Exemplo n.º 1
0
 def __init__(self, n_hidden=100, init='glorot_uniform'):
     self.n_hidden = n_hidden
     self.init = initializations.get(init)
     Wz = self.init([n_hidden, n_hidden])
     Wr = self.init([n_hidden, n_hidden])
     Wh = self.init([n_hidden, n_hidden])
     Uz = self.init([n_hidden, n_hidden])
     Ur = self.init([n_hidden, n_hidden])
     Uh = self.init([n_hidden, n_hidden])
     bz = model_ops.zeros(shape=(n_hidden, ))
     br = model_ops.zeros(shape=(n_hidden, ))
     bh = model_ops.zeros(shape=(n_hidden, ))
     self.trainable_weights = [Wz, Wr, Wh, Uz, Ur, Uh, bz, br, bh]
Exemplo n.º 2
0
    def build(self):
        self.W_cf = self.init([self.n_embedding, self.n_hidden])
        self.W_df = self.init([self.n_distance, self.n_hidden])
        self.W_fc = self.init([self.n_hidden, self.n_embedding])
        self.b_cf = model_ops.zeros(shape=[
            self.n_hidden,
        ])
        self.b_df = model_ops.zeros(shape=[
            self.n_hidden,
        ])

        self.trainable_weights = [
            self.W_cf, self.W_df, self.W_fc, self.b_cf, self.b_df
        ]
Exemplo n.º 3
0
    def build(self):
        self.W_list = []
        self.b_list = []
        prev_layer_size = self.n_embedding
        for i, layer_size in enumerate(self.layer_sizes):
            self.W_list.append(self.init([prev_layer_size, layer_size]))
            self.b_list.append(model_ops.zeros(shape=[
                layer_size,
            ]))
            prev_layer_size = layer_size
        self.W_list.append(self.init([prev_layer_size, self.n_outputs]))
        self.b_list.append(model_ops.zeros(shape=[
            self.n_outputs,
        ]))
        prev_layer_size = self.n_outputs

        self.trainable_weights = self.W_list + self.b_list
Exemplo n.º 4
0
 def build(self):
     if self.gaussian_expand:
         self.W = self.init([self.n_input * 11, self.n_input])
         self.b = model_ops.zeros(shape=[
             self.n_input,
         ])
         self.trainable_weights = self.W + self.b
     else:
         self.trainable_weights = None
Exemplo n.º 5
0
    def build(self):
        """"Construct internal trainable weights.
        """

        self.W_list = []
        self.b_list = []
        prev_layer_size = self.n_graph_feat
        for layer_size in self.layer_sizes:
            self.W_list.append(self.init([prev_layer_size, layer_size]))
            self.b_list.append(model_ops.zeros(shape=[
                layer_size,
            ]))
            prev_layer_size = layer_size
        self.W_list.append(self.init([prev_layer_size, self.n_outputs]))
        self.b_list.append(model_ops.zeros(shape=[
            self.n_outputs,
        ]))

        self.trainable_weights = self.W_list + self.b_list
Exemplo n.º 6
0
 def __init__(self,
              pair_features,
              n_pair_features=8,
              n_hidden=100,
              init='glorot_uniform'):
     self.n_pair_features = n_pair_features
     self.n_hidden = n_hidden
     self.init = initializations.get(init)
     W = self.init([n_pair_features, n_hidden * n_hidden])
     b = model_ops.zeros(shape=(n_hidden * n_hidden, ))
     self.A = torch.matmul(pair_features, W) + b
     self.A = torch.reshape(self.A, (-1, n_hidden, n_hidden))
     self.trainable_weights = [W, b]
Exemplo n.º 7
0
    def build(self):
        """ Construct internal trainable weights.
        TODO(rbharath): Need to make this not set instance variables to
        follow style in other layers.
        """
        init = initializations.get(self.init)  # Set weight initialization

        self.W_AA = init([self.n_atom_input_feat, self.n_hidden_AA])
        self.b_AA = model_ops.zeros(shape=[
            self.n_hidden_AA,
        ])

        self.W_PA = init([self.n_pair_input_feat, self.n_hidden_PA])
        self.b_PA = model_ops.zeros(shape=[
            self.n_hidden_PA,
        ])

        self.W_A = init([self.n_hidden_A, self.n_atom_output_feat])
        self.b_A = model_ops.zeros(shape=[
            self.n_atom_output_feat,
        ])

        self.trainable_weights = [
            self.W_AA, self.b_AA, self.W_PA, self.b_PA, self.W_A, self.b_A
        ]
        if self.update_pair:
            self.W_AP = init([self.n_atom_input_feat * 2, self.n_hidden_AP])
            self.b_AP = model_ops.zeros(shape=[
                self.n_hidden_AP,
            ])

            self.W_PP = init([self.n_pair_input_feat, self.n_hidden_PP])
            self.b_PP = model_ops.zeros(shape=[
                self.n_hidden_PP,
            ])

            self.W_P = init([self.n_hidden_P, self.n_pair_output_feat])
            self.b_P = model_ops.zeros(shape=[
                self.n_pair_output_feat,
            ])

            self.trainable_weights.extend([
                self.W_AP, self.b_AP, self.W_PP, self.b_PP, self.W_P, self.b_P
            ])