Exemplo n.º 1
0
    def run(self, runner: ExperimentRunner, auto_start: bool = True):
        """A generator which performs one step of the experiment per iteration.

        One step here means one simulation step of the topology of a single experiment run. If no run exists, the next
        run in the queue of all runs is created and a step is done there. If all single experiment runs were already
        finished, the simulation is stopped and the results are generated.
        """

        self._timestamp_start = get_stamp()
        self.measurement_manager = MeasurementManager(
            self._experiment_folder, self._measurement_manager_params)

        if self._params.clear_cache:
            self.measurement_manager.clear_cache()
        elif self._params.load_cache:
            # This can only happen in the cache is not cleared.
            self.measurement_manager.load_cache_index()

        garbage_collect(
        )  # empty the memory from previous experiments so that they do not influence this one
        logger.info(
            f"Starting experiment with {len(self._topology_parameters)} runs")

        self._run_all(runner, auto_start)

        if not self._params.calculate_statistics:
            # No results get published.
            return

        self.results_path = self.produce_results()
Exemplo n.º 2
0
    def serialize_to(self, folder_path: str):
        """Creates `.crm` metadata file and `.drm` (or '.zrm' for compressed data) data file in specified path."""
        # experiment_id = self.model_name + '_' + str(list(self.model_parameters.values())) + '_' + get_stamp()
        file_name = self.model_name + get_stamp()

        if self.use_zip:
            file_extension = '.zrm'
        else:
            file_extension = '.drm'

        drm_file_name = file_name + file_extension
        crm_file_name = file_name + '.ycrm'
        drm_file_path = path.join(folder_path, drm_file_name)
        crm_file_path = path.join(folder_path, crm_file_name)

        drm_file_path = to_safe_path(drm_file_path)
        crm_file_path = to_safe_path(crm_file_path)

        params_to_serialize = self.to_serializable_params(
            self.model_parameters)

        if self.use_zip:
            save_zip(self, drm_file_path, protocol=2)
        else:
            with open(drm_file_path, 'wb') as drm_file:
                pickle.dump(self, drm_file, protocol=2)

        with open(crm_file_path, 'w') as crm_file:
            yaml = YAML()
            yaml.dump(
                {
                    'model_name': self.model_name,
                    'model_parameters': params_to_serialize,
                    'data_file': drm_file_name
                }, crm_file)
Exemplo n.º 3
0
    def _prepare_document(self) -> (Document, str, os.path):
        """Prepares the document for writing the results"""
        doc = Document()
        date = get_stamp()

        doc.add(self._get_heading(date))
        return doc, date
Exemplo n.º 4
0
    def _create_cache_folders(self,
                              clear_old_cache: bool = True,
                              alternative_folder=None):
        if alternative_folder is None:
            experiment_folder = path.join(get_experiment_results_folder(),
                                          self._experiment_template_name())
        else:
            experiment_folder = alternative_folder

        if clear_old_cache:
            try:
                for file_name in os.listdir(experiment_folder):
                    if file_name.endswith('.drm') or file_name.endswith(
                            '.crm'):
                        os.unlink(path.join(experiment_folder, file_name))
            except FileNotFoundError as e:
                logger.warning("cache folder not found: \n" + str(e))
                pass

        if self._save_cache and not os.path.exists(experiment_folder):
            os.makedirs(experiment_folder)

        date = get_stamp()
        docs_folder = path.join(experiment_folder, "docs",
                                self._complete_name() + date)

        if self._save_cache and not os.path.exists(docs_folder):
            os.makedirs(docs_folder)

        return experiment_folder, docs_folder
Exemplo n.º 5
0
    def _publish_results(self):
        """Plot and save the results."""

        doc = Document()
        date = get_stamp()

        labels = ExperimentTemplateBase.parameters_to_string(
            self._topology_parameters_list)

        title = 'Mutual Information labels vs ' + self._experiment_name
        self.plot_save(title, self._mutual_info, self._baseline_mutual_info,
                       'Norm. mutual information', labels, date,
                       self._docs_folder, doc)

        title = 'Weak classifier accuracy labels vs ' + self._experiment_name
        self.plot_save(title, self._classifier_accuracy,
                       self._baseline_classifier_accuracy,
                       'Classifier accuracy', labels, date, self._docs_folder,
                       doc)  #, smoothing_size=3)

        title = 'average delta'
        f = plot_multiple_runs(
            self._different_steps[0],  # here the X axes are identical
            self._average_delta,
            title=title,
            ylabel='log(delta)',
            xlabel='steps',
            labels=labels)
        add_fig_to_doc(f, path.join(self._docs_folder, title), doc)

        title = 'average boosting duration'
        f = plot_multiple_runs(self._different_steps[0],
                               self._average_boosting_dur,
                               title=title,
                               ylabel='duration',
                               xlabel='steps',
                               labels=labels)
        add_fig_to_doc(f, path.join(self._docs_folder, title), doc)

        doc.write_file(
            path.join(self._docs_folder,
                      to_safe_name(self._complete_name() + date + ".html")))

        print('done')
    def _publish_results(self):
        """Plot and optionally save the results."""
        doc = Document()
        date = get_stamp()

        labels = ExperimentTemplateBase.parameters_to_string(self._topology_parameters_list)

        title = f'FPS vs. {self._experiment_name} (smoothing {self._smoothing_window_size})'
        self.plot_save(title, self._fps, 'FPS',
                       labels, date, self._docs_folder, doc, smoothing_window_size=self._smoothing_window_size)

        smoothing = len(self._fps[0]) // 100  # adaptive smoothing
        if smoothing % 2 == 0:
            smoothing += 1  # make odd
        title = 'FPS vs. ' + self._experiment_name + f' (smoothing {smoothing})'
        self.plot_save(title, self._fps, 'FPS', labels, date, self._docs_folder, doc,
                       smoothing_window_size=smoothing)

        title = f'max_memory_allocated() vs. {self._experiment_name} (smoothing {self._smoothing_window_size})'
        self.plot_save(title, self._max_mem, 'Max memory', labels, date, self._docs_folder, doc,
                       smoothing_window_size=self._smoothing_window_size)

        title = f'memory_allocated() vs. {self._experiment_name} (smoothing {self._smoothing_window_size})'
        self.plot_save(title, self._current_mem, 'Current memory', labels, date, self._docs_folder, doc,
                       smoothing_window_size=self._smoothing_window_size)

        title = f'max_cached() vs. {self._experiment_name} (smoothing {self._smoothing_window_size})'
        self.plot_save(title, self._max_cached, 'Max cached mem', labels, date, self._docs_folder, doc,
                       smoothing_window_size=self._smoothing_window_size)

        title = f'memory_cached() vs. {self._experiment_name} (smoothing {self._smoothing_window_size})'
        self.plot_save(title, self._current_cached, 'Current cached mem', labels, date, self._docs_folder, doc,
                       smoothing_window_size=self._smoothing_window_size)

        self._publish_aux_results(labels, date, self._docs_folder, doc)

        doc.write_file(path.join(self._docs_folder, f"{self._topology_class.__name__}_" + date + ".html"))
        print('done')
Exemplo n.º 7
0
def run_experiment_with_ui(experiment: Experiment, auto_start: bool = True):
    with observer_system_context() as observer_system:
        log_filename = experiment.setup_logging_path(get_stamp())
        setup_logging_ui(LogObservable(), observer_system, log_filename)
        runner = UiExperimentRunner(observer_system)
        experiment.run(runner, auto_start=auto_start)
Exemplo n.º 8
0
def run_experiment(experiment: Experiment):
    setup_logging_no_ui(filename=experiment.setup_logging_path(get_stamp()))
    runner = BasicExperimentRunner()
    experiment.run(runner)
Exemplo n.º 9
0
    def _publish_results(self):
        """Plot and save the results."""

        doc = Document()
        date = get_stamp()

        labels = ExperimentTemplateBase.parameters_to_string(
            self._topology_parameters_list)

        for manager in self._layer_measurement_managers:
            manager.publish_results(labels=labels,
                                    date=date,
                                    docs_folder=self._docs_folder,
                                    doc=doc)

        # plot the running MSE
        title = 'Mean Square Error of TA classification'
        f = plot_multiple_runs_with_baselines(self._steps,
                                              self._predicted_labels_mse,
                                              self._baseline_labels_mse,
                                              title=title,
                                              ylabel='mse',
                                              xlabel='steps',
                                              labels=labels)
        add_fig_to_doc(f, path.join(self._docs_folder, title), doc)

        title = 'TA classification accuracy'
        f = plot_multiple_runs_with_baselines(
            self._steps,
            self._classification_accuracy,
            self._random_classification_accuracy,
            title=title,
            ylabel='accuracy (1 ~ 100%)',
            xlabel='steps',
            labels=labels)
        add_fig_to_doc(f, path.join(self._docs_folder, title), doc)

        title = 'TA classification accuracy - (SE-metric)'
        f = plot_multiple_runs_with_baselines(
            self._steps,
            self._se_classification_accuracy,
            self._se_random_classification_accuracy,
            title=title,
            ylabel='accuracy (1 ~ 100%)',
            xlabel='steps',
            labels=labels)
        add_fig_to_doc(f, path.join(self._docs_folder, title), doc)

        title = 'is_learning'
        f = plot_multiple_runs(
            self._steps,
            self._is_learning_info,
            title=title,
            ylabel='is learning',
            xlabel='steps',
        )
        add_fig_to_doc(f, path.join(self._docs_folder, title), doc)

        doc.write_file(
            path.join(self._docs_folder,
                      to_safe_name(self._complete_name() + date + ".html")))

        print('done')
Exemplo n.º 10
0
    def _publish_results(self):

        doc = Document()

        xlabel = "steps"
        ylabel = "number of SP forward executions"
        title_fe_dt = "smoothed derivation of SP forward executions and TP forward executions (SP O QD)"
        figsize = (18, 12)
        date = get_stamp()

        layer_names = ['L0', 'L1', 'L2']
        nr_layers = len(layer_names)
        labels = list(map(lambda x: x + " forward execution", layer_names)) + \
                 list(map(lambda x: x + " qualitative difference", layer_names))

        colors = ['b', 'orange', 'g', 'r', 'p']
        color_params = [{'c': color} for color in colors[:nr_layers]]
        color_ls_params = [{
            'c': color,
            'ls': '--'
        } for color in colors[:nr_layers]]
        other_params = color_params + color_ls_params

        params_description = ExperimentTemplateBase.parameters_to_string(
            self._topology_parameters_list)
        for run in range(len(self.sp_executions)):
            sp_execution_dt = list(
                map(compute_derivations, self.sp_executions[run]))
            sp_output_dt = self.sp_output_stability[run]

            title = title_fe_dt + f" run {run} "
            fig = plot_multiple_runs(x_values=self.training_steps,
                                     y_values=sp_execution_dt + sp_output_dt,
                                     ylim=[0, 1],
                                     labels=labels,
                                     smoothing_window_size=501,
                                     xlabel=xlabel,
                                     ylabel=ylabel,
                                     title=title + params_description[run],
                                     figsize=figsize,
                                     hide_legend=False,
                                     other_params=other_params)
            add_fig_to_doc(fig,
                           path.join(self._docs_folder, to_safe_name(title)),
                           doc)

        title = "classification accuracy from reconstructed labels"
        fig = plot_multiple_runs(x_values=list(range(
            self._num_testing_phases)),
                                 y_values=self.classification_accuracy,
                                 ylim=[0, 1],
                                 labels=params_description,
                                 smoothing_window_size=None,
                                 xlabel="accuracy",
                                 ylabel="phases",
                                 title=title,
                                 figsize=figsize,
                                 hide_legend=False)
        add_fig_to_doc(fig, path.join(self._docs_folder, to_safe_name(title)),
                       doc)

        title = "SE classification accuracy from reconstructed labels"
        fig = plot_multiple_runs(x_values=list(range(
            self._num_testing_phases)),
                                 y_values=self.classification_accuracy_se,
                                 ylim=[0, 1],
                                 labels=params_description,
                                 smoothing_window_size=None,
                                 xlabel="SE accuracy",
                                 ylabel="phases",
                                 title=title,
                                 figsize=figsize,
                                 hide_legend=False)
        add_fig_to_doc(fig, path.join(self._docs_folder, to_safe_name(title)),
                       doc)

        doc.write_file(path.join(self._docs_folder, f"main.html"))
Exemplo n.º 11
0
    def _publish_results(self):
        """Plot and optionally save the results."""

        mse = np.array(self._mse)
        mse_testing = np.array(self._mse_testing)

        memory_used = torch.tensor(self._memory_used, dtype=torch.float32)
        window_size = 201
        memory_used = (memory_used.view(-1, 1).expand(mse_testing.shape) /
                       (1024**2))
        error_memory_ratio = torch.tensor(mse_testing,
                                          dtype=torch.float32) * memory_used
        accuracy_memory_ratio = []
        for run_acc, run_mem in zip(self._weak_classifier_results,
                                    memory_used):
            accuracy_memory_ratio_run = []
            for acc, mem in zip(run_acc, run_mem):
                accuracy_memory_ratio_run.append((1 - acc) * mem)

            accuracy_memory_ratio.append(accuracy_memory_ratio_run)

        accuracy_memory_ratio = torch.tensor(accuracy_memory_ratio)

        doc = Document()

        figs = []
        xlabel = "steps"
        ylabel = "mean reconstruction error"
        title = "Influence of hyperparameters on reconstruction error (training)"
        figsize = (18, 12)
        date = get_stamp()

        fig = plot_multiple_runs(
            x_values=np.arange(len(mse[0])),
            y_values=mse,
            labels=ExperimentTemplateBase.parameters_to_string(
                self._topology_parameters_list),
            smoothing_window_size=window_size,
            xlabel=xlabel,
            ylabel=ylabel,
            title=title,
            figsize=figsize,
            hide_legend=True)
        add_fig_to_doc(fig, path.join(self._docs_folder, to_safe_name(title)),
                       doc)

        fig = plot_multiple_runs(
            x_values=np.arange(len(mse[0])),
            y_values=mse,
            labels=ExperimentTemplateBase.parameters_to_string(
                self._topology_parameters_list),
            xlabel=xlabel,
            ylabel=ylabel,
            title=title,
            figsize=figsize,
            hide_legend=True)
        add_fig_to_doc(
            fig, path.join(self._docs_folder,
                           to_safe_name(title) + "_smooth"), doc)

        title = "Influence of hyperparameters on reconstruction error (testing)"
        fig = plot_multiple_runs(
            x_values=np.array(self._training_steps_before_testing[0]),
            y_values=mse_testing,
            labels=ExperimentTemplateBase.parameters_to_string(
                self._topology_parameters_list),
            xlabel=xlabel,
            ylabel=ylabel,
            title=title,
            figsize=figsize,
        )
        add_fig_to_doc(fig, path.join(self._docs_folder, to_safe_name(title)),
                       doc)

        title = "Weak classifier accuracy"
        fig = plot_multiple_runs(
            x_values=np.array(self._training_steps_before_testing[0]),
            y_values=np.array(self._weak_classifier_results),
            labels=ExperimentTemplateBase.parameters_to_string(
                self._topology_parameters_list),
            xlabel="steps",
            ylabel="accuracy",
            title=title,
            figsize=figsize,
            hide_legend=True)
        add_fig_to_doc(fig, path.join(self._docs_folder, to_safe_name(title)),
                       doc)

        title = "Memory * reconstruction tradeoff (testing)"
        fig = plot_multiple_runs(
            x_values=np.array(self._training_steps_before_testing[0]),
            y_values=error_memory_ratio.numpy(),
            labels=ExperimentTemplateBase.parameters_to_string(
                self._topology_parameters_list),
            xlabel=xlabel,
            ylabel=
            "Mean Reconstruction Error times required meogabyte of memory",
            title=title,
            figsize=figsize,
            hide_legend=True)
        add_fig_to_doc(fig, path.join(self._docs_folder, to_safe_name(title)),
                       doc)

        title = "Memory * error (= 1 - acc) tradeoff"
        fig = plot_multiple_runs(
            x_values=np.array(self._training_steps_before_testing[0]),
            y_values=accuracy_memory_ratio.numpy(),
            labels=ExperimentTemplateBase.parameters_to_string(
                self._topology_parameters_list),
            xlabel=xlabel,
            ylabel=
            "Mean Reconstruction Error times required meogabyte of memory",
            title=title,
            figsize=figsize,
            hide_legend=True)
        add_fig_to_doc(fig, path.join(self._docs_folder, to_safe_name(title)),
                       doc)

        title = "Entropy and mean reconstruction error"
        fig = plot_multiple_runs(
            x_values=np.array(self._code_entropy),
            y_values=mse_testing,
            labels=ExperimentTemplateBase.parameters_to_string(
                self._topology_parameters_list),
            xlabel="entropy",
            ylabel="mean reconstruction error",
            title=title,
            figsize=figsize,
            hide_legend=True)
        add_fig_to_doc(fig, path.join(self._docs_folder, to_safe_name(title)),
                       doc)

        title = "Mean reconstruction error and classifier accuracy"
        fig = plot_multiple_runs(
            x_values=mse_testing,
            y_values=np.array(self._weak_classifier_results),
            labels=ExperimentTemplateBase.parameters_to_string(
                self._topology_parameters_list),
            xlabel="mean reconstruction error",
            ylabel="accuracy",
            title=title,
            figsize=figsize,
            hide_legend=True)
        add_fig_to_doc(fig, path.join(self._docs_folder, to_safe_name(title)),
                       doc)

        title = "Entropy and classifier accuracy"
        fig = plot_multiple_runs(
            x_values=np.array(self._code_entropy),
            y_values=np.array(self._weak_classifier_results),
            labels=ExperimentTemplateBase.parameters_to_string(
                self._topology_parameters_list),
            xlabel="entropy",
            ylabel="accuracy",
            title=title,
            figsize=figsize,
            hide_legend=True)
        add_fig_to_doc(fig, path.join(self._docs_folder, to_safe_name(title)),
                       doc)

        doc.write_file(
            path.join(self._docs_folder,
                      f"{self._topology_class.__name__}_" + date + ".html"))

        print(self._memory_used)