Exemplo n.º 1
0
def argument(a: Union[Argument, SelfArgument, TensorOptionsArguments], *,
             is_out: bool) -> List[Binding]:
    # Ideally, we NEVER default native functions.  However, there are a number
    # of functions that call native:: directly and rely on the defaulting
    # existing.  So for BC, we generate defaults for non-out variants (but not
    # for out variants, where it is impossible to generate an appropriate
    # default)
    should_default = not is_out
    if isinstance(a, Argument):
        default: Optional[str] = None
        if should_default and a.default is not None:
            default = cpp.default_expr(a.default, a.type)
        return [
            Binding(
                nctype=argument_type(a, binds=a.name),
                name=a.name,
                default=default,
                argument=a,
            )
        ]
    elif isinstance(a, SelfArgument):
        # Erase SelfArgument from the distinction
        return argument(a.argument, is_out=is_out)
    elif isinstance(a, TensorOptionsArguments):
        default = None
        if should_default:
            default = "{}"
        # TODO: Not sure why the arguments assigned here are for
        # TensorOptionsArguments and not the constituent pieces.  It seems
        # to matter
        return [
            Binding(
                nctype=NamedCType("dtype",
                                  OptionalCType(BaseCType(scalarTypeT))),
                name="dtype",
                default=default,
                argument=a,
            ),
            Binding(
                nctype=NamedCType("layout", OptionalCType(BaseCType(layoutT))),
                name="layout",
                default=default,
                argument=a,
            ),
            Binding(
                nctype=NamedCType("device", OptionalCType(BaseCType(deviceT))),
                name="device",
                default=default,
                argument=a,
            ),
            Binding(
                nctype=NamedCType("pin_memory",
                                  OptionalCType(BaseCType(boolT))),
                name="pin_memory",
                default=default,
                argument=a,
            ),
        ]
    else:
        assert_never(a)
Exemplo n.º 2
0
def valuetype_type(
    t: Type, *, binds: ArgName, remove_non_owning_ref_types: bool = False
) -> Optional[NamedCType]:
    if isinstance(t, BaseType):
        if t.name == BaseTy.Tensor or t.name == BaseTy.Scalar:
            return None
        if remove_non_owning_ref_types:
            if t.name == BaseTy.str:
                raise AssertionError(
                    "string ref->value conversion: not implemented yet"
                )
        # All other BaseType currently map directly to BaseCppTypes.
        return NamedCType(binds, BaseCType(BaseTypeToCppMapping[t.name]))
    elif isinstance(t, OptionalType):
        elem = valuetype_type(t.elem, binds=binds)
        if elem is None:
            return None
        return NamedCType(binds, OptionalCType(elem.type))
    elif isinstance(t, ListType):
        if str(t.elem) == "bool":
            assert t.size is not None
            return NamedCType(binds, ArrayCType(BaseCType(boolT), t.size))
        else:
            return None
    else:
        raise AssertionError(f"unrecognized type {repr(t)}")
Exemplo n.º 3
0
def ufunc_type(t: Type, *, binds: ArgName, compute_t: CType) -> NamedCType:
    r = cpp.valuetype_type(t, binds=binds, symint=False)
    if r is not None:
        return r

    if t == BaseType(BaseTy.Scalar):
        return NamedCType(binds, compute_t)
    elif t == BaseType(BaseTy.Tensor):
        return NamedCType(binds, compute_t)
    else:
        raise AssertionError(f"unrecognized type {repr(t)}")
Exemplo n.º 4
0
def ufunctor_ctor_type(t: Type, *, binds: ArgName, scalar_t: BaseCppType) -> NamedCType:
    r = cpp.valuetype_type(t, binds=binds, symint=False)
    if r is not None:
        return r

    if t == BaseType(BaseTy.Scalar):
        return NamedCType(binds, BaseCType(opmath_type(scalar_t)))
    elif t == BaseType(BaseTy.Tensor):
        return NamedCType(binds, BaseCType(opmath_type(scalar_t)))
    else:
        raise AssertionError(f"unrecognized type {repr(t)}")
Exemplo n.º 5
0
def ufunctor_apply_type(
    t: Type, *, binds: ArgName, scalar_t: BaseCppType
) -> NamedCType:
    if t == BaseType(BaseTy.Tensor):
        return NamedCType(binds, BaseCType(scalar_t))
    else:
        raise AssertionError(f"unrecognized type {repr(t)}")
Exemplo n.º 6
0
def argumenttype_type(t: Type, *, mutable: bool, binds: ArgName) -> NamedCType:
    if str(t) == "Tensor?":
        tensor_type: OptionalCType = OptionalCType(BaseCType(tensorT))
        if mutable and not local.use_const_ref_for_mutable_tensors():
            return NamedCType(binds, MutRefCType(tensor_type))
        else:
            return NamedCType(binds, ConstRefCType(tensor_type))
    elif str(t) == "Tensor?[]":
        return NamedCType(
            binds, ConstRefCType(ListCType(OptionalCType(BaseCType(tensorT)))))
    elif str(t) == "Scalar":
        return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
    elif str(t) == "Scalar?":
        return NamedCType(binds,
                          ConstRefCType(OptionalCType(BaseCType(scalarT))))
    return cpp.argumenttype_type(t, mutable=mutable, binds=binds)
Exemplo n.º 7
0
def dispatchstub_type(t: Type, *, binds: ArgName) -> Optional[NamedCType]:
    r = cpp.valuetype_type(t, binds=binds)
    if r is not None:
        return r

    if t == BaseType(BaseTy.Scalar):
        return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
    elif t == BaseType(BaseTy.Tensor):
        return None
    else:
        raise AssertionError(f"unrecognized type {repr(t)}")
Exemplo n.º 8
0
def argumenttype_type(t: Type, *, mutable: bool, binds: ArgName) -> NamedCType:
    # If it's a value type, do the value type translation
    r = cpp.valuetype_type(t, binds=binds)
    if r is not None:
        return r

    if isinstance(t, BaseType):
        if t.name == BaseTy.Tensor:
            return NamedCType(binds, ConstRefCType(BaseCType(tensorT)))
        elif t.name == BaseTy.Scalar:
            return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
        else:
            raise AssertionError(f"base type should have been value type {t}")
    elif isinstance(t, OptionalType):
        if t.elem == BaseType(BaseTy.Tensor):
            return NamedCType(binds, BaseCType(optionalTensorRefT))
        elif t.elem == BaseType(BaseTy.Scalar):
            return NamedCType(binds, BaseCType(optionalScalarRefT))
        elif isinstance(t.elem, ListType) and str(t.elem.elem) == "int":
            return NamedCType(binds, BaseCType(optionalIntArrayRefT))
        elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
        return NamedCType(binds, OptionalCType(elem.type))
    elif isinstance(t, ListType):
        if t.elem == BaseType(BaseTy.Tensor):
            return NamedCType(binds, BaseCType(iTensorListRefT))
        # TODO: delete these special cases; see torchgen.api.cpp--these
        # must be changed in tandem, but there are problems; see
        # https://github.com/pytorch/pytorch/pull/51485
        elif str(t.elem) == "int":
            return NamedCType(binds, BaseCType(intArrayRefT))
        elif str(t.elem) == "Dimname":
            return NamedCType(binds, BaseCType(dimnameListT))
        elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
        return NamedCType(binds, ArrayRefCType(elem.type))
    else:
        raise AssertionError(f"unrecognized type {repr(t)}")
Exemplo n.º 9
0
def create_derivative(
    f: NativeFunction,
    formula: str,
    var_names: Tuple[str, ...],
    available_named_gradients: Sequence[str],
) -> Derivative:
    original_formula = formula
    arguments: List[NamedCType] = [
        a.nctype.remove_const_ref() for a in cpp_arguments(f)
    ]

    return_names = tuple(n if n != "self" else "result"
                         for n in cpp.return_names(f))
    return_types = tuple(
        cpp.return_type(r).remove_const_ref() for r in f.func.returns)

    named_returns = [
        NamedCType(name, type)
        for name, type in zip(return_names, return_types)
    ]

    formula, saved_inputs = saved_variables(formula, arguments, var_names)
    formula, saved_outputs = saved_variables(formula, named_returns, var_names)

    used_named_gradients = {
        name
        for name in available_named_gradients
        if re.search(IDENT_REGEX.format(name), formula)
    }

    # Check that the referenced derivatives in the formula are in bounds
    for i in used_gradient_indices(formula):
        if i >= len(f.func.returns):
            raise RuntimeError(
                f"Out of bounds grads access: derivative formula for {cpp.name(f.func)} "
                f"used grads[{i}], but the forward only returns {len(f.func.returns)} outputs."
            )

    return Derivative(
        formula=formula,
        original_formula=original_formula,
        var_names=var_names,
        saved_inputs=saved_inputs,
        saved_outputs=saved_outputs,
        named_gradients=used_named_gradients,
    )
Exemplo n.º 10
0
def compute_ufunc_cuda_dtype_body(
    g: NativeFunctionsGroup,
    dtype: ScalarType,
    inner_loops: Dict[UfuncKey, UfunctorSignature],
    parent_ctx: Sequence[Binding],
) -> str:
    body = "using opmath_t = at::opmath_type<scalar_t>;"
    body += "if (false) {}\n"  # for ease of codegen
    for config in BinaryScalarSpecializationConfigs:
        if config.ufunc_key not in inner_loops:
            continue
        ufunctor_sig = inner_loops[config.ufunc_key]
        scalar_idx = config.scalar_idx + 1
        # Make a copy and at the same time widen the type (not permissible
        # without copy; we don't want to mutate the input argument anyway)
        ctx: List[Union[Expr, Binding]] = list(parent_ctx)
        ctx.append(
            Expr(
                expr=f"iter.scalar_value<opmath_t>({scalar_idx})",
                type=NamedCType(config.ctor_tensor, BaseCType(opmath_t)),
            )
        )
        ufunctor_ctor_exprs_str = ", ".join(
            a.expr for a in translate(ctx, ufunctor_sig.arguments().ctor)
        )

        # NB: ufunctor must be allocated before iter.remove_operand is called,
        # as it relies on iter
        body += f"""\
else if (iter.is_cpu_scalar({scalar_idx})) {{
  {ufunctor_sig.name}<scalar_t> ufunctor({ufunctor_ctor_exprs_str});
  iter.remove_operand({scalar_idx});
  gpu_kernel(iter, ufunctor);
}}"""

    ufunctor_sig = inner_loops[UfuncKey.CUDAFunctor]
    ufunctor_ctor_exprs_str = ", ".join(
        a.expr for a in translate(parent_ctx, ufunctor_sig.arguments().ctor)
    )
    body += f"""
else {{
  gpu_kernel(iter, {ufunctor_sig.name}<scalar_t>({ufunctor_ctor_exprs_str}));
}}
    """
    return body
Exemplo n.º 11
0
    def __init__(self,
                 func: FunctionSchema,
                 properties: Optional[LazyIrProperties] = None):
        if properties:
            self.properties = properties

        positional_args: List[LazyArgument] = []
        for arg_field in [
                "pre_self_positional", "self_arg", "post_self_positional"
        ]:
            if arg_field == "self_arg" and func.arguments.self_arg is not None:
                arg = getattr(func.arguments, "self_arg").argument
                positional_args.append(LazyArgument(arg, self.properties))
            elif getattr(func.arguments, arg_field) is not None:
                positional_args.extend(
                    LazyArgument(arg, self.properties)
                    for arg in getattr(func.arguments, arg_field))
        self.positional_args = tuple(positional_args)

        keyword_args: List[LazyArgument] = []
        for arg_field in [
                "pre_tensor_options_kwarg_only",
                "tensor_options",
                "post_tensor_options_kwarg_only",
                "out",
        ]:
            curr_args = getattr(func.arguments, arg_field)
            if curr_args is not None:
                if isinstance(curr_args, TensorOptionsArguments):
                    curr_args = curr_args.all()
                for arg in curr_args:
                    if isGeneratorType(arg.type):
                        assert (self.generator_arg is None
                                ), "We expect there is only one generator arg"
                        self.generator_arg = NamedCType(arg.name, arg.type)
                keyword_args.extend(
                    LazyArgument(arg, self.properties) for arg in curr_args)
        self.keyword_args = tuple(keyword_args)
        self.name = func.name
        self.returns = func.returns
Exemplo n.º 12
0
def argument(
    a: Union[Argument, TensorOptionsArguments, SelfArgument],
    *,
    cpp_no_default_args: Set[str],
    method: bool,
    faithful: bool,
    has_tensor_options: bool,
) -> List[Binding]:
    def sub_argument(
        a: Union[Argument, TensorOptionsArguments, SelfArgument]
    ) -> List[Binding]:
        return argument(
            a,
            cpp_no_default_args=cpp_no_default_args,
            method=method,
            faithful=faithful,
            has_tensor_options=has_tensor_options,
        )

    if isinstance(a, Argument):
        binds: ArgName
        if a.name == "memory_format" and has_tensor_options:
            binds = SpecialArgName.possibly_redundant_memory_format
        else:
            binds = a.name
        default: Optional[str] = None
        if a.name not in cpp_no_default_args and a.default is not None:
            default = default_expr(a.default, a.type)
        return [
            Binding(
                nctype=argument_type(a, binds=binds),
                name=a.name,
                default=default,
                argument=a,
            )
        ]
    elif isinstance(a, TensorOptionsArguments):
        if faithful:
            return (
                sub_argument(a.dtype)
                + sub_argument(a.layout)
                + sub_argument(a.device)
                + sub_argument(a.pin_memory)
            )
        else:
            default = None
            # Enforced by NativeFunction.__post_init__
            assert "options" not in cpp_no_default_args
            if all(x.default == "None" for x in a.all()):
                default = "{}"
            elif a.dtype.default == "long":
                default = "at::kLong"  # TODO: this is wrong
            return [
                Binding(
                    nctype=NamedCType("options", BaseCType(tensorOptionsT)),
                    name="options",
                    default=default,
                    argument=a,
                )
            ]
    elif isinstance(a, SelfArgument):
        if method:
            # Caller is responsible for installing implicit this in context!
            return []
        else:
            return sub_argument(a.argument)
    else:
        assert_never(a)
Exemplo n.º 13
0
    def solve(goal: NamedCType, *, direct: bool) -> str:
        def direct_solve(goal: NamedCType) -> str:
            return solve(goal, direct=True)

        if goal in ctx:
            # Trivial
            return ctx[goal]

        # const & is satisfied with mutable &
        if isinstance(goal.type, ConstRefCType):
            try:
                # WARNING: not strictly decreasing; be careful not
                # to add a direct conversion that goes satisfies
                # mutable& with const&
                return solve(NamedCType(goal.name,
                                        MutRefCType(goal.type.elem)),
                             direct=direct)
            except UnsatError:
                pass

        # mutable & is satisfied with value
        if isinstance(goal.type, MutRefCType):
            try:
                return solve(NamedCType(goal.name, goal.type.elem),
                             direct=direct)
            except UnsatError:
                pass

        if direct:
            unsat(goal)

        # For now, all of these rules are mutually exclusive.
        if goal == NamedCType("memory_format",
                              OptionalCType(BaseCType(memoryFormatT))):
            memory_format = direct_solve(
                NamedCType(
                    SpecialArgName.possibly_redundant_memory_format,
                    OptionalCType(BaseCType(memoryFormatT)),
                ))
            # No need to join "memory_format" and "options" if the target API takes "options" directly.
            # Otherwise it will cause the redundant memory_format error.
            if options_ctype in goal_ctypes:
                return memory_format
            try:
                options = direct_solve(options_ctype)
                return f"c10::impl::check_tensor_options_and_extract_memory_format({options}, {memory_format})"
            except UnsatError:
                return memory_format
        elif goal == NamedCType("options", BaseCType(tensorOptionsT)):
            dtype = direct_solve(
                NamedCType("dtype", OptionalCType(BaseCType(scalarTypeT))))
            pin_memory = direct_solve(
                NamedCType("pin_memory", OptionalCType(BaseCType(boolT))))
            device = direct_solve(
                NamedCType("device", OptionalCType(BaseCType(deviceT))))
            layout = direct_solve(
                NamedCType("layout", OptionalCType(BaseCType(layoutT))))
            return f"TensorOptions().dtype({dtype}).layout({layout}).device({device}).pinned_memory({pin_memory})"

        elif goal == NamedCType("dtype",
                                OptionalCType(BaseCType(scalarTypeT))):
            try:
                options = direct_solve(options_ctype)
                return f"optTypeMetaToScalarType({options}.dtype_opt())"
            except UnsatError:
                out_tensor = direct_solve(out_tensor_ctype)
                return f"{out_tensor}.scalar_type()"

        elif goal == NamedCType("layout", OptionalCType(BaseCType(layoutT))):
            try:
                options = direct_solve(options_ctype)
                return f"{options}.layout_opt()"
            except UnsatError:
                out_tensor = direct_solve(out_tensor_ctype)
                return f"{out_tensor}.layout()"

        elif goal == NamedCType("device", OptionalCType(BaseCType(deviceT))):
            try:
                options = direct_solve(options_ctype)
                return f"{options}.device_opt()"
            except UnsatError:
                out_tensor = direct_solve(out_tensor_ctype)
                return f"{out_tensor}.device()"

        elif goal == NamedCType("pin_memory", OptionalCType(BaseCType(boolT))):
            try:
                options = direct_solve(options_ctype)
                return f"{options}.pinned_memory_opt()"
            except UnsatError:
                # If we're calling a factory op from its out= variant,
                # We don't actually care about the value of pin_memory.
                out_tensor = direct_solve(out_tensor_ctype)
                return "c10::nullopt"

        # We can always do translations from value types to reference types, like vector<int> -> IntArrayRef
        elif goal.type == BaseCType(intArrayRefT):
            try:
                return direct_solve(NamedCType(goal.name, longVec_ctype))
            except UnsatError:
                # We can also go SymIntArrayRef -> IntArrayRef
                symIntArrayRef_type = direct_solve(
                    NamedCType(goal.name, BaseCType(symIntArrayRefT)))
                return f"c10::asIntArrayRefSlow({symIntArrayRef_type})"
        elif goal.type == BaseCType(symIntArrayRefT):
            return direct_solve(NamedCType(goal.name, longSymVec_ctype))
        elif goal.type == BaseCType(longT):
            symInt_type = direct_solve(
                NamedCType(goal.name, BaseCType(SymIntT)))
            return f"{symInt_type}.expectInt()"
        elif goal.type == BaseCType(optionalIntArrayRefT):
            return direct_solve(NamedCType(goal.name, optionalLongVec_ctype))
        elif goal.type == BaseCType(optionalScalarRefT):
            return direct_solve(NamedCType(goal.name, optionalScalar_ctype))
        elif goal.type == BaseCType(optionalTensorRefT):
            return direct_solve(NamedCType(goal.name, optionalTensor_ctype))

        # Note [translation from C++ reference to value types]
        # The below cases are all for when we have an argument with a reference type,
        # and a corresponding goal with a value type.
        # These are needed when we populate the inputs to a lambda capture and we need
        # to guarantee the lifetime of each captured argument.
        # We guard it with an explicit kwarg because converting to a value type is expensive
        # (O(n)) to convert from IntArrayRef to vector<int>),
        # so the caller of translate() should be explicit that they need it.
        if allow_expensive_conversions:
            if goal.type == VectorCType(BaseCType(longT)):
                intArrayRef_ctype = NamedCType(goal.name,
                                               BaseCType(intArrayRefT))
                argname = direct_solve(intArrayRef_ctype)
                return f"{argname}.vec()"
            if goal.type == VectorCType(BaseCType(SymIntT)):
                symIntArrayRef_ctype = NamedCType(goal.name,
                                                  BaseCType(symIntArrayRefT))
                argname = direct_solve(symIntArrayRef_ctype)
                return f"{argname}.vec()"
            elif goal.type == OptionalCType(VectorCType(BaseCType(longT))):
                optionalIntArrayRef_ctype = NamedCType(
                    goal.name, BaseCType(optionalIntArrayRefT))
                argname = direct_solve(optionalIntArrayRef_ctype)
                return f"{argname}.has_value() ? c10::make_optional({argname}->vec()) : c10::nullopt"
            elif goal.type == OptionalCType(BaseCType(scalarT)):
                optionalScalarRef_ctype = NamedCType(
                    goal.name, BaseCType(optionalScalarRefT))
                argname = direct_solve(optionalScalarRef_ctype)
                return f"{argname}.has_value() ? c10::make_optional({argname}) : c10::nullopt"
            elif goal.type == OptionalCType(BaseCType(scalarT)):
                optionalTensorRef_ctype = NamedCType(
                    goal.name, BaseCType(optionalTensorRefT))
                argname = direct_solve(optionalTensorRef_ctype)
                return f"{argname}.has_value() ? c10::make_optional({argname}) : c10::nullopt"
            # Technically, we also need to handle cases of C++ containers holding reference types.
            # But there currently aren't any ops that require lambda capture codegen
            # With arguments like std::vector<IntArrayRef>.
            # If that changes, we'll have to add the translation here.

        # We allow const casting on tensors, since const-correctness is a bit broken for at::Tensor.
        # We could probably generalize this to non-tensor types too.
        if goal.type == MutRefCType(BaseCType(tensorT)):
            const_ref_tensor_ctype = NamedCType(
                goal.name, ConstRefCType(BaseCType(tensorT)))
            argname = direct_solve(const_ref_tensor_ctype)
            return f"const_cast<Tensor&>({argname})"

        unsat(goal)
Exemplo n.º 14
0
def compute_ufunc_cpu_dtype_body(
    g: NativeFunctionsGroup,
    dtype: ScalarType,
    inner_loops: Dict[UfuncKey, UfuncSignature],
    parent_ctx: Sequence[Binding],
) -> str:
    assert UfuncKey.CPUScalar in inner_loops, f"{dtype}, {inner_loops.keys()}"
    assert inner_loops.keys() <= {UfuncKey.CPUScalar, UfuncKey.CPUVector}
    scalar_loop = inner_loops[UfuncKey.CPUScalar]
    vec_loop = None
    if UfuncKey.CPUVector in inner_loops:
        vec_loop = inner_loops[UfuncKey.CPUVector]

    # NB: We DON'T use translate here, because translate is
    # incapable of CSE'ing the scalar accesses in case it is also
    # used by Vectorized; also, the unpacking here is very simple
    # and only affects Scalar; everything else is implicitly captured
    # by the lambda

    # Setup scalar in scope
    body = []
    ctx = []
    for b in parent_ctx:
        if isinstance(b.argument,
                      Argument) and b.argument.type != BaseType(BaseTy.Scalar):
            continue
        body.append(f"auto _s_{b.name} = {b.name}.to<scalar_t>();")
        ctx.append(
            Expr(f"_s_{b.name}", NamedCType(b.nctype.name,
                                            BaseCType(scalar_t))))
    if vec_loop is not None:
        for b in parent_ctx:
            if isinstance(
                    b.argument,
                    Argument) and b.argument.type != BaseType(BaseTy.Scalar):
                continue
            body.append(
                f"auto _v_{b.name} = at::vec::Vectorized<scalar_t>(_s_{b.name});"
            )
            ctx.append(
                Expr(
                    f"_v_{b.name}",
                    NamedCType(b.nctype.name,
                               VectorizedCType(BaseCType(scalar_t))),
                ))

    # Setup lambda signature
    # NB: simplified version of ufunctor_arguments
    scalar_bindings = []
    vec_bindings = []
    for a in g.functional.func.arguments.flat_non_out:
        if not a.type.is_tensor_like():
            continue
        assert a.type == BaseType(BaseTy.Tensor)
        scalar_bindings.append(
            Binding(
                name=a.name,
                nctype=NamedCType(a.name, BaseCType(scalar_t)),
                argument=a,
            ))
        if vec_loop is not None:
            vec_bindings.append(
                Binding(
                    name=a.name,
                    nctype=NamedCType(a.name,
                                      VectorizedCType(BaseCType(scalar_t))),
                    argument=a,
                ))

    def with_ctx(b: Sequence[Binding]) -> List[Union[Expr, Binding]]:
        r: List[Union[Expr, Binding]] = []
        r.extend(ctx)
        r.extend(b)
        return r

    body_str = "\n".join(body)
    if vec_loop is not None:
        return f"""
{body_str}
cpu_kernel_vec(iter,
  [=]({', '.join(b.decl() for b in scalar_bindings)}) {{ return {scalar_loop.call(with_ctx(scalar_bindings))}; }},
  [=]({', '.join(b.decl() for b in vec_bindings)}) {{ return {vec_loop.call(with_ctx(vec_bindings))}; }}
);
"""
    else:
        return f"""
Exemplo n.º 15
0
# These API's mostly follow the dispatcher API, with a few quirks:
# - The lambda capture has to convert reference types to value types
# - While the forward lambda just directly calls into the at::_ops API
#   (following the dispatcher convention), the logic here for the reverse lambda
#   is responsible for generating both the call-site, and the declarations
#   (which are implemented manually in the at::functionalization::impl namespace).

# The lambdas generated for each view op in the functionalization pass are of the form
# [capture_arguments](outer_arguments) -> returns_type {
#     return name(inner_arguments);
# }

# Define some specific lambda input arguments.
base_binding = Binding(
    name="base",
    nctype=NamedCType(name="base", type=ConstRefCType(BaseCType(tensorT))),
    argument=Argument(name="base",
                      type=BaseType(BaseTy.Tensor),
                      default=None,
                      annotation=None),
    default=None,
)
mutated_view_binding = Binding(
    name="mutated_view",
    nctype=NamedCType(name="mutated_view",
                      type=ConstRefCType(BaseCType(tensorT))),
    argument=Argument(name="base",
                      type=BaseType(BaseTy.Tensor),
                      default=None,
                      annotation=None),
    default=None,
Exemplo n.º 16
0
    def gen_one(self, f: NativeFunction) -> Optional[str]:
        assert not f.manual_kernel_registration

        if (self.target is Target.REGISTRATION
                and not self.selector.is_native_function_selected(f)):
            return None

        # TODO: Now, there is something interesting going on here.  In the code below,
        # we generate CompositeExplicitAutograd implementations of functional and inplace
        # based on the out implementation.  But in fact, out is definable by
        # functional too (just not very efficiently), and this is honestly the
        # MORE likely situation for a backend implementor.  How do we pick?
        # Well, taking a page from Haskell type classes and default methods,
        # we could conceivably register a circular definition (out in terms
        # of functional, and functional in terms of out) and just require
        # someone to implement one or the other.  We'd have to do a little bit
        # of work to not register one of these "weak" definitions unless there
        # is a strong definition somewhere in the DAG!  So it's not implemented yet.
        if (self.backend_index.dispatch_key
                == DispatchKey.CompositeExplicitAutograd
                and f.func.kind() is SchemaKind.out):
            # Never generate a default implementation for out, that's what you
            # have to define as a backend implementor
            return None

        # Note [Direct dispatch bindings]
        # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        # Signature of the non-dispatched function we'll expose in a header
        # (e.g., at::cpu::add).  We don't generate methods (TODO: do this
        # when CPUTensor class is a thing); nor do we generate fallback
        # bindings for manual_cpp_binding functions.
        cpp_sig_group = CppSignatureGroup.from_native_function(
            f, method=False, fallback_binding=False)

        # Signature of the wrapper function we'll register to the dispatcher
        sig = NativeSignature(f.func, prefix="wrapper_")

        if self.target is Target.NAMESPACED_DECLARATION:
            result = f"TORCH_API {cpp_sig_group.signature.decl()};\n"
            if cpp_sig_group.faithful_signature is not None:
                result += f"TORCH_API {cpp_sig_group.faithful_signature.decl()};\n"
            return result

        elif self.target is Target.NAMESPACED_DEFINITION:

            def generate_defn(cpp_sig: CppSignature) -> str:
                return f"""
{cpp_sig.defn()} {{
return {sig.name()}({', '.join(e.expr for e in translate(cpp_sig.arguments(), sig.arguments()))});
}}
"""

            result = generate_defn(cpp_sig_group.signature)
            if cpp_sig_group.faithful_signature is not None:
                result += generate_defn(cpp_sig_group.faithful_signature)
            return result

        elif self.target is Target.ANONYMOUS_DEFINITION:

            k = f.func.kind()

            # Construct the body of the wrapper function with signature sig
            sig_body = []
            # We'll use context to keep track of any variables we've brought
            # into scope while generating code
            context: List[Union[Binding, Expr]] = list(sig.arguments())

            # Initialize the class corresponding to this structured
            # operator; feeding it the output argument(s) if it is known
            if self.backend_index.dispatch_key is DispatchKey.Meta:
                class_name = f"structured_{meta.name(self.g)}_meta_{k.name}"
                parent_class = f"at::meta::structured_{meta.name(self.g)}"
            elif (self.backend_index.dispatch_key is
                  DispatchKey.CompositeExplicitAutograd):
                # TODO: dedup this branch
                class_name = f"structured_{meta.name(self.g)}_default_backend_{k.name}"
                parent_class = f"at::meta::structured_{meta.name(self.g)}"
            else:
                metadata = self.backend_index.get_kernel(self.g)
                assert metadata is not None
                class_name = f"structured_{metadata.kernel}_{k.name}"
                parent_class = f"{self.cpp_namespace}::structured_{metadata.kernel}"

            if self.backend_index.device_guard:
                device_check_args = itertools.chain(
                    f.func.arguments.out, f.func.arguments.flat_positional)
                sig_body.append(
                    RegisterDispatchKey.gen_device_check(
                        f.device_check, list(device_check_args), sig.name()))

            if k is SchemaKind.functional:
                sig_body.append(f"{class_name} op;")
            elif k is SchemaKind.inplace:
                sig_body.append(f"{class_name} op(self);")
            elif k is SchemaKind.out:
                out_args_str = ", ".join(a.name for a in f.func.arguments.out)
                sig_body.append(f"{class_name} op({out_args_str});")

            # Translate the input native arguments into structured
            # arguments for the meta call
            meta_exprs = ", ".join(e.expr for e in translate(
                context, structured.meta_arguments(self.g), method=False))

            if self.g.out.precomputed:
                # If this function group has precomputed elements, the meta function
                # returns a struct containing them which must be saved so that it
                # can be unpacked when generating code to call the impl.
                sig_body.append(f"auto precompute = op.meta({meta_exprs});")

                # Put all of the contents of the precompute struct into the context
                # so that translate will be able to return the correct args for the
                # call to the impl.
                precomputed_values = [
                    *self.g.out.precomputed.replace.values(),
                    self.g.out.precomputed.add,
                ]
                for precomputed_elems in precomputed_values:
                    for arg in precomputed_elems:
                        context.append(
                            Expr(
                                expr=f"precompute.{arg.name}",
                                type=structured.argument_type(arg,
                                                              binds=arg.name),
                            ))

                # Add a use of the precompute struct so FB internal compilers don't
                # complain that there is an unused variable.
                sig_body.append("(void)precompute;")
            else:
                sig_body.append(f"op.meta({meta_exprs});")

            # After running meta, op.outputs_ is guaranteed to be valid;
            # add it to the context
            out_args = structured.out_arguments(self.g)
            maybe_star = "*" if k is SchemaKind.functional else ""
            for i, out_arg in enumerate(out_args):
                assert ConstRefCType(BaseCType(tensorT)) == out_arg.nctype.type
                context.append(
                    Expr(
                        expr=f"{maybe_star}op.outputs_[{i}]",
                        # TODO: Stop hardcoding that the output type is a Tensor.  Note
                        # that for the codegen here this is fine because outputs_ is
                        # hardcoded to be tensor already
                        type=NamedCType(out_arg.nctype.name,
                                        MutRefCType(BaseCType(tensorT))),
                    ))

            # With the expanded context, do the impl call (if not a meta
            # function)
            if self.backend_index.dispatch_key == DispatchKey.CompositeExplicitAutograd:
                # TODO: https://github.com/pytorch/pytorch/issues/53023
                out_sig_group = CppSignatureGroup.from_native_function(
                    self.g.out,
                    method=False,
                    fallback_binding=f.manual_cpp_binding)
                out_sig = out_sig_group.most_faithful_signature()
                api_name = out_sig.name()
                out_exprs = ", ".join(e.expr for e in translate(
                    context, out_sig.arguments(), method=False))
                # TODO: I think this means structured won't work with method
                # only functions (but maybe you're saved by faithful? iunno.)
                # NB: Originally I wrote this as an at::redispatch call, but
                # I got in trouble because that meant I needed a DispatchKeySet
                # in the wrapper function, which meant I needed a DispatchKeySet
                # in the DispatchKeyFunctions declarations, but the defined API
                # there does NOT permit a dispatch key set.  I think you can
                # probably unwind this by calling some function to do the TLS
                # fetch and get the DispatchKeySet when you don't have it, but
                # I didn't do it for this version
                sig_body.append(f"at::{api_name}({out_exprs});")
            elif self.backend_index.dispatch_key != DispatchKey.Meta:
                impl_exprs = ", ".join(e.expr for e in translate(
                    context, structured.impl_arguments(self.g), method=False))
                sig_body.append(f"op.impl({impl_exprs});")

            # Destructively return the final tensors
            # TODO: Do this in translate instead
            if k is SchemaKind.functional:
                if len(f.func.returns) == 1:
                    ret_expr = "std::move(op.outputs_[0]).take()"  # small optimization
                else:
                    moved = ", ".join(f"std::move(op.outputs_[{i}]).take()"
                                      for i in range(len(f.func.returns)))
                    ret_expr = f"std::make_tuple({moved})"
            elif k is SchemaKind.inplace:
                ret_expr = "self"
            elif k is SchemaKind.out:
                if len(f.func.returns) == 1:
                    ret_expr = f.func.arguments.out[0].name
                else:
                    refs = ", ".join(a.name for a in f.func.arguments.out)
                    ret_expr = f"std::forward_as_tuple({refs})"
            sig_body.append(f"return {ret_expr};")

            sig_body_str = "\n".join(sig_body)

            # For an overview of what this template code looks like, see
            # https://github.com/pytorch/rfcs/pull/9
            return f"""\
{self.gen_class(
f, k,
class_name=class_name,
parent_class=parent_class,
generate_super=self.g.out.structured_inherits is not None
)}

{sig.defn()} {{
{sig_body_str}
}}
"""

        elif self.target is Target.REGISTRATION:
            return f'm.impl("{f.func.name}", TORCH_FN({sig.name()}));'
        else:
            assert_never(self.target)
            # Silence mypy's "Missing return statement" error
            return None
Exemplo n.º 17
0
# other scope); others are more nontrivial and may require packing/unpacking.
# Some examples of non-trivial action:
#
#   - Need the "dtype" binding?  Well, maybe "dtype" isn't available
#     in the context, instead, "options" is, and you need to extract
#     it from there.  (Gather)
#
#   - Need the "context" binding?  Well, maybe "context" isn't available
#     in the context, and you need to construct it from "dtype", "device",
#     etc.  (Scatter)
#
#   - Need the "memory_format" binding?  Well, actually, it's available
#     from both "memory_format" and "options", so you had better make sure
#     they are consistent.  (Join)

options_ctype = NamedCType("options", ConstRefCType(BaseCType(tensorOptionsT)))

out_tensor_ctype = NamedCType("out", ConstRefCType(BaseCType(tensorT)))

longVec_ctype = VectorCType(BaseCType(longT))
longSymVec_ctype = VectorCType(BaseCType(SymIntT))
optionalLongVec_ctype = OptionalCType(VectorCType(BaseCType(longT)))
optionalScalar_ctype = OptionalCType(BaseCType(scalarT))
optionalTensor_ctype = OptionalCType(BaseCType(tensorT))


class UnsatError(RuntimeError):
    pass


# Given a set of in-scope bindings and a set of target bindings, synthesize
Exemplo n.º 18
0
def saved_variables(
    formula: str,
    nctypes: List[NamedCType],
    var_names: Tuple[str, ...],
) -> Tuple[str, Tuple[SavedAttribute, ...]]:
    def stride_expr(name: str) -> str:
        assert var_names == (name, ), (
            'Replacement for ".strides()" is currently only supported for single derivatives of the same tensor '
            'that ".strides()" is being called on.')
        return f'strides_or_error({name}, "{name}")'

    REPLACEMENTS: List[Tuple[str, Dict[str, Any]]] = [
        # replace self.sizes() with self_sizes
        (
            r"{}.sizes\(\)",
            {
                "suffix": "_sizes",
                "nctype":
                lambda name: NamedCType(name, BaseCType(intArrayRefT)),
            },
        ),
        # replace self.sym_sizes() with self_sym_sizes
        (
            r"{}.sym_sizes\(\)",
            {
                "suffix":
                "_sym_sizes",
                "nctype":
                lambda name: NamedCType(name, BaseCType(symIntArrayRefT)),
            },
        ),
        # replace self->sizes() with self_sizes_opt
        (
            r"{}->sizes\(\)",
            {
                "suffix":
                "_sizes_opt",
                "nctype":
                lambda name: NamedCType(
                    name, OptionalCType(BaseCType(intArrayRefT))),
                "expr":
                lambda name:
                f"{name}.has_value() ? c10::optional<IntArrayRef>({name}->sizes()) : c10::nullopt",
            },
        ),
        # replace self.options() with self_options
        (
            r"{}.options\(\)",
            {
                "suffix": "_options",
                "nctype":
                lambda name: NamedCType(name, BaseCType(tensorOptionsT)),
            },
        ),
        # replace zeros_like(self) with self_info
        (
            r"zeros_like\({}\)",
            {
                "suffix": "_info",
                "nctype":
                lambda name: NamedCType(name, BaseCType(typeAndSizeT)),
                "expr": lambda name: name,  # at save-time
                "res": lambda name: name + "_info.zeros()",  # at eval-time
            },
        ),
        # replace self.size(2) with self_size_2
        (
            r"{}.size\((\w+)\)",
            {
                "suffix": lambda m: "_argsize_{}".format(*m.groups()),
                "nctype": lambda name: NamedCType(name, BaseCType(longT)),
            },
        ),
        # replace self.numel() with self_numel
        (
            r"{}.numel\(\)",
            {
                "suffix": "_numel",
                "nctype": lambda name: NamedCType(name, BaseCType(longT)),
            },
        ),
        # replace to_args_sizes(self) with self_args_sizes
        (
            r"to_args_sizes\({}\)",
            {
                "suffix":
                "_args_sizes",
                "nctype":
                lambda name: NamedCType(
                    name, VectorCType(VectorCType(BaseCType(longT)))),
            },
        ),
        # replace to_args_scalartypes(self) with self_args_scalartypes
        (
            r"to_args_scalartypes\({}\)",
            {
                "suffix":
                "_args_scalartypes",
                "nctype":
                lambda name: NamedCType(name,
                                        VectorCType(BaseCType(scalarTypeT))),
            },
        ),
        # replace TensorGeometry(self) with self_geometry
        (
            r"TensorGeometry\({}\)",
            {
                "suffix":
                "_geometry",
                "nctype":
                lambda name: NamedCType(name, BaseCType(tensorGeometryT)),
            },
        ),
        (
            r"{}.scalar_type\(\)",
            {
                "suffix": "_scalar_type",
                "nctype":
                lambda name: NamedCType(name, BaseCType(scalarTypeT)),
            },
        ),
        # replace self.dim() with self_dim
        (
            r"{}.dim\(\)",
            {
                "suffix": "_dim",
                "nctype": lambda name: NamedCType(name, BaseCType(longT)),
            },
        ),
        # replace self.strides() with self_strides
        (
            r"{}.strides\(\)",
            {
                "suffix": "_strides",
                "nctype":
                lambda name: NamedCType(name, BaseCType(intArrayRefT)),
                "expr": stride_expr,
            },
        ),
        # replace self.layout() with self_layout
        (
            r"{}.layout\(\)",
            {
                "suffix": "_layout",
                "nctype": lambda name: NamedCType(name, BaseCType(layoutT)),
            },
        ),
        # replace self.is_conj() with self_conjugate
        (
            r"{}.is_conj\(\)",
            {
                "suffix": "_conjugate",
                "nctype": lambda name: NamedCType(name, BaseCType(boolT)),
            },
        ),
    ]

    # find which arguments need to be saved
    saved: List[SavedAttribute] = []

    for nctype in nctypes:
        name = (nctype.name.name
                if isinstance(nctype.name, SpecialArgName) else nctype.name)
        # First search the formula for expressions which can be evaluated
        # when the autograd Function is created to avoid saving variables
        for regex, info in REPLACEMENTS:

            def repl(m: Match[str]) -> str:
                suffix: str = (info["suffix"](m)
                               if callable(info["suffix"]) else info["suffix"])
                expr: str = info["expr"](name) if "expr" in info else m.group(
                    0)
                saved.append(
                    SavedAttribute(
                        nctype=info["nctype"](name + suffix),
                        expr=expr,
                    ))
                if "res" in info:
                    replacement: str = info["res"](name)
                    return replacement
                return name + suffix

            formula = re.sub(regex.format(name), repl, formula)

        # c10::optional<std::string> types stored in Backward nodes must be
        # converted to c10::optional<c10::string_view> before being passed into
        # the backward function
        if nctype.type == OptionalCType(BaseCType(stringT)):
            formula = re.sub(
                rf"\b{name}\b",
                f"{name}.has_value() ? c10::optional<c10::string_view>({name}.value()) : c10::nullopt",
                formula,
            )

        # Find any variables which remain in the formula and save them
        if re.search(IDENT_REGEX.format(name), formula):
            saved.append(SavedAttribute(
                nctype=nctype,
                expr=name,
            ))

    return formula, tuple(saved)
Exemplo n.º 19
0
def translate(
    bindings: Sequence[Union[Expr, Binding]],
    goals: Sequence[Union[NamedCType, Binding]],
    *,
    method: bool = False,
    allow_expensive_conversions: bool = False,
) -> List[Expr]:

    binding_exprs: List[Expr] = []
    for b in bindings:
        if isinstance(b, Binding):
            binding_exprs.append(Expr(
                expr=b.name,
                type=b.nctype,
            ))
        else:
            binding_exprs.append(b)

    goal_ctypes: List[NamedCType] = []
    for g in goals:
        if isinstance(g, Binding):
            goal_ctypes.append(g.nctype)
        else:
            goal_ctypes.append(g)

    # Add all the bindings to the context
    ctx: Dict[NamedCType, str] = {}
    for b in binding_exprs:
        ctx[b.type] = b.expr

        # While we're at it, do some simple forward inference, looking through
        # constructors.
        #
        # NB: When should you do forward inference versus backward inference?
        # The general idea:
        #
        #   - Backward inference WHEN the goal gets smaller
        #   - Forward inference WHEN the hypothesis gets smaller
        #
        # This helps ensure termination: backward inference starts with a goal
        # and tries to make it simpler and simpler until it's trivial; if the
        # goal can grow in size, we blow up to a really huge goal size.
        # Similarly, with forward inference we take hypotheses and decompose
        # them into simpler hypotheses; if hypotheses could expand in size,
        # we also have potential nontermination.  (In the code below, forward
        # inference is only ever carried out at a single step, but you could
        # imagine repeated application of forward inference being profitable.)
        #
        # A good starting point in the literature for exploring more about proof
        # search are these lecture notes
        # https://www.cs.cmu.edu/~fp/courses/oregon-m10/04-focusing.pdf
        #
        # TODO: My kingdom for a pattern matcher
        # https://www.python.org/dev/peps/pep-0634/
        #
        # TODO: This could get us in recomputation trouble if b.expr is nontrivial.
        # Fix this by implementing some sort of sharing so that if multiple
        # goals share the same expression, we only compute it once.  This seems
        # to matter in practice as compiler is often unwilling to CSE nontrivial
        # expressions like scalar.to<scalar_t>()
        t = b.type
        if (isinstance(t, ConstRefCType) and isinstance(t.elem, OptionalCType)
                and isinstance(t.elem.elem, BaseCType)
                and str(t.elem.elem.type) == "at::Tensor"):
            ctx[NamedCType(
                t.elem.elem.name, ConstRefCType(BaseCType(tensorT))
            )] = f"({b.expr}.has_value() ? *{b.expr} : at::Tensor())"

        if t.type == ConstRefCType(OptionalCType(BaseCType(tensorT))):
            ctx[NamedCType(
                t.name, BaseCType(optionalTensorRefT)
            )] = f"(({b.expr}.has_value() && (*{b.expr}).defined()) ? at::OptionalTensorRef(*{b.expr}) : at::OptionalTensorRef())"

        if t.type == ConstRefCType(BaseCType(scalarT)):
            ctx[NamedCType(t.name,
                           BaseCType(opmath_t))] = f"({b.expr}).to<opmath_t>()"

        if t.type == ConstRefCType(OptionalCType(BaseCType(scalarT))):
            ctx[NamedCType(
                t.name, BaseCType(optionalScalarRefT)
            )] = f"({b.expr}.has_value() ? at::OptionalScalarRef(&({b.expr}.value())) : at::OptionalScalarRef())"

        if t.type == BaseCType(scalar_t):
            ctx[NamedCType(
                t.name,
                BaseCType(opmath_t))] = f"static_cast<opmath_t>({b.expr})"

        # [Note: ITensorListRef]
        if t.type == BaseCType(tensorListT):
            ctx[NamedCType(
                t.name,
                BaseCType(iTensorListRefT))] = f"at::ITensorListRef({b.expr})"

        # [Note: IOptTensorListRef]
        if t.type == ConstRefCType(ListCType(OptionalCType(
                BaseCType(tensorT)))):
            ctx[NamedCType(t.name, BaseCType(
                iOptTensorListRefT))] = f"at::IOptTensorListRef({b.expr})"

    # Add implicit bindings if the generated code is inside a Tensor method
    if method:
        ctx[NamedCType("self", MutRefCType(
            BaseCType(tensorT)))] = "const_cast<Tensor&>(*this)"
        ctx[NamedCType("self", ConstRefCType(
            BaseCType(tensorT)))] = "const_cast<Tensor&>(*this)"
        # This is better!  Byte-for-byte compat
        # ctx[NamedCType("self", ConstRefCType(BaseCType(tensorT)))] = "*this"

    def unsat(goal: NamedCType) -> NoReturn:
        ctx_desc = "\n".join(f"  {t.cpp_type()} {t.name}; // {e}"
                             for t, e in ctx.items())
        raise UnsatError(f"""
Failed to synthesize the expression "{goal.cpp_type()} {goal.name}".
When I failed, the following bindings were available in the context:

{ctx_desc}

This probably means there is a missing rule in the rules of torchgen.api.translate.
Check this module for more information.
""")

    # A shitty backtracking search implementation.  It's shitty because it
    # does backtracking via stack (bad idea!) and for the most part tries to
    # avoid backtracking.  In particular, if
    # direct=True, we won't try to do any fancy synthesis, just trivial
    # conversions (e.g., "T a" is OK for "const T& a").  So all of the
    # existing rules in this function simply try to solve immediately,
    # and bail if things don't work out.
    def solve(goal: NamedCType, *, direct: bool) -> str:
        def direct_solve(goal: NamedCType) -> str:
            return solve(goal, direct=True)

        if goal in ctx:
            # Trivial
            return ctx[goal]

        # const & is satisfied with mutable &
        if isinstance(goal.type, ConstRefCType):
            try:
                # WARNING: not strictly decreasing; be careful not
                # to add a direct conversion that goes satisfies
                # mutable& with const&
                return solve(NamedCType(goal.name,
                                        MutRefCType(goal.type.elem)),
                             direct=direct)
            except UnsatError:
                pass

        # mutable & is satisfied with value
        if isinstance(goal.type, MutRefCType):
            try:
                return solve(NamedCType(goal.name, goal.type.elem),
                             direct=direct)
            except UnsatError:
                pass

        if direct:
            unsat(goal)

        # For now, all of these rules are mutually exclusive.
        if goal == NamedCType("memory_format",
                              OptionalCType(BaseCType(memoryFormatT))):
            memory_format = direct_solve(
                NamedCType(
                    SpecialArgName.possibly_redundant_memory_format,
                    OptionalCType(BaseCType(memoryFormatT)),
                ))
            # No need to join "memory_format" and "options" if the target API takes "options" directly.
            # Otherwise it will cause the redundant memory_format error.
            if options_ctype in goal_ctypes:
                return memory_format
            try:
                options = direct_solve(options_ctype)
                return f"c10::impl::check_tensor_options_and_extract_memory_format({options}, {memory_format})"
            except UnsatError:
                return memory_format
        elif goal == NamedCType("options", BaseCType(tensorOptionsT)):
            dtype = direct_solve(
                NamedCType("dtype", OptionalCType(BaseCType(scalarTypeT))))
            pin_memory = direct_solve(
                NamedCType("pin_memory", OptionalCType(BaseCType(boolT))))
            device = direct_solve(
                NamedCType("device", OptionalCType(BaseCType(deviceT))))
            layout = direct_solve(
                NamedCType("layout", OptionalCType(BaseCType(layoutT))))
            return f"TensorOptions().dtype({dtype}).layout({layout}).device({device}).pinned_memory({pin_memory})"

        elif goal == NamedCType("dtype",
                                OptionalCType(BaseCType(scalarTypeT))):
            try:
                options = direct_solve(options_ctype)
                return f"optTypeMetaToScalarType({options}.dtype_opt())"
            except UnsatError:
                out_tensor = direct_solve(out_tensor_ctype)
                return f"{out_tensor}.scalar_type()"

        elif goal == NamedCType("layout", OptionalCType(BaseCType(layoutT))):
            try:
                options = direct_solve(options_ctype)
                return f"{options}.layout_opt()"
            except UnsatError:
                out_tensor = direct_solve(out_tensor_ctype)
                return f"{out_tensor}.layout()"

        elif goal == NamedCType("device", OptionalCType(BaseCType(deviceT))):
            try:
                options = direct_solve(options_ctype)
                return f"{options}.device_opt()"
            except UnsatError:
                out_tensor = direct_solve(out_tensor_ctype)
                return f"{out_tensor}.device()"

        elif goal == NamedCType("pin_memory", OptionalCType(BaseCType(boolT))):
            try:
                options = direct_solve(options_ctype)
                return f"{options}.pinned_memory_opt()"
            except UnsatError:
                # If we're calling a factory op from its out= variant,
                # We don't actually care about the value of pin_memory.
                out_tensor = direct_solve(out_tensor_ctype)
                return "c10::nullopt"

        # We can always do translations from value types to reference types, like vector<int> -> IntArrayRef
        elif goal.type == BaseCType(intArrayRefT):
            try:
                return direct_solve(NamedCType(goal.name, longVec_ctype))
            except UnsatError:
                # We can also go SymIntArrayRef -> IntArrayRef
                symIntArrayRef_type = direct_solve(
                    NamedCType(goal.name, BaseCType(symIntArrayRefT)))
                return f"c10::asIntArrayRefSlow({symIntArrayRef_type})"
        elif goal.type == BaseCType(symIntArrayRefT):
            return direct_solve(NamedCType(goal.name, longSymVec_ctype))
        elif goal.type == BaseCType(longT):
            symInt_type = direct_solve(
                NamedCType(goal.name, BaseCType(SymIntT)))
            return f"{symInt_type}.expectInt()"
        elif goal.type == BaseCType(optionalIntArrayRefT):
            return direct_solve(NamedCType(goal.name, optionalLongVec_ctype))
        elif goal.type == BaseCType(optionalScalarRefT):
            return direct_solve(NamedCType(goal.name, optionalScalar_ctype))
        elif goal.type == BaseCType(optionalTensorRefT):
            return direct_solve(NamedCType(goal.name, optionalTensor_ctype))

        # Note [translation from C++ reference to value types]
        # The below cases are all for when we have an argument with a reference type,
        # and a corresponding goal with a value type.
        # These are needed when we populate the inputs to a lambda capture and we need
        # to guarantee the lifetime of each captured argument.
        # We guard it with an explicit kwarg because converting to a value type is expensive
        # (O(n)) to convert from IntArrayRef to vector<int>),
        # so the caller of translate() should be explicit that they need it.
        if allow_expensive_conversions:
            if goal.type == VectorCType(BaseCType(longT)):
                intArrayRef_ctype = NamedCType(goal.name,
                                               BaseCType(intArrayRefT))
                argname = direct_solve(intArrayRef_ctype)
                return f"{argname}.vec()"
            if goal.type == VectorCType(BaseCType(SymIntT)):
                symIntArrayRef_ctype = NamedCType(goal.name,
                                                  BaseCType(symIntArrayRefT))
                argname = direct_solve(symIntArrayRef_ctype)
                return f"{argname}.vec()"
            elif goal.type == OptionalCType(VectorCType(BaseCType(longT))):
                optionalIntArrayRef_ctype = NamedCType(
                    goal.name, BaseCType(optionalIntArrayRefT))
                argname = direct_solve(optionalIntArrayRef_ctype)
                return f"{argname}.has_value() ? c10::make_optional({argname}->vec()) : c10::nullopt"
            elif goal.type == OptionalCType(BaseCType(scalarT)):
                optionalScalarRef_ctype = NamedCType(
                    goal.name, BaseCType(optionalScalarRefT))
                argname = direct_solve(optionalScalarRef_ctype)
                return f"{argname}.has_value() ? c10::make_optional({argname}) : c10::nullopt"
            elif goal.type == OptionalCType(BaseCType(scalarT)):
                optionalTensorRef_ctype = NamedCType(
                    goal.name, BaseCType(optionalTensorRefT))
                argname = direct_solve(optionalTensorRef_ctype)
                return f"{argname}.has_value() ? c10::make_optional({argname}) : c10::nullopt"
            # Technically, we also need to handle cases of C++ containers holding reference types.
            # But there currently aren't any ops that require lambda capture codegen
            # With arguments like std::vector<IntArrayRef>.
            # If that changes, we'll have to add the translation here.

        # We allow const casting on tensors, since const-correctness is a bit broken for at::Tensor.
        # We could probably generalize this to non-tensor types too.
        if goal.type == MutRefCType(BaseCType(tensorT)):
            const_ref_tensor_ctype = NamedCType(
                goal.name, ConstRefCType(BaseCType(tensorT)))
            argname = direct_solve(const_ref_tensor_ctype)
            return f"const_cast<Tensor&>({argname})"

        unsat(goal)

    return [Expr(solve(g, direct=False), g) for g in goal_ctypes]
Exemplo n.º 20
0
def argumenttype_type(
    t: Type, *, mutable: bool, binds: ArgName, remove_non_owning_ref_types: bool = False
) -> NamedCType:
    # If it's a value type, do the value type translation
    r = valuetype_type(
        t, binds=binds, remove_non_owning_ref_types=remove_non_owning_ref_types
    )
    if r is not None:
        return r

    if isinstance(t, BaseType):
        if t.name == BaseTy.Tensor:
            if mutable and not local.use_const_ref_for_mutable_tensors():
                return NamedCType(binds, MutRefCType(BaseCType(tensorT)))
            else:
                return NamedCType(binds, ConstRefCType(BaseCType(tensorT)))
        elif t.name == BaseTy.Scalar:
            return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
        else:
            raise AssertionError(f"base type should have been value type {t}")
    elif isinstance(t, OptionalType):
        if str(t.elem) == "Tensor":
            if mutable and not local.use_const_ref_for_mutable_tensors():
                return NamedCType(
                    binds, MutRefCType(BaseCType(tensorT))
                )  # TODO: fix this discrepancy
            else:
                return NamedCType(
                    binds, ConstRefCType(OptionalCType(BaseCType(tensorT)))
                )
        elif str(t.elem) == "Scalar":
            return NamedCType(binds, ConstRefCType(OptionalCType(BaseCType(scalarT))))
        elif isinstance(t.elem, ListType) and str(t.elem.elem) == "int":
            return NamedCType(binds, BaseCType(optionalIntArrayRefT))
        elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
        return NamedCType(binds, OptionalCType(elem.type))
    elif isinstance(t, ListType):
        # TODO: remove these special cases, ArrayRef fallthrough works fine
        if str(t.elem) == "int":
            if remove_non_owning_ref_types:
                return NamedCType(binds, VectorCType(BaseCType(longT)))
            else:
                return NamedCType(binds, BaseCType(intArrayRefT))
        elif str(t.elem) == "Tensor":
            return NamedCType(binds, BaseCType(tensorListT))
        elif str(t.elem) == "Scalar":
            return NamedCType(binds, ArrayRefCType(BaseCType(scalarT)))
        elif str(t.elem) == "SymInt":
            return NamedCType(binds, BaseCType(symIntArrayRefT))
        elif str(t.elem) == "Dimname":
            return NamedCType(binds, BaseCType(dimnameListT))
        elif str(t.elem) == "Tensor?":
            return NamedCType(
                binds, ConstRefCType(ListCType(OptionalCType(BaseCType(tensorT))))
            )
        elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
        return NamedCType(binds, ArrayRefCType(elem.type))
    else:
        raise AssertionError(f"unrecognized type {repr(t)}")