Exemplo n.º 1
0
 def test_basic(self):
     config = ConfigSchema(
         entities={"e": EntitySchema(num_partitions=1)},
         relations=[RelationSchema(name="r", lhs="e", rhs="e")],
         dimension=1,
         entity_path="foo", edge_paths=["bar"], checkpoint_path="baz")
     metadata = ConfigMetadataProvider(config).get_checkpoint_metadata()
     self.assertIsInstance(metadata, dict)
     self.assertCountEqual(metadata.keys(), ["config/json"])
     self.assertEqual(
         config, ConfigSchema.from_dict(json.loads(metadata["config/json"])))
Exemplo n.º 2
0
 def read_config(self) -> ConfigSchema:
     config_json = self.storage.load_config()
     return ConfigSchema.from_dict(json.loads(config_json))
Exemplo n.º 3
0
            lr=0.1,
            num_uniform_negs=50,
            eval_fraction=
            0,  # to reproduce results, we need to use all training data
            workers=1,
            distributed_init_method="tpc://localhost:30050",
        )
        for num_part in args.num_parts:
            datadir = "{}_big_{}".format(args.dataset, num_part)
            config_dict['entity_path'] = os.path.join(args.root_output,
                                                      datadir)
            config_dict['entities']['all']['num_partitions'] = num_part
            config_dict['edge_paths'] = [
                os.path.join(args.root_output, datadir, datadir)
            ]
            config = ConfigSchema.from_dict(config_dict)

            convert_input_data(
                config.entities,
                config.relations,
                config.entity_path,
                config.edge_paths,
                [
                    Path(
                        os.path.join(
                            args.root_output,
                            "{}_text/edgelist_pybig.txt".format(args.dataset)))
                ],
                lhs_col=0,
                rhs_col=2,
                rel_col=1,
Exemplo n.º 4
0
 def read_config(self) -> ConfigSchema:
     with open(os.path.join(self.path, CONFIG_FILE), "rt") as tf:
         return ConfigSchema.from_dict(json.load(tf))