Exemplo n.º 1
0
 def __init__(self, num_point, batch_size, momentum=0.1):
     super(PointNet, self).__init__()
     self.conv1 = torch_util.conv2d(in_channels=1,
                                    out_channels=64,
                                    kernel_size=(1, 3),
                                    momentum=momentum)
     self.conv2 = torch_util.conv2d(in_channels=64,
                                    out_channels=64,
                                    kernel_size=(1, 1),
                                    momentum=momentum)
     self.conv3 = torch_util.conv2d(in_channels=64,
                                    out_channels=64,
                                    kernel_size=(1, 1),
                                    momentum=momentum)
     self.conv4 = torch_util.conv2d(in_channels=64,
                                    out_channels=128,
                                    kernel_size=(1, 1),
                                    momentum=momentum)
     self.conv5 = torch_util.conv2d(in_channels=128,
                                    out_channels=1024,
                                    kernel_size=(1, 1),
                                    momentum=momentum)
     self.fc1 = torch_util.fully_connected(1024, 512)
     self.fc2 = torch_util.fully_connected(512, 256)
     self.fc3 = nn.Linear(256, 10)
     self.feature_transform = feature_transform_net(in_channels=64,
                                                    momentum=momentum,
                                                    num_point=num_point,
                                                    batch_size=batch_size)
     self.maxpool = nn.MaxPool2d((num_point, 1))
     self.relu = nn.ReLU()
     self.drop1 = nn.Dropout(p=0.7)
     self.drop2 = nn.Dropout(p=0.7)
Exemplo n.º 2
0
 def __init__(self):
     super(SegNet, self).__init__()
     self.conv1 = torch_util.conv2d(1, 16, kernel_size=5, padding=2)
     self.conv2 = torch_util.conv2d(16, 64, kernel_size=3, padding=1)
     self.conv3 = torch_util.conv2d(64, 256, kernel_size=3, padding=1)
     self.conv3_drop = nn.Dropout2d()
     self.conv4 = torch_util.conv2d(256, 64, kernel_size=1)
     self.conv4_drop = nn.Dropout2d()
     self.conv5 = torch_util.conv2d(64, 2, kernel_size=1)
Exemplo n.º 3
0
 def __init__(self):
     super(CNN, self).__init__()
     self.conv1 = torch_util.conv2d(1, 16, kernel_size=4)
     self.conv2 = torch_util.conv2d(16, 64, kernel_size=3)
     self.conv3 = torch_util.conv2d(64, 256, kernel_size=3)
     self.conv4 = torch_util.conv2d(256, 1024, kernel_size=4)
     self.conv3_drop = nn.Dropout2d()
     self.fc1 = torch_util.fully_connected(1024 * 3 * 3, 256)
     self.fc2 = torch_util.fully_connected(256, 64)
     self.fc3 = torch_util.fully_connected(64, 10)
Exemplo n.º 4
0
 def __init__(self, in_channels, momentum, num_point, batch_size):
     super(feature_transform_net, self).__init__()
     self.batch_size = batch_size
     self.conv1 = torch_util.conv2d(in_channels, 64, (1, 1), momentum)
     self.conv2 = torch_util.conv2d(64, 128, (1, 1), momentum)
     self.conv3 = torch_util.conv2d(128, 1024, (1, 1), momentum)
     self.maxpool = nn.MaxPool2d((num_point, 1))
     self.fc1 = torch_util.fully_connected(1024, 512)
     self.fc2 = torch_util.fully_connected(512, 256)
     self.fc3 = nn.Linear(256, 64 * 64)