Exemplo n.º 1
0
def face_detect(file, frame_path, csv_data):
    name = file.replace('.jpg', '').split('-')
    log = csv_data.iloc[int(name[0])]
    x = log[3]
    y = log[4]

    img = cv2.imread('%s/%s' % (frame_path, file))
    img_ = Image.open('%s/%s' % (frame_path, file))
    x = img.shape[1] * x
    y = img.shape[0] * y
    faces, landmarks = detector.detect_faces(img_)
    # check if detected faces
    if len(faces) == 0:
        # print('no face detect: ' + file)
        return  # no face

    faces[0][2] = faces[0][2] - faces[0][0]
    faces[0][3] = faces[0][3] - faces[0][1]
    bounding_box = bounding_box_check(faces, x, y)
    if bounding_box is None:
        # print('face is not related to given coord: ' + file)
        return
    # print(file, " ", bounding_box)
    # print(file, " ", x, y)
    crop_img = img[bounding_box[1]:bounding_box[1] + bounding_box[3],
                   bounding_box[0]:bounding_box[0] + bounding_box[2]]
    crop_img = cv2.resize(crop_img, (160, 160))
    cv2.imwrite('%s/frame_' % output_dir + name[0] + '_' + name[1] + '.jpg',
                crop_img)
Exemplo n.º 2
0
def predict():
    files = request.files
    img_left = Image.open(files.get('imgLeft')).convert('RGB')
    img_right = Image.open(files.get('imgRight')).convert('RGB')
    bbox_left, _ = detect_faces(img_left)
    bbox_right, _ = detect_faces(img_right)
    if bbox_left.shape[0] > 0:
        a, b, c, d, _ = bbox_left[0]
        img_left = img_left.crop((a, b, c, d))
    if bbox_right.shape[0] > 0:
        a, b, c, d, _ = bbox_right[0]
        img_right = img_right.crop((a, b, c, d))
    distance, similar = is_same(img_left, img_right, THRESHOLD)
    model_acc = ModelLoaded.acc
    return jsonify(same=('BERBEDA', 'SAMA')[similar.item()],
                   score=distance.item(),
                   model_acc=model_acc,
                   threshold=THRESHOLD)
Exemplo n.º 3
0
def fetch_faces(image, return_landmarks=False):
    # standarize detector input from cv2 image to PIL Image
    if isinstance(image, (np.ndarray, np.generic)):
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        image = Image.fromarray(image)

    # for some reason, detector randomly throws an error
    try:
        bboxes, landmarks = detect_faces(image)
    except ValueError:
        bboxes, landmarks = [], []

    # postprocess bounding bboxes
    if len(bboxes) > 0:
        scores = bboxes[:, -1]
        bboxes = bboxes[:, :-1].astype("int")
    else:
        scores = []

    return ([bboxes, scores],
            landmarks) if return_landmarks else bboxes, scores
Exemplo n.º 4
0
def detect_and_store(path, final_root_dir, new_size):
    img = Image.open(path)
    bounding_boxes, landmarks = detect_faces(img)

    if len(bounding_boxes) == 0:
        print("No face detected on image", get_dir_and_file(path))
    '''
    image should only contains one valid person for the corresponding label/person
    so, we assume that bounding_boxes shape is always (1, 5)
    '''
    for a, b, c, d, _ in bounding_boxes:
        dst = os.path.join(final_root_dir, path.parent.name)
        os.makedirs(dst, exist_ok=True)
        final_name = os.path.join(dst, path.name)
        try:
            img.crop((a, b, c, d)).resize((new_size, new_size),
                                          Image.BILINEAR).save(final_name)
            print(get_dir_and_file(path), 'saved to', final_name)
        except Exception as e:
            print("Error occured when saving", get_dir_and_file(path))
            print("Error: ", str(e))
Exemplo n.º 5
0
from torch_mtcnn import detect_faces
from PIL import Image
from os import listdir
from os.path import isfile, join
import json
import csv
with open('configuration.json', 'r') as configfile:
    config_info=json.load(configfile)
print(config_info['input-images-directory'])
input_images_path=config_info['input-images-directory']
print(input_images_path)
image_files = [f for f in listdir(input_images_path) if isfile(join(input_images_path, f))]
cropped_images_path=config_info['cropped-faces-directory']
for file in image_files:
	image = Image.open(input_images_path+file).convert('RGB')
	bounding_boxes, landmarks = detect_faces(image)
	for i in range(len(bounding_boxes)):
		area = (bounding_boxes[i][0],bounding_boxes[i][1],bounding_boxes[i][2],bounding_boxes[i][3])
		t_image=image.crop(area)
		j=i+1
		t_image=t_image.save(cropped_images_path+str(j)+'-'+file)
            
print(m.keys())
classes = m['classes']
net = eval(args.model.type)(args.model.num_classes)
net.load_state_dict(m['model'])
net.to(torch.device('cuda'))
net.eval()
i = 0
while ret:
    raw = frame

    i+=1
    if i % 2 == 0:
        continue

    pil_img = cv2_to_pil(raw)
    bounding_boxes, landmarks = detect_faces(pil_img)

    print(bounding_boxes)

    for bbox in bounding_boxes:
        x1, y1, x2, y2 = int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3])
        cv2.rectangle(raw, (x1, y1), (x2, y2), (0, 255, 0))

        frame = raw[y1: y2, x1: x2, :]
        cv2.imshow('face', frame)

        # 模型处理

        img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

        img = cv2.resize(img, (224, 224))