Exemplo n.º 1
0
 def _setup_metrics(self):
     self._mse = MeanSquaredError()
     self._mae = MeanAbsoluteError()
Exemplo n.º 2
0
 def __init__(self) -> None:
     super().__init__()
     self.model = torch.nn.Linear(in_features=1, out_features=1, bias=True)
     self.test_mse: List[torch.Tensor] = []
     self.test_mae = MeanAbsoluteError()
Exemplo n.º 3
0
class EncDecRegressionModel(_EncDecBaseModel):
    """Encoder decoder class for speech regression models.
    Model class creates training, validation methods for setting up data
    performing model forward pass.
    """

    @classmethod
    def list_available_models(cls) -> List[PretrainedModelInfo]:
        """
        This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.
        Returns:
            List of available pre-trained models.
        """
        result = []

        return result

    def __init__(self, cfg: DictConfig, trainer: Trainer = None):
        if not cfg.get('is_regression_task', False):
            raise ValueError(f"EndDecRegressionModel requires the flag is_regression_task to be set as true")
        super().__init__(cfg=cfg, trainer=trainer)

    def _setup_preprocessor(self):
        return EncDecRegressionModel.from_config_dict(self._cfg.preprocessor)

    def _setup_encoder(self):
        return EncDecRegressionModel.from_config_dict(self._cfg.encoder)

    def _setup_decoder(self):
        return EncDecRegressionModel.from_config_dict(self._cfg.decoder)

    def _setup_loss(self):
        return MSELoss()

    def _setup_metrics(self):
        self._mse = MeanSquaredError()
        self._mae = MeanAbsoluteError()

    @property
    def output_types(self) -> Optional[Dict[str, NeuralType]]:
        return {"preds": NeuralType(tuple('B'), RegressionValuesType())}

    @typecheck()
    def forward(self, input_signal, input_signal_length):
        logits = super().forward(input_signal=input_signal, input_signal_length=input_signal_length)
        return logits.view(-1)

    # PTL-specific methods
    def training_step(self, batch, batch_idx):
        audio_signal, audio_signal_len, targets, targets_len = batch
        logits = self.forward(input_signal=audio_signal, input_signal_length=audio_signal_len)
        loss = self.loss(preds=logits, labels=targets)
        train_mse = self._mse(preds=logits, target=targets)
        train_mae = self._mae(preds=logits, target=targets)

        tensorboard_logs = {
            'train_loss': loss,
            'train_mse': train_mse,
            'train_mae': train_mae,
            'learning_rate': self._optimizer.param_groups[0]['lr'],
        }

        self.log_dict(tensorboard_logs)
        return {'loss': loss}

    def validation_step(self, batch, batch_idx, dataloader_idx: int = 0):
        audio_signal, audio_signal_len, targets, targets_len = batch
        logits = self.forward(input_signal=audio_signal, input_signal_length=audio_signal_len)
        loss_value = self.loss(preds=logits, labels=targets)
        val_mse = self._mse(preds=logits, target=targets)
        val_mae = self._mae(preds=logits, target=targets)

        return {'val_loss': loss_value, 'val_mse': val_mse, 'val_mae': val_mae}

    def test_step(self, batch, batch_idx, dataloader_idx: int = 0):
        logs = self.validation_step(batch, batch_idx, dataloader_idx)

        return {'test_loss': logs['val_loss'], 'test_mse': logs['test_mse'], 'test_mae': logs['val_mae']}

    def multi_validation_epoch_end(self, outputs, dataloader_idx: int = 0):
        val_loss_mean = torch.stack([x['val_loss'] for x in outputs]).mean()
        val_mse = self._mse.compute()
        self._mse.reset()
        val_mae = self._mae.compute()
        self._mae.reset()

        tensorboard_logs = {'val_loss': val_loss_mean, 'val_mse': val_mse, 'val_mae': val_mae}

        return {'val_loss': val_loss_mean, 'val_mse': val_mse, 'val_mae': val_mae, 'log': tensorboard_logs}

    def multi_test_epoch_end(self, outputs, dataloader_idx: int = 0):
        test_loss_mean = torch.stack([x['test_loss'] for x in outputs]).mean()
        test_mse = self._mse.compute()
        self._mse.reset()
        test_mae = self._mae.compute()
        self._mae.reset()

        tensorboard_logs = {'test_loss': test_loss_mean, 'test_mse': test_mse, 'test_mae': test_mae}

        return {'test_loss': test_loss_mean, 'test_mse': test_mse, 'test_mae': test_mae, 'log': tensorboard_logs}

    @torch.no_grad()
    def transcribe(self, paths2audio_files: List[str], batch_size: int = 4) -> List[float]:
        """
        Generate class labels for provided audio files. Use this method for debugging and prototyping.

        Args:
            paths2audio_files: (a list) of paths to audio files. \
                Recommended length per file is approximately 1 second.
            batch_size: (int) batch size to use during inference. \
                Bigger will result in better throughput performance but would use more memory.

        Returns:

            A list of predictions in the same order as paths2audio_files
        """
        predictions = super().transcribe(paths2audio_files, batch_size, logprobs=True)
        return [float(pred) for pred in predictions]

    def _update_decoder_config(self, labels, cfg):

        OmegaConf.set_struct(cfg, False)

        if 'params' in cfg:
            cfg.params.num_classes = 1
        else:
            cfg.num_classes = 1

        OmegaConf.set_struct(cfg, True)
Exemplo n.º 4
0
class HelloRegression(LightningModule):
    """
    A simple 1-dim regression model.
    """
    def __init__(self) -> None:
        super().__init__()
        self.model = torch.nn.Linear(in_features=1, out_features=1, bias=True)
        self.test_mse: List[torch.Tensor] = []
        self.test_mae = MeanAbsoluteError()

    def forward(self, x: torch.Tensor) -> torch.Tensor:  # type: ignore
        """
        This method is part of the standard PyTorch Lightning interface. For an introduction, please see
        https://pytorch-lightning.readthedocs.io/en/stable/starter/converting.html
        It runs a forward pass of a tensor through the model.
        :param x: The input tensor(s)
        :return: The model output.
        """
        return self.model(x)

    def training_step(self, batch: Dict[str, torch.Tensor], *args: Any,
                      **kwargs: Any) -> torch.Tensor:  # type: ignore
        """
        This method is part of the standard PyTorch Lightning interface. For an introduction, please see
        https://pytorch-lightning.readthedocs.io/en/stable/starter/converting.html
        It consumes a minibatch of training data (coming out of the data loader), does forward propagation, and
        computes the loss.
        :param batch: The batch of training data
        :return: The loss value with a computation graph attached.
        """
        loss = self.shared_step(batch)
        self.log("loss", loss, on_epoch=True, on_step=False)
        return loss

    def validation_step(
            self,
            batch: Dict[str, torch.Tensor],
            *args: Any,  # type: ignore
            **kwargs: Any) -> torch.Tensor:
        """
        This method is part of the standard PyTorch Lightning interface. For an introduction, please see
        https://pytorch-lightning.readthedocs.io/en/stable/starter/converting.html
        It consumes a minibatch of validation data (coming out of the data loader), does forward propagation, and
        computes the loss.
        :param batch: The batch of validation data
        :return: The loss value on the validation data.
        """
        loss = self.shared_step(batch)
        self.log("val_loss", loss, on_epoch=True, on_step=False)
        return loss

    def shared_step(self, batch: Dict[str, torch.Tensor]) -> torch.Tensor:
        """
        This is a convenience method to reduce code duplication, because training, validation, and test step share
        large amounts of code.
        :param batch: The batch of data to process, with input data and targets.
        :return: The MSE loss that the model achieved on this batch.
        """
        input = batch["x"]
        target = batch["y"]
        prediction = self.forward(input)
        return torch.nn.functional.mse_loss(prediction, target)

    def configure_optimizers(
            self) -> Tuple[List[Optimizer], List[_LRScheduler]]:
        """
        This method is part of the standard PyTorch Lightning interface. For an introduction, please see
        https://pytorch-lightning.readthedocs.io/en/stable/starter/converting.html
        It returns the PyTorch optimizer(s) and learning rate scheduler(s) that should be used for training.
        """
        optimizer = Adam(self.parameters(), lr=1e-1)
        scheduler = StepLR(optimizer, step_size=20, gamma=0.5)
        return [optimizer], [scheduler]

    def on_test_epoch_start(self) -> None:
        """
        This method is part of the standard PyTorch Lightning interface. For an introduction, please see
        https://pytorch-lightning.readthedocs.io/en/stable/starter/converting.html
        In this method, you can prepare data structures that need to be in place before evaluating the model on the
        test set (that is done in the test_step).
        """
        self.test_mse = []
        self.test_mae.reset()

    def test_step(self, batch: Dict[str, torch.Tensor],
                  batch_idx: int) -> torch.Tensor:  # type: ignore
        """
        This method is part of the standard PyTorch Lightning interface. For an introduction, please see
        https://pytorch-lightning.readthedocs.io/en/stable/starter/converting.html
        It evaluates the model in "inference mode" on data coming from the test set. It could, for example,
        also write each model prediction to disk.
        :param batch: The batch of test data.
        :param batch_idx: The index (0, 1, ...) of the batch when the data loader is enumerated.
        :return: The loss on the test data.
        """
        input = batch["x"]
        target = batch["y"]
        prediction = self.forward(input)
        # This illustrates two ways of computing metrics: Using standard torch
        loss = torch.nn.functional.mse_loss(prediction, target)
        self.test_mse.append(loss)
        # Metrics computed using PyTorch Lightning objects. Note that these will, by default, attempt
        # to synchronize across GPUs.
        self.test_mae.update(preds=prediction, target=target)
        return loss

    def on_test_epoch_end(self) -> None:
        """
        This method is part of the standard PyTorch Lightning interface. For an introduction, please see
        https://pytorch-lightning.readthedocs.io/en/stable/starter/converting.html
        In this method, you can finish off anything to do with evaluating the model on the test set,
        for example writing aggregate metrics to disk.
        """
        average_mse = torch.mean(torch.stack(self.test_mse))
        Path("test_mse.txt").write_text(str(average_mse.item()))
        Path("test_mae.txt").write_text(str(self.test_mae.compute().item()))