18
0
    def forward(self, data):
        x, edge_index_1 = data.x, data.edge_index
        # define downscaled samples.
        cluster1 = graclus(edge_index_1, num_nodes=x.shape[0])
        downsample_1 = avg_pool(cluster1, data)
        edge_index_2 = downsample_1.edge_index
        cluster2 = graclus(edge_index_2, num_nodes=downsample_1.x.shape[0])
        downsample_2 = avg_pool(cluster2, downsample_1)
        edge_index_3 = downsample_2.edge_index

        x = self.conv1(x, edge_index_1)
        x = self.s1(x)
        inter1 = data
        inter1.x = x
        inter1 = max_pool(cluster1, inter1)
        x2 = inter1.x
        x2 = torch.cat((self.affine1(downsample_1.x), x2), dim=1)
        x2 = self.conv2(x2, edge_index_2)
        x2 = self.s2(x2)

        inter2 = inter1
        inter2.x = x2
        inter2 = max_pool(cluster2, inter2)
        x3 = inter2.x
        x3 = torch.cat((self.affine2(downsample_2.x), x3), dim=1)
        x3 = self.conv3(x3, edge_index_3)
        x3 = self.s3(x3)

        x3 = knn_interpolate(x3, downsample_2.pos, downsample_1.pos)
        x2 = torch.cat((x2, x3), dim=1)
        x2 = knn_interpolate(x2, downsample_1.pos, data.pos)
        x = torch.cat((x, x2), dim=1)

        x = self.conv4(x, edge_index_1)
        x = self.s4(x)
        x = self.conv5(x, edge_index_1)
        x = self.s5(x)
        x = self.s6(self.lin1(x))
        x = self.s7(self.lin2(x))

        return torch.sigmoid(self.out(x))
Exemplo n.º 19
0
    def forward(self, data):
        data = self.conv1(data)
        cluster = voxel_grid(data.pos, data.batch, size=2)
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        data = self.conv2(data)
        cluster = voxel_grid(data.pos, data.batch, size=4)
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        data = self.conv3(data)
        cluster = voxel_grid(data.pos, data.batch, size=7)
        x = max_pool_x(cluster, data.x, data.batch, size=25)
        # x = max_pool_x(cluster, data.x, data.batch)

        x = x[0].view(-1, self.fc1.weight.size(1))
        x = self.fc1(x)
        x = F.elu(x)
        x = self.bn(x)
        x = self.drop_out(x)
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)
Exemplo n.º 20
0
    def forward(self, data):
        data.x = F.elu(self.conv1(data.x, data.edge_index, data.edge_attr))
        weight = normalized_cut_2d(data.edge_index, data.pos)
        cluster = graclus(data.edge_index, weight, data.x.size(0))
        data.edge_attr = None
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        data.x = F.elu(self.conv2(data.x, data.edge_index, data.edge_attr))
        weight = normalized_cut_2d(data.edge_index, data.pos)
        cluster = graclus(data.edge_index, weight, data.x.size(0))
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        data.x = F.elu(self.conv3(data.x, data.edge_index, data.edge_attr))

        x = F.elu(self.fc1(data.x))
        x = F.dropout(x, training=self.training, p=self.dropout)
        x = self.fc2(x)
        y = global_mean_pool(x, data.batch)

        if (self.wgan):
            return y

        return torch.sigmoid(y)
Exemplo n.º 21
0
    def forward(self, data):
        x = F.relu(self.conv1(data.x, data.edge_index))
        cluster = graclus(data.edge_index, num_nodes=x.shape[0])
        data = max_pool(
            cluster, Data(x=x, batch=data.batch, edge_index=data.edge_index))

        x = F.relu(self.conv2(data.x, data.edge_index))
        cluster = graclus(data.edge_index, num_nodes=x.shape[0])
        x, batch = max_pool_x(cluster, x, data.batch)

        x = global_mean_pool(x, batch)
        x = F.relu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        x = self.fc2(x)
        return x
Exemplo n.º 22
0
    def forward(self, data):
        for i in range(self.layers_num):
            data.x = self.conv_layers[i](data.x, data.pos, data.edge_index)

            if self.use_cluster_pooling:
                weight = normalized_cut_2d(data.edge_index, data.pos)
                cluster = graclus(data.edge_index, weight, data.x.size(0))
                data = max_pool(cluster,
                                data,
                                transform=T.Cartesian(cat=False))

        data.x = global_mean_pool(data.x, data.batch)
        x = self.fc1(data.x)

        return F.log_softmax(x, dim=1)
Exemplo n.º 23
0
 def forward(self, data):
     x, edge_index, batch = data.x, data.edge_index, data.batch
     x = F.relu(self.conv1(x, edge_index))
     xs = [global_mean_pool(x, batch)]
     for i, conv in enumerate(self.convs):
         x = F.relu(conv(x, edge_index))
         xs += [global_mean_pool(x, batch)]
         if i % 2 == 0 and i < len(self.convs) - 1:
             cluster = graclus(edge_index, num_nodes=x.size(0))
             data = Batch(x=x, edge_index=edge_index, batch=batch)
             data = max_pool(cluster, data)
             x, edge_index, batch = data.x, data.edge_index, data.batch
     x = self.jump(xs)
     x = F.relu(self.lin1(x))
     x = F.dropout(x, p=0.5, training=self.training)
     x = self.lin2(x)
     return F.log_softmax(x, dim=-1)
Exemplo n.º 24
0
    def forward(self, data):
        x, edge_index, edge_attr = data.x, data.edge_index, data.edge_attr
        x = self.conv1(x)
        x = F.elu(x)

        weight = normalized_cut_2d(data.edge_index, data.pos)
        cluster = graclus(data.edge_index, weight, x.size(0))
        data.edge_attr = None
        data = max_pool(cluster, data, transform=T.Cartesian(cat=False))
        x = F.elu(self.conv1(x, edge_index, edge_attr))
        x = self.conv2(x, edge_index, edge_attr)
        x = F.elu(self.conv3(x, edge_index, edge_attr))
        x = self.conv4(x, edge_index, edge_attr)
        x = F.elu(self.conv5(x, edge_index, edge_attr))
        x = self.conv6(x, edge_index, edge_attr)
        x = F.dropout(x, training=self.training)
        return F.log_softmax(x, dim=1)
Exemplo n.º 25
0
 def forward(self, sub_data):
     """
     polyline vector set in torch_geometric.data.Data format
     args:
         sub_data (Data): [x, y, cluster, edge_index, valid_len]
     """
     x, edge_index = sub_data.x, sub_data.edge_index
     for name, layer in self.layer_seq.named_modules():
         if isinstance(layer, GraphLayerProp):
             x = layer(x, edge_index)
     sub_data.x = x
     out_data = max_pool(sub_data.cluster, sub_data)
     # try:
     assert out_data.x.shape[0] % int(sub_data.time_step_len[0]) == 0
     # except:
         # from pdb import set_trace; set_trace()
     out_data.x = out_data.x / out_data.x.norm(dim=0)
     return out_data
Exemplo n.º 26
0
    def forward(self, data):
        data.x = F.elu(self.conv1(data.x, data.edge_index, data.edge_attr))
        cluster = graclus(
            data.edge_index,
            torch.reshape(data.edge_attr, (data.edge_attr.shape[0], )),
            data.x.size(0))
        data = max_pool(cluster, data)

        data.x = F.elu(self.conv2(data.x, data.edge_index, data.edge_attr))
        cluster = graclus(
            data.edge_index,
            torch.reshape(data.edge_attr, (data.edge_attr.shape[0], )),
            data.x.size(0))
        x, batch = max_pool_x(cluster, data.x, data.batch)

        x = global_mean_pool(x, batch)
        x = F.elu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        return F.log_softmax(self.fc2(x), dim=1)
Exemplo n.º 27
0
def test_max_pool():
    cluster = torch.tensor([0, 1, 0, 1, 2, 2])
    x = torch.Tensor([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]])
    pos = torch.Tensor([[0, 0], [1, 1], [2, 2], [3, 3], [4, 4], [5, 5]])
    edge_index = torch.tensor([[0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5],
                               [1, 2, 3, 0, 2, 3, 0, 1, 3, 0, 1, 2, 5, 4]])
    edge_attr = torch.Tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])
    batch = torch.tensor([0, 0, 0, 0, 1, 1])

    data = Batch(x=x, pos=pos, edge_index=edge_index, edge_attr=edge_attr,
                 batch=batch)

    data = max_pool(cluster, data, transform=lambda x: x)

    assert data.x.tolist() == [[5, 6], [7, 8], [11, 12]]
    assert data.pos.tolist() == [[1, 1], [2, 2], [4.5, 4.5]]
    assert data.edge_index.tolist() == [[0, 1], [1, 0]]
    assert data.edge_attr.tolist() == [4, 4]
    assert data.batch.tolist() == [0, 0, 1]
Exemplo n.º 28
0
    def forward(self, graph):
        data = graph
        data.x = torch.cat([data.pos, data.x], dim=1)
        for i, monet_layer in enumerate(self.monet_layers[:-1]):
            data.x = F.relu(
                monet_layer(data.x, data.edge_index, data.edge_attr))
            weight = normalized_cut_2d(data.edge_index, data.pos)
            cluster = graclus(data.edge_index, weight, data.x.size(0))
            if i == 0:
                data.edge_attr = None
            data = max_pool(cluster, data, transform=T.Cartesian(cat=False))

        data.x = self.monet_layers[-1](data.x, data.edge_index, data.edge_attr)

        for linear_layer in self.linear_layers[:-1]:
            x = global_mean_pool(data.x, data.batch)
            x = F.relu(linear_layer(x))
            x = F.dropout(x)

        return F.log_softmax(self.linear_layers[-1](x), dim=1)
Exemplo n.º 29
0
    def forward(self, data):
        data.x = F.elu(self.conv1(data.x, data.edge_index, data.edge_attr))
        ######## calculate similarity between nodes
        weight = normalized_cut_2d(data.edge_index, data.pos)
        ######### graph clustering without the need of eigenvector
        cluster = graclus(data.edge_index, weight, data.x.size(0))
        data.edge_attr = None
        ########## Pools and coarsens a graph. All nodes within the same cluster will be represented as one node and appply transform
        data = max_pool(cluster, data, transform=transform)

        ########## 2nd conv net
        data.x = F.elu(self.conv2(data.x, data.edge_index, data.edge_attr))
        weight = normalized_cut_2d(data.edge_index, data.pos)
        cluster = graclus(data.edge_index, weight, data.x.size(0))
        ############## Max-Pools node features according to the clustering defined in cluster
        x, batch = max_pool_x(cluster, data.x, data.batch)

        ############## Returns batch-wise graph-level-outputs by averaging node features across the node dimension
        x = global_mean_pool(x, batch)
        x = F.elu(self.fc1(x))
        x = F.dropout(x, training=self.training)
        return F.log_softmax(self.fc2(x), dim=1)
Exemplo n.º 30
0
    def forward(self, data):
        inputs = data.x
        x = self.kp_conv0(data.points[self.layer_ind],
                          data.points[self.layer_ind],
                          data.list_neigh[self.layer_ind], inputs)

        x = self.activate_feature(x, self.bn0)
        if (not self.is_strided):
            x = self.kp_conv1(data.points[self.layer_ind],
                              data.points[self.layer_ind],
                              data.list_neigh[self.layer_ind], x)
            x = self.activate_feature(x, self.bn1)
            data.x = x + self.shortcut_op(inputs)

        else:
            x = self.kp_conv(data.points[self.layer_ind + 1],
                             data.points[self.layer_ind],
                             data.list_pool[self.layer_ind], x)
            x = self.activate_feature(x, self.bn1)
            shortcut = self.shortcut_op(
                max_pool(inputs, data.list_pool[self.layer_ind]))
            data.x = x + shortcut

        return data