Exemplo n.º 1
0
def argumenttype_type(t: Type,
                      *,
                      mutable: bool,
                      binds: ArgName,
                      remove_non_owning_ref_types: bool = False) -> NamedCType:
    # If it's a value type, do the value type translation
    r = valuetype_type(t,
                       binds=binds,
                       remove_non_owning_ref_types=remove_non_owning_ref_types)
    if r is not None:
        return r

    if isinstance(t, BaseType):
        if t.name == BaseTy.Tensor:
            if mutable and not local.use_const_ref_for_mutable_tensors():
                return NamedCType(binds, MutRefCType(BaseCType(tensorT)))
            else:
                return NamedCType(binds, ConstRefCType(BaseCType(tensorT)))
        elif t.name == BaseTy.Scalar:
            return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
        else:
            raise AssertionError(f"base type should have been value type {t}")
    elif isinstance(t, OptionalType):
        if str(t.elem) == "Tensor":
            if mutable and not local.use_const_ref_for_mutable_tensors():
                return NamedCType(binds, MutRefCType(
                    BaseCType(tensorT)))  # TODO: fix this discrepancy
            else:
                return NamedCType(
                    binds, ConstRefCType(OptionalCType(BaseCType(tensorT))))
        elif str(t.elem) == "Scalar":
            return NamedCType(binds,
                              ConstRefCType(OptionalCType(BaseCType(scalarT))))
        elif isinstance(t.elem, ListType) and str(t.elem.elem) == "int":
            return NamedCType(binds, BaseCType(optionalIntArrayRefT))
        elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
        return NamedCType(binds, OptionalCType(elem.type))
    elif isinstance(t, ListType):
        # TODO: remove these special cases, ArrayRef fallthrough works fine
        if str(t.elem) == "int":
            if remove_non_owning_ref_types:
                return NamedCType(binds, VectorCType(BaseCType(longT)))
            else:
                return NamedCType(binds, BaseCType(intArrayRefT))
        elif str(t.elem) == "Tensor":
            return NamedCType(binds, BaseCType(tensorListT))
        elif str(t.elem) == "Scalar":
            return NamedCType(binds, ArrayRefCType(BaseCType(scalarT)))
        elif str(t.elem) == "SymInt":
            return NamedCType(binds, BaseCType(symIntArrayRefT))
        elif str(t.elem) == "Dimname":
            return NamedCType(binds, BaseCType(dimnameListT))
        elif str(t.elem) == "Tensor?":
            return NamedCType(
                binds,
                ConstRefCType(ListCType(OptionalCType(BaseCType(tensorT)))))
        elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
        return NamedCType(binds, ArrayRefCType(elem.type))
    else:
        raise AssertionError(f"unrecognized type {repr(t)}")
Exemplo n.º 2
0
def returntype_type(t: Type, *, mutable: bool) -> CType:
    # placeholder is ignored
    r = valuetype_type(t, binds="__placeholder__")
    if r is not None:
        return r.type

    if isinstance(t, BaseType):
        if t.name == BaseTy.Tensor:
            if mutable:
                if local.use_const_ref_for_mutable_tensors():
                    return ConstRefCType(BaseCType(tensorT))
                else:
                    return MutRefCType(BaseCType(tensorT))
            else:
                # Note [Tensor Copy Returns]
                # Currently, we use "Argument.is_write" to determine
                # whether or not Tensor return types should be copies or references.
                # If that ever changes, take a look at other locations of this note!
                return BaseCType(tensorT)
        elif t.name == BaseTy.Scalar:
            return BaseCType(scalarT)
    elif isinstance(t, ListType):
        assert (
            not mutable
        ), "Native functions should never return a mutable tensor list. They should return void."
        elem = returntype_type(t.elem, mutable=False)
        assert t.size is None, f"fixed size list returns not supported: {t}"
        return VectorCType(elem)

    raise AssertionError(f"unrecognized return type {t}")
Exemplo n.º 3
0
def argumenttype_type(t: Type, *, mutable: bool, binds: ArgName) -> NamedCType:
    if str(t) == "Tensor?":
        tensor_type: OptionalCType = OptionalCType(BaseCType(tensorT))
        if mutable and not local.use_const_ref_for_mutable_tensors():
            return NamedCType(binds, MutRefCType(tensor_type))
        else:
            return NamedCType(binds, ConstRefCType(tensor_type))
    elif str(t) == "Tensor?[]":
        return NamedCType(
            binds, ConstRefCType(ListCType(OptionalCType(BaseCType(tensorT)))))
    elif str(t) == "Scalar":
        return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
    elif str(t) == "Scalar?":
        return NamedCType(binds,
                          ConstRefCType(OptionalCType(BaseCType(scalarT))))
    return cpp.argumenttype_type(t, mutable=mutable, binds=binds)
Exemplo n.º 4
0
def translate(
    bindings: Sequence[Union[Expr, Binding]],
    goals: Sequence[Union[NamedCType, Binding]],
    *,
    method: bool = False,
    allow_expensive_conversions: bool = False,
) -> List[Expr]:

    binding_exprs: List[Expr] = []
    for b in bindings:
        if isinstance(b, Binding):
            binding_exprs.append(Expr(
                expr=b.name,
                type=b.nctype,
            ))
        else:
            binding_exprs.append(b)

    goal_ctypes: List[NamedCType] = []
    for g in goals:
        if isinstance(g, Binding):
            goal_ctypes.append(g.nctype)
        else:
            goal_ctypes.append(g)

    # Add all the bindings to the context
    ctx: Dict[NamedCType, str] = {}
    for b in binding_exprs:
        ctx[b.type] = b.expr

        # While we're at it, do some simple forward inference, looking through
        # constructors.
        #
        # NB: When should you do forward inference versus backward inference?
        # The general idea:
        #
        #   - Backward inference WHEN the goal gets smaller
        #   - Forward inference WHEN the hypothesis gets smaller
        #
        # This helps ensure termination: backward inference starts with a goal
        # and tries to make it simpler and simpler until it's trivial; if the
        # goal can grow in size, we blow up to a really huge goal size.
        # Similarly, with forward inference we take hypotheses and decompose
        # them into simpler hypotheses; if hypotheses could expand in size,
        # we also have potential nontermination.  (In the code below, forward
        # inference is only ever carried out at a single step, but you could
        # imagine repeated application of forward inference being profitable.)
        #
        # A good starting point in the literature for exploring more about proof
        # search are these lecture notes
        # https://www.cs.cmu.edu/~fp/courses/oregon-m10/04-focusing.pdf
        #
        # TODO: My kingdom for a pattern matcher
        # https://www.python.org/dev/peps/pep-0634/
        #
        # TODO: This could get us in recomputation trouble if b.expr is nontrivial.
        # Fix this by implementing some sort of sharing so that if multiple
        # goals share the same expression, we only compute it once.  This seems
        # to matter in practice as compiler is often unwilling to CSE nontrivial
        # expressions like scalar.to<scalar_t>()
        t = b.type
        if (isinstance(t, ConstRefCType) and isinstance(t.elem, OptionalCType)
                and isinstance(t.elem.elem, BaseCType)
                and str(t.elem.elem.type) == "at::Tensor"):
            ctx[NamedCType(
                t.elem.elem.name, ConstRefCType(BaseCType(tensorT))
            )] = f"({b.expr}.has_value() ? *{b.expr} : at::Tensor())"

        if t.type == ConstRefCType(OptionalCType(BaseCType(tensorT))):
            ctx[NamedCType(
                t.name, BaseCType(optionalTensorRefT)
            )] = f"(({b.expr}.has_value() && (*{b.expr}).defined()) ? at::OptionalTensorRef(*{b.expr}) : at::OptionalTensorRef())"

        if t.type == ConstRefCType(BaseCType(scalarT)):
            ctx[NamedCType(t.name,
                           BaseCType(opmath_t))] = f"({b.expr}).to<opmath_t>()"

        if t.type == ConstRefCType(OptionalCType(BaseCType(scalarT))):
            ctx[NamedCType(
                t.name, BaseCType(optionalScalarRefT)
            )] = f"({b.expr}.has_value() ? at::OptionalScalarRef(&({b.expr}.value())) : at::OptionalScalarRef())"

        if t.type == BaseCType(scalar_t):
            ctx[NamedCType(
                t.name,
                BaseCType(opmath_t))] = f"static_cast<opmath_t>({b.expr})"

        # [Note: ITensorListRef]
        if t.type == BaseCType(tensorListT):
            ctx[NamedCType(
                t.name,
                BaseCType(iTensorListRefT))] = f"at::ITensorListRef({b.expr})"

        # [Note: IOptTensorListRef]
        if t.type == ConstRefCType(ListCType(OptionalCType(
                BaseCType(tensorT)))):
            ctx[NamedCType(t.name, BaseCType(
                iOptTensorListRefT))] = f"at::IOptTensorListRef({b.expr})"

    # Add implicit bindings if the generated code is inside a Tensor method
    if method:
        ctx[NamedCType("self", MutRefCType(
            BaseCType(tensorT)))] = "const_cast<Tensor&>(*this)"
        ctx[NamedCType("self", ConstRefCType(
            BaseCType(tensorT)))] = "const_cast<Tensor&>(*this)"
        # This is better!  Byte-for-byte compat
        # ctx[NamedCType("self", ConstRefCType(BaseCType(tensorT)))] = "*this"

    def unsat(goal: NamedCType) -> NoReturn:
        ctx_desc = "\n".join(f"  {t.cpp_type()} {t.name}; // {e}"
                             for t, e in ctx.items())
        raise UnsatError(f"""
Failed to synthesize the expression "{goal.cpp_type()} {goal.name}".
When I failed, the following bindings were available in the context:

{ctx_desc}

This probably means there is a missing rule in the rules of torchgen.api.translate.
Check this module for more information.
""")

    # A shitty backtracking search implementation.  It's shitty because it
    # does backtracking via stack (bad idea!) and for the most part tries to
    # avoid backtracking.  In particular, if
    # direct=True, we won't try to do any fancy synthesis, just trivial
    # conversions (e.g., "T a" is OK for "const T& a").  So all of the
    # existing rules in this function simply try to solve immediately,
    # and bail if things don't work out.
    def solve(goal: NamedCType, *, direct: bool) -> str:
        def direct_solve(goal: NamedCType) -> str:
            return solve(goal, direct=True)

        if goal in ctx:
            # Trivial
            return ctx[goal]

        # const & is satisfied with mutable &
        if isinstance(goal.type, ConstRefCType):
            try:
                # WARNING: not strictly decreasing; be careful not
                # to add a direct conversion that goes satisfies
                # mutable& with const&
                return solve(NamedCType(goal.name,
                                        MutRefCType(goal.type.elem)),
                             direct=direct)
            except UnsatError:
                pass

        # mutable & is satisfied with value
        if isinstance(goal.type, MutRefCType):
            try:
                return solve(NamedCType(goal.name, goal.type.elem),
                             direct=direct)
            except UnsatError:
                pass

        if direct:
            unsat(goal)

        # For now, all of these rules are mutually exclusive.
        if goal == NamedCType("memory_format",
                              OptionalCType(BaseCType(memoryFormatT))):
            memory_format = direct_solve(
                NamedCType(
                    SpecialArgName.possibly_redundant_memory_format,
                    OptionalCType(BaseCType(memoryFormatT)),
                ))
            # No need to join "memory_format" and "options" if the target API takes "options" directly.
            # Otherwise it will cause the redundant memory_format error.
            if options_ctype in goal_ctypes:
                return memory_format
            try:
                options = direct_solve(options_ctype)
                return f"c10::impl::check_tensor_options_and_extract_memory_format({options}, {memory_format})"
            except UnsatError:
                return memory_format
        elif goal == NamedCType("options", BaseCType(tensorOptionsT)):
            dtype = direct_solve(
                NamedCType("dtype", OptionalCType(BaseCType(scalarTypeT))))
            pin_memory = direct_solve(
                NamedCType("pin_memory", OptionalCType(BaseCType(boolT))))
            device = direct_solve(
                NamedCType("device", OptionalCType(BaseCType(deviceT))))
            layout = direct_solve(
                NamedCType("layout", OptionalCType(BaseCType(layoutT))))
            return f"TensorOptions().dtype({dtype}).layout({layout}).device({device}).pinned_memory({pin_memory})"

        elif goal == NamedCType("dtype",
                                OptionalCType(BaseCType(scalarTypeT))):
            try:
                options = direct_solve(options_ctype)
                return f"optTypeMetaToScalarType({options}.dtype_opt())"
            except UnsatError:
                out_tensor = direct_solve(out_tensor_ctype)
                return f"{out_tensor}.scalar_type()"

        elif goal == NamedCType("layout", OptionalCType(BaseCType(layoutT))):
            try:
                options = direct_solve(options_ctype)
                return f"{options}.layout_opt()"
            except UnsatError:
                out_tensor = direct_solve(out_tensor_ctype)
                return f"{out_tensor}.layout()"

        elif goal == NamedCType("device", OptionalCType(BaseCType(deviceT))):
            try:
                options = direct_solve(options_ctype)
                return f"{options}.device_opt()"
            except UnsatError:
                out_tensor = direct_solve(out_tensor_ctype)
                return f"{out_tensor}.device()"

        elif goal == NamedCType("pin_memory", OptionalCType(BaseCType(boolT))):
            try:
                options = direct_solve(options_ctype)
                return f"{options}.pinned_memory_opt()"
            except UnsatError:
                # If we're calling a factory op from its out= variant,
                # We don't actually care about the value of pin_memory.
                out_tensor = direct_solve(out_tensor_ctype)
                return "c10::nullopt"

        # We can always do translations from value types to reference types, like vector<int> -> IntArrayRef
        elif goal.type == BaseCType(intArrayRefT):
            try:
                return direct_solve(NamedCType(goal.name, longVec_ctype))
            except UnsatError:
                # We can also go SymIntArrayRef -> IntArrayRef
                symIntArrayRef_type = direct_solve(
                    NamedCType(goal.name, BaseCType(symIntArrayRefT)))
                return f"c10::asIntArrayRefSlow({symIntArrayRef_type})"
        elif goal.type == BaseCType(symIntArrayRefT):
            return direct_solve(NamedCType(goal.name, longSymVec_ctype))
        elif goal.type == BaseCType(longT):
            symInt_type = direct_solve(
                NamedCType(goal.name, BaseCType(SymIntT)))
            return f"{symInt_type}.expectInt()"
        elif goal.type == BaseCType(optionalIntArrayRefT):
            return direct_solve(NamedCType(goal.name, optionalLongVec_ctype))
        elif goal.type == BaseCType(optionalScalarRefT):
            return direct_solve(NamedCType(goal.name, optionalScalar_ctype))
        elif goal.type == BaseCType(optionalTensorRefT):
            return direct_solve(NamedCType(goal.name, optionalTensor_ctype))

        # Note [translation from C++ reference to value types]
        # The below cases are all for when we have an argument with a reference type,
        # and a corresponding goal with a value type.
        # These are needed when we populate the inputs to a lambda capture and we need
        # to guarantee the lifetime of each captured argument.
        # We guard it with an explicit kwarg because converting to a value type is expensive
        # (O(n)) to convert from IntArrayRef to vector<int>),
        # so the caller of translate() should be explicit that they need it.
        if allow_expensive_conversions:
            if goal.type == VectorCType(BaseCType(longT)):
                intArrayRef_ctype = NamedCType(goal.name,
                                               BaseCType(intArrayRefT))
                argname = direct_solve(intArrayRef_ctype)
                return f"{argname}.vec()"
            if goal.type == VectorCType(BaseCType(SymIntT)):
                symIntArrayRef_ctype = NamedCType(goal.name,
                                                  BaseCType(symIntArrayRefT))
                argname = direct_solve(symIntArrayRef_ctype)
                return f"{argname}.vec()"
            elif goal.type == OptionalCType(VectorCType(BaseCType(longT))):
                optionalIntArrayRef_ctype = NamedCType(
                    goal.name, BaseCType(optionalIntArrayRefT))
                argname = direct_solve(optionalIntArrayRef_ctype)
                return f"{argname}.has_value() ? c10::make_optional({argname}->vec()) : c10::nullopt"
            elif goal.type == OptionalCType(BaseCType(scalarT)):
                optionalScalarRef_ctype = NamedCType(
                    goal.name, BaseCType(optionalScalarRefT))
                argname = direct_solve(optionalScalarRef_ctype)
                return f"{argname}.has_value() ? c10::make_optional({argname}) : c10::nullopt"
            elif goal.type == OptionalCType(BaseCType(scalarT)):
                optionalTensorRef_ctype = NamedCType(
                    goal.name, BaseCType(optionalTensorRefT))
                argname = direct_solve(optionalTensorRef_ctype)
                return f"{argname}.has_value() ? c10::make_optional({argname}) : c10::nullopt"
            # Technically, we also need to handle cases of C++ containers holding reference types.
            # But there currently aren't any ops that require lambda capture codegen
            # With arguments like std::vector<IntArrayRef>.
            # If that changes, we'll have to add the translation here.

        # We allow const casting on tensors, since const-correctness is a bit broken for at::Tensor.
        # We could probably generalize this to non-tensor types too.
        if goal.type == MutRefCType(BaseCType(tensorT)):
            const_ref_tensor_ctype = NamedCType(
                goal.name, ConstRefCType(BaseCType(tensorT)))
            argname = direct_solve(const_ref_tensor_ctype)
            return f"const_cast<Tensor&>({argname})"

        unsat(goal)

    return [Expr(solve(g, direct=False), g) for g in goal_ctypes]
Exemplo n.º 5
0
    def solve(goal: NamedCType, *, direct: bool) -> str:
        def direct_solve(goal: NamedCType) -> str:
            return solve(goal, direct=True)

        if goal in ctx:
            # Trivial
            return ctx[goal]

        # const & is satisfied with mutable &
        if isinstance(goal.type, ConstRefCType):
            try:
                # WARNING: not strictly decreasing; be careful not
                # to add a direct conversion that goes satisfies
                # mutable& with const&
                return solve(NamedCType(goal.name,
                                        MutRefCType(goal.type.elem)),
                             direct=direct)
            except UnsatError:
                pass

        # mutable & is satisfied with value
        if isinstance(goal.type, MutRefCType):
            try:
                return solve(NamedCType(goal.name, goal.type.elem),
                             direct=direct)
            except UnsatError:
                pass

        if direct:
            unsat(goal)

        # For now, all of these rules are mutually exclusive.
        if goal == NamedCType("memory_format",
                              OptionalCType(BaseCType(memoryFormatT))):
            memory_format = direct_solve(
                NamedCType(
                    SpecialArgName.possibly_redundant_memory_format,
                    OptionalCType(BaseCType(memoryFormatT)),
                ))
            # No need to join "memory_format" and "options" if the target API takes "options" directly.
            # Otherwise it will cause the redundant memory_format error.
            if options_ctype in goal_ctypes:
                return memory_format
            try:
                options = direct_solve(options_ctype)
                return f"c10::impl::check_tensor_options_and_extract_memory_format({options}, {memory_format})"
            except UnsatError:
                return memory_format
        elif goal == NamedCType("options", BaseCType(tensorOptionsT)):
            dtype = direct_solve(
                NamedCType("dtype", OptionalCType(BaseCType(scalarTypeT))))
            pin_memory = direct_solve(
                NamedCType("pin_memory", OptionalCType(BaseCType(boolT))))
            device = direct_solve(
                NamedCType("device", OptionalCType(BaseCType(deviceT))))
            layout = direct_solve(
                NamedCType("layout", OptionalCType(BaseCType(layoutT))))
            return f"TensorOptions().dtype({dtype}).layout({layout}).device({device}).pinned_memory({pin_memory})"

        elif goal == NamedCType("dtype",
                                OptionalCType(BaseCType(scalarTypeT))):
            try:
                options = direct_solve(options_ctype)
                return f"optTypeMetaToScalarType({options}.dtype_opt())"
            except UnsatError:
                out_tensor = direct_solve(out_tensor_ctype)
                return f"{out_tensor}.scalar_type()"

        elif goal == NamedCType("layout", OptionalCType(BaseCType(layoutT))):
            try:
                options = direct_solve(options_ctype)
                return f"{options}.layout_opt()"
            except UnsatError:
                out_tensor = direct_solve(out_tensor_ctype)
                return f"{out_tensor}.layout()"

        elif goal == NamedCType("device", OptionalCType(BaseCType(deviceT))):
            try:
                options = direct_solve(options_ctype)
                return f"{options}.device_opt()"
            except UnsatError:
                out_tensor = direct_solve(out_tensor_ctype)
                return f"{out_tensor}.device()"

        elif goal == NamedCType("pin_memory", OptionalCType(BaseCType(boolT))):
            try:
                options = direct_solve(options_ctype)
                return f"{options}.pinned_memory_opt()"
            except UnsatError:
                # If we're calling a factory op from its out= variant,
                # We don't actually care about the value of pin_memory.
                out_tensor = direct_solve(out_tensor_ctype)
                return "c10::nullopt"

        # We can always do translations from value types to reference types, like vector<int> -> IntArrayRef
        elif goal.type == BaseCType(intArrayRefT):
            try:
                return direct_solve(NamedCType(goal.name, longVec_ctype))
            except UnsatError:
                # We can also go SymIntArrayRef -> IntArrayRef
                symIntArrayRef_type = direct_solve(
                    NamedCType(goal.name, BaseCType(symIntArrayRefT)))
                return f"c10::asIntArrayRefSlow({symIntArrayRef_type})"
        elif goal.type == BaseCType(symIntArrayRefT):
            return direct_solve(NamedCType(goal.name, longSymVec_ctype))
        elif goal.type == BaseCType(longT):
            symInt_type = direct_solve(
                NamedCType(goal.name, BaseCType(SymIntT)))
            return f"{symInt_type}.expectInt()"
        elif goal.type == BaseCType(optionalIntArrayRefT):
            return direct_solve(NamedCType(goal.name, optionalLongVec_ctype))
        elif goal.type == BaseCType(optionalScalarRefT):
            return direct_solve(NamedCType(goal.name, optionalScalar_ctype))
        elif goal.type == BaseCType(optionalTensorRefT):
            return direct_solve(NamedCType(goal.name, optionalTensor_ctype))

        # Note [translation from C++ reference to value types]
        # The below cases are all for when we have an argument with a reference type,
        # and a corresponding goal with a value type.
        # These are needed when we populate the inputs to a lambda capture and we need
        # to guarantee the lifetime of each captured argument.
        # We guard it with an explicit kwarg because converting to a value type is expensive
        # (O(n)) to convert from IntArrayRef to vector<int>),
        # so the caller of translate() should be explicit that they need it.
        if allow_expensive_conversions:
            if goal.type == VectorCType(BaseCType(longT)):
                intArrayRef_ctype = NamedCType(goal.name,
                                               BaseCType(intArrayRefT))
                argname = direct_solve(intArrayRef_ctype)
                return f"{argname}.vec()"
            if goal.type == VectorCType(BaseCType(SymIntT)):
                symIntArrayRef_ctype = NamedCType(goal.name,
                                                  BaseCType(symIntArrayRefT))
                argname = direct_solve(symIntArrayRef_ctype)
                return f"{argname}.vec()"
            elif goal.type == OptionalCType(VectorCType(BaseCType(longT))):
                optionalIntArrayRef_ctype = NamedCType(
                    goal.name, BaseCType(optionalIntArrayRefT))
                argname = direct_solve(optionalIntArrayRef_ctype)
                return f"{argname}.has_value() ? c10::make_optional({argname}->vec()) : c10::nullopt"
            elif goal.type == OptionalCType(BaseCType(scalarT)):
                optionalScalarRef_ctype = NamedCType(
                    goal.name, BaseCType(optionalScalarRefT))
                argname = direct_solve(optionalScalarRef_ctype)
                return f"{argname}.has_value() ? c10::make_optional({argname}) : c10::nullopt"
            elif goal.type == OptionalCType(BaseCType(scalarT)):
                optionalTensorRef_ctype = NamedCType(
                    goal.name, BaseCType(optionalTensorRefT))
                argname = direct_solve(optionalTensorRef_ctype)
                return f"{argname}.has_value() ? c10::make_optional({argname}) : c10::nullopt"
            # Technically, we also need to handle cases of C++ containers holding reference types.
            # But there currently aren't any ops that require lambda capture codegen
            # With arguments like std::vector<IntArrayRef>.
            # If that changes, we'll have to add the translation here.

        # We allow const casting on tensors, since const-correctness is a bit broken for at::Tensor.
        # We could probably generalize this to non-tensor types too.
        if goal.type == MutRefCType(BaseCType(tensorT)):
            const_ref_tensor_ctype = NamedCType(
                goal.name, ConstRefCType(BaseCType(tensorT)))
            argname = direct_solve(const_ref_tensor_ctype)
            return f"const_cast<Tensor&>({argname})"

        unsat(goal)
Exemplo n.º 6
0
    def gen_one(self, f: NativeFunction) -> Optional[str]:
        assert not f.manual_kernel_registration

        if (self.target is Target.REGISTRATION
                and not self.selector.is_native_function_selected(f)):
            return None

        # TODO: Now, there is something interesting going on here.  In the code below,
        # we generate CompositeExplicitAutograd implementations of functional and inplace
        # based on the out implementation.  But in fact, out is definable by
        # functional too (just not very efficiently), and this is honestly the
        # MORE likely situation for a backend implementor.  How do we pick?
        # Well, taking a page from Haskell type classes and default methods,
        # we could conceivably register a circular definition (out in terms
        # of functional, and functional in terms of out) and just require
        # someone to implement one or the other.  We'd have to do a little bit
        # of work to not register one of these "weak" definitions unless there
        # is a strong definition somewhere in the DAG!  So it's not implemented yet.
        if (self.backend_index.dispatch_key
                == DispatchKey.CompositeExplicitAutograd
                and f.func.kind() is SchemaKind.out):
            # Never generate a default implementation for out, that's what you
            # have to define as a backend implementor
            return None

        # Note [Direct dispatch bindings]
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Signature of the non-dispatched function we'll expose in a header
        # (e.g., at::cpu::add).  We don't generate methods (TODO: do this
        # when CPUTensor class is a thing); nor do we generate fallback
        # bindings for manual_cpp_binding functions.
        cpp_sig_group = CppSignatureGroup.from_native_function(
            f, method=False, fallback_binding=False)

        # Signature of the wrapper function we'll register to the dispatcher
        sig = NativeSignature(f.func, prefix="wrapper_")

        if self.target is Target.NAMESPACED_DECLARATION:
            result = f"TORCH_API {cpp_sig_group.signature.decl()};\n"
            if cpp_sig_group.faithful_signature is not None:
                result += f"TORCH_API {cpp_sig_group.faithful_signature.decl()};\n"
            return result

        elif self.target is Target.NAMESPACED_DEFINITION:

            def generate_defn(cpp_sig: CppSignature) -> str:
                return f"""
{cpp_sig.defn()} {{
return {sig.name()}({', '.join(e.expr for e in translate(cpp_sig.arguments(), sig.arguments()))});
}}
"""

            result = generate_defn(cpp_sig_group.signature)
            if cpp_sig_group.faithful_signature is not None:
                result += generate_defn(cpp_sig_group.faithful_signature)
            return result

        elif self.target is Target.ANONYMOUS_DEFINITION:

            k = f.func.kind()

            # Construct the body of the wrapper function with signature sig
            sig_body = []
            # We'll use context to keep track of any variables we've brought
            # into scope while generating code
            context: List[Union[Binding, Expr]] = list(sig.arguments())

            # Initialize the class corresponding to this structured
            # operator; feeding it the output argument(s) if it is known
            if self.backend_index.dispatch_key is DispatchKey.Meta:
                class_name = f"structured_{meta.name(self.g)}_meta_{k.name}"
                parent_class = f"at::meta::structured_{meta.name(self.g)}"
            elif (self.backend_index.dispatch_key is
                  DispatchKey.CompositeExplicitAutograd):
                # TODO: dedup this branch
                class_name = f"structured_{meta.name(self.g)}_default_backend_{k.name}"
                parent_class = f"at::meta::structured_{meta.name(self.g)}"
            else:
                metadata = self.backend_index.get_kernel(self.g)
                assert metadata is not None
                class_name = f"structured_{metadata.kernel}_{k.name}"
                parent_class = f"{self.cpp_namespace}::structured_{metadata.kernel}"

            if self.backend_index.device_guard:
                device_check_args = itertools.chain(
                    f.func.arguments.out, f.func.arguments.flat_positional)
                sig_body.append(
                    RegisterDispatchKey.gen_device_check(
                        f.device_check, list(device_check_args), sig.name()))

            if k is SchemaKind.functional:
                sig_body.append(f"{class_name} op;")
            elif k is SchemaKind.inplace:
                sig_body.append(f"{class_name} op(self);")
            elif k is SchemaKind.out:
                out_args_str = ", ".join(a.name for a in f.func.arguments.out)
                sig_body.append(f"{class_name} op({out_args_str});")

            # Translate the input native arguments into structured
            # arguments for the meta call
            meta_exprs = ", ".join(e.expr for e in translate(
                context, structured.meta_arguments(self.g), method=False))

            if self.g.out.precomputed:
                # If this function group has precomputed elements, the meta function
                # returns a struct containing them which must be saved so that it
                # can be unpacked when generating code to call the impl.
                sig_body.append(f"auto precompute = op.meta({meta_exprs});")

                # Put all of the contents of the precompute struct into the context
                # so that translate will be able to return the correct args for the
                # call to the impl.
                precomputed_values = [
                    *self.g.out.precomputed.replace.values(),
                    self.g.out.precomputed.add,
                ]
                for precomputed_elems in precomputed_values:
                    for arg in precomputed_elems:
                        context.append(
                            Expr(
                                expr=f"precompute.{arg.name}",
                                type=structured.argument_type(arg,
                                                              binds=arg.name),
                            ))

                # Add a use of the precompute struct so FB internal compilers don't
                # complain that there is an unused variable.
                sig_body.append("(void)precompute;")
            else:
                sig_body.append(f"op.meta({meta_exprs});")

            # After running meta, op.outputs_ is guaranteed to be valid;
            # add it to the context
            out_args = structured.out_arguments(self.g)
            maybe_star = "*" if k is SchemaKind.functional else ""
            for i, out_arg in enumerate(out_args):
                assert ConstRefCType(BaseCType(tensorT)) == out_arg.nctype.type
                context.append(
                    Expr(
                        expr=f"{maybe_star}op.outputs_[{i}]",
                        # TODO: Stop hardcoding that the output type is a Tensor.  Note
                        # that for the codegen here this is fine because outputs_ is
                        # hardcoded to be tensor already
                        type=NamedCType(out_arg.nctype.name,
                                        MutRefCType(BaseCType(tensorT))),
                    ))

            # With the expanded context, do the impl call (if not a meta
            # function)
            if self.backend_index.dispatch_key == DispatchKey.CompositeExplicitAutograd:
                # TODO: https://github.com/pytorch/pytorch/issues/53023
                out_sig_group = CppSignatureGroup.from_native_function(
                    self.g.out,
                    method=False,
                    fallback_binding=f.manual_cpp_binding)
                out_sig = out_sig_group.most_faithful_signature()
                api_name = out_sig.name()
                out_exprs = ", ".join(e.expr for e in translate(
                    context, out_sig.arguments(), method=False))
                # TODO: I think this means structured won't work with method
                # only functions (but maybe you're saved by faithful? iunno.)
                # NB: Originally I wrote this as an at::redispatch call, but
                # I got in trouble because that meant I needed a DispatchKeySet
                # in the wrapper function, which meant I needed a DispatchKeySet
                # in the DispatchKeyFunctions declarations, but the defined API
                # there does NOT permit a dispatch key set.  I think you can
                # probably unwind this by calling some function to do the TLS
                # fetch and get the DispatchKeySet when you don't have it, but
                # I didn't do it for this version
                sig_body.append(f"at::{api_name}({out_exprs});")
            elif self.backend_index.dispatch_key != DispatchKey.Meta:
                impl_exprs = ", ".join(e.expr for e in translate(
                    context, structured.impl_arguments(self.g), method=False))
                sig_body.append(f"op.impl({impl_exprs});")

            # Destructively return the final tensors
            # TODO: Do this in translate instead
            if k is SchemaKind.functional:
                if len(f.func.returns) == 1:
                    ret_expr = "std::move(op.outputs_[0]).take()"  # small optimization
                else:
                    moved = ", ".join(f"std::move(op.outputs_[{i}]).take()"
                                      for i in range(len(f.func.returns)))
                    ret_expr = f"std::make_tuple({moved})"
            elif k is SchemaKind.inplace:
                ret_expr = "self"
            elif k is SchemaKind.out:
                if len(f.func.returns) == 1:
                    ret_expr = f.func.arguments.out[0].name
                else:
                    refs = ", ".join(a.name for a in f.func.arguments.out)
                    ret_expr = f"std::forward_as_tuple({refs})"
            sig_body.append(f"return {ret_expr};")

            sig_body_str = "\n".join(sig_body)

            # For an overview of what this template code looks like, see
            # https://github.com/pytorch/rfcs/pull/9
            return f"""\
{self.gen_class(
f, k,
class_name=class_name,
parent_class=parent_class,
generate_super=self.g.out.structured_inherits is not None
)}

{sig.defn()} {{
{sig_body_str}
}}
"""

        elif self.target is Target.REGISTRATION:
            return f'm.impl("{f.func.name}", TORCH_FN({sig.name()}));'
        else:
            assert_never(self.target)
            # Silence mypy's "Missing return statement" error
            return None
Exemplo n.º 7
0
    def save_var(var: SavedAttribute, is_output: bool) -> None:
        name = var.nctype.name
        type = var.nctype.type
        should_append_getsetdef = True
        should_append_raw_getsetdef = False

        if (
            type == BaseCType(tensorT)
            or type == OptionalCType(BaseCType(tensorT))
            or type == MutRefCType(OptionalCType(BaseCType(tensorT)))
            or (type == BaseCType(scalarT) and is_output)
        ):
            saved_variables.append(f"SavedVariable {name}_;")
            release_variables.append(f"{name}_.reset_data();")
            ptr = "shared_from_this()" if is_output else ""
            unpack.append(f"auto {name} = {name}_.unpack({ptr});")
            getter_definitions.append(
                GETTER_DEFINITION_SAVEDVAR.substitute(
                    op=info.op, name=name, body=GETTER_BODY_SAVEDVAR
                )
            )
            getter_definitions.append(
                GETTER_DEFINITION_RAW_SAVEDVAR.substitute(
                    op=info.op, name=name, body=GETTER_BODY_RAW_SAVEDVAR
                )
            )
            should_append_raw_getsetdef = True
        elif type == BaseCType(tensorListT):
            saved_variables.append(f"std::vector<SavedVariable> {name}_;")
            saved_variables.append(f"bool {name}_released_ = false;")
            # Just clear() is sufficient, we don't need to loop and clear each variable.
            # Because the SavedVariable owns a tensor and a grad_fn, removing the SavedVariable makes them go away as well.
            release_variables.append(f"{name}_.clear();")
            release_variables.append(f"{name}_released_ = true;")
            unpack.append(f"auto {name} = unpack_list({name}_);")
            asserts.append(f"TORCH_CHECK(!{name}_released_, ERR_BACKWARD_TWICE);")
            getter_definitions.append(
                GETTER_DEFINITION_VEC_SAVEDVAR.substitute(
                    op=info.op, name=name, body=GETTER_BODY_VEC_SAVEDVAR
                )
            )
            getter_definitions.append(
                GETTER_DEFINITION_RAW_VEC_SAVEDVAR.substitute(
                    op=info.op, name=name, body=GETTER_BODY_RAW_VEC_SAVEDVAR
                )
            )
            should_append_raw_getsetdef = True
        elif type == ListCType(OptionalCType(BaseCType(tensorT))):
            saved_variables.append(f"std::vector<SavedVariable> {name}_;")
            saved_variables.append(f"bool {name}_released_ = false;")
            # Just clear() is sufficient, we don't need to loop and clear each variable.
            # Because the SavedVariable owns a tensor and a grad_fn, removing the SavedVariable makes them go away as well.
            release_variables.append(f"{name}_.clear();")
            release_variables.append(f"{name}_released_ = true;")
            unpack.append(f"auto {name} = unpack_opt_list({name}_);")
            asserts.append(f"TORCH_CHECK(!{name}_released_, ERR_BACKWARD_TWICE);")
            getter_definitions.append(
                GETTER_DEFINITION_VEC_SAVEDVAR.substitute(
                    op=info.op, name=name, body=GETTER_BODY_VEC_SAVEDVAR
                )
            )
            getter_definitions.append(
                GETTER_DEFINITION_RAW_VEC_SAVEDVAR.substitute(
                    op=info.op, name=name, body=GETTER_BODY_RAW_VEC_SAVEDVAR
                )
            )
            should_append_raw_getsetdef = True
        elif type == BaseCType(intArrayRefT):
            saved_variables.append(f"std::vector<int64_t> {name};")
            getter_definitions.append(
                GETTER_DEFINITION.substitute(
                    op=info.op, name=name, body=GETTER_BODY_ARRAYREF_LONG
                )
            )
        elif type == BaseCType(optionalIntArrayRefT):
            saved_variables.append(f"c10::OptionalArray<int64_t> {name};")
            getter_definitions.append(
                GETTER_DEFINITION_OPT_ARRAYREF.substitute(
                    op=info.op, name=name, body=GETTER_BODY_ARRAYREF_LONG
                )
            )
        elif type == OptionalCType(BaseCType(intArrayRefT)):
            saved_variables.append(f"c10::OptionalArray<int64_t> {name};")
            getter_definitions.append(
                GETTER_DEFINITION_OPT_ARRAYREF.substitute(
                    op=info.op, name=name, body=GETTER_BODY_ARRAYREF_LONG
                )
            )
        elif type == OptionalCType(ArrayRefCType(BaseCType(doubleT))):
            saved_variables.append(f"c10::OptionalArray<double> {name};")
            getter_definitions.append(
                GETTER_DEFINITION_OPT_ARRAYREF.substitute(
                    op=info.op, name=name, body=GETTER_BODY_ARRAYREF_DOUBLE
                )
            )
        elif type == BaseCType(longT):
            saved_variables.append(f"{type.cpp_type()} {name} = 0;")
            getter_definitions.append(
                GETTER_DEFINITION.substitute(
                    op=info.op, name=name, body=GETTER_BODY_INT64_T
                )
            )
        elif type == BaseCType(stringT):
            saved_variables.append(f"std::string {name};")
            getter_definitions.append(
                GETTER_DEFINITION.substitute(
                    op=info.op, name=name, body=GETTER_BODY_STRING
                )
            )
        elif type == OptionalCType(BaseCType(stringT)):
            saved_variables.append(f"c10::optional<std::string> {name};")
            getter_definitions.append(
                GETTER_DEFINITION_OPT.substitute(
                    op=info.op, name=name, body=GETTER_BODY_STRING
                )
            )
        else:
            saved_variables.append(f"{type.cpp_type()} {name};")

            if type in MISC_GETTER_DEFS:
                getter_def, body = MISC_GETTER_DEFS[type]
                getter_definitions.append(
                    getter_def.substitute(op=info.op, name=name, body=body)
                )
            else:
                # Types we don't expose python bindings to yet:
                #   TypeAndSize, at::ScalarType, TensorOptions, TensorGeometry,
                #   std::vector<std::vector<int64_t>>, std::vector<at::ScalarType>
                should_append_getsetdef = False

        if should_append_getsetdef:
            py_getsetdef_structs.append(
                PY_GETSETDEF_STRUCT.substitute(op=info.op, name=name)
            )
        if should_append_raw_getsetdef:
            py_getsetdef_structs.append(
                PY_RAW_GETSETDEF_STRUCT.substitute(op=info.op, name=name)
            )