Exemplo n.º 1
0
    def test_write_video_with_audio(self):
        f_name = os.path.join(VIDEO_DIR, "R6llTwEh07w.mp4")
        video_tensor, audio_tensor, info = io.read_video(f_name,
                                                         pts_unit="sec")

        with get_tmp_dir() as tmpdir:
            out_f_name = os.path.join(tmpdir, "testing.mp4")
            io.video.write_video(
                out_f_name,
                video_tensor,
                round(info["video_fps"]),
                video_codec="libx264rgb",
                options={'crf': '0'},
                audio_array=audio_tensor,
                audio_fps=info["audio_fps"],
                audio_codec="aac",
            )

            out_video_tensor, out_audio_tensor, out_info = io.read_video(
                out_f_name, pts_unit="sec")

            assert info["video_fps"] == out_info["video_fps"]
            assert_equal(video_tensor, out_video_tensor)

            audio_stream = av.open(f_name).streams.audio[0]
            out_audio_stream = av.open(out_f_name).streams.audio[0]

            assert info["audio_fps"] == out_info["audio_fps"]
            assert audio_stream.rate == out_audio_stream.rate
            assert pytest.approx(out_audio_stream.frames, rel=0.0,
                                 abs=1) == audio_stream.frames
            assert audio_stream.frame_size == out_audio_stream.frame_size
Exemplo n.º 2
0
    def test_read_partial_video_pts_unit_sec(self):
        with temp_video(10, 300, 300, 5, lossless=True) as (f_name, data):
            pts, _ = io.read_video_timestamps(f_name, pts_unit='sec')

            for start in range(5):
                for l in range(1, 4):
                    lv, _, _ = io.read_video(f_name,
                                             pts[start],
                                             pts[start + l - 1],
                                             pts_unit='sec')
                    s_data = data[start:(start + l)]
                    self.assertEqual(len(lv), l)
                    self.assertTrue(s_data.equal(lv))

            container = av.open(f_name)
            stream = container.streams[0]
            lv, _, _ = io.read_video(
                f_name,
                int(pts[4] * (1.0 / stream.time_base) + 1) * stream.time_base,
                pts[7],
                pts_unit='sec')
            if get_video_backend() == "pyav":
                # for "video_reader" backend, we don't decode the closest early frame
                # when the given start pts is not matching any frame pts
                self.assertEqual(len(lv), 4)
                self.assertTrue(data[4:8].equal(lv))
            container.close()
Exemplo n.º 3
0
    def test_write_video_with_audio(self):
        f_name = os.path.join(VIDEO_DIR, "R6llTwEh07w.mp4")
        video_tensor, audio_tensor, info = io.read_video(f_name, pts_unit="sec")

        with get_tmp_dir() as tmpdir:
            out_f_name = os.path.join(tmpdir, "testing.mp4")
            io.video.write_video(
                out_f_name,
                video_tensor,
                round(info["video_fps"]),
                video_codec="libx264rgb",
                options={'crf': '0'},
                audio_array=audio_tensor,
                audio_fps=info["audio_fps"],
                audio_codec="aac",
            )

            out_video_tensor, out_audio_tensor, out_info = io.read_video(
                out_f_name, pts_unit="sec"
            )

            self.assertEqual(info["video_fps"], out_info["video_fps"])
            assert_equal(video_tensor, out_video_tensor)

            audio_stream = av.open(f_name).streams.audio[0]
            out_audio_stream = av.open(out_f_name).streams.audio[0]

            self.assertEqual(info["audio_fps"], out_info["audio_fps"])
            self.assertEqual(audio_stream.rate, out_audio_stream.rate)
            self.assertAlmostEqual(audio_stream.frames, out_audio_stream.frames, delta=1)
            self.assertEqual(audio_stream.frame_size, out_audio_stream.frame_size)
Exemplo n.º 4
0
    def test_read_partial_video_pts_unit_sec(self, start, offset):
        with temp_video(10, 300, 300, 5, lossless=True) as (f_name, data):
            pts, _ = io.read_video_timestamps(f_name, pts_unit='sec')

            lv, _, _ = io.read_video(f_name,
                                     pts[start],
                                     pts[start + offset - 1],
                                     pts_unit='sec')
            s_data = data[start:(start + offset)]
            assert len(lv) == offset
            assert_equal(s_data, lv)

            with av.open(f_name) as container:
                stream = container.streams[0]
                lv, _, _ = io.read_video(f_name,
                                         int(pts[4] *
                                             (1.0 / stream.time_base) + 1) *
                                         stream.time_base,
                                         pts[7],
                                         pts_unit='sec')
            if get_video_backend() == "pyav":
                # for "video_reader" backend, we don't decode the closest early frame
                # when the given start pts is not matching any frame pts
                assert len(lv) == 4
                assert_equal(data[4:8], lv)
Exemplo n.º 5
0
    def test_invalid_file(self):
        set_video_backend('video_reader')
        with self.assertRaises(RuntimeError):
            io.read_video('foo.mp4')

        set_video_backend('pyav')
        with self.assertRaises(RuntimeError):
            io.read_video('foo.mp4')
Exemplo n.º 6
0
    def test_invalid_file(self):
        set_video_backend("video_reader")
        with pytest.raises(RuntimeError):
            io.read_video("foo.mp4")

        set_video_backend("pyav")
        with pytest.raises(RuntimeError):
            io.read_video("foo.mp4")
Exemplo n.º 7
0
    def test_read_partial_video(self):
        with temp_video(10, 300, 300, 5, lossless=True) as (f_name, data):
            pts, _ = io.read_video_timestamps(f_name)
            for start in range(5):
                for l in range(1, 4):
                    lv, _, _ = io.read_video(f_name, pts[start], pts[start + l - 1])
                    s_data = data[start:(start + l)]
                    self.assertEqual(len(lv), l)
                    self.assertTrue(s_data.equal(lv))

            lv, _, _ = io.read_video(f_name, pts[4] + 1, pts[7])
            self.assertEqual(len(lv), 4)
            self.assertTrue(data[4:8].equal(lv))
Exemplo n.º 8
0
    def test_read_partial_video_bframes(self):
        # do not use lossless encoding, to test the presence of B-frames
        options = {'bframes': '16', 'keyint': '10', 'min-keyint': '4'}
        with temp_video(100, 300, 300, 5, options=options) as (f_name, data):
            pts, _ = io.read_video_timestamps(f_name)
            for start in range(0, 80, 20):
                for l in range(1, 4):
                    lv, _, _ = io.read_video(f_name, pts[start], pts[start + l - 1])
                    s_data = data[start:(start + l)]
                    self.assertEqual(len(lv), l)
                    self.assertTrue((s_data.float() - lv.float()).abs().max() < self.TOLERANCE)

            lv, _, _ = io.read_video(f_name, pts[4] + 1, pts[7])
            self.assertEqual(len(lv), 4)
            self.assertTrue((data[4:8].float() - lv.float()).abs().max() < self.TOLERANCE)
Exemplo n.º 9
0
def blur_background(video_path,
                    respth='./res/test_res',
                    cp='model_final_diss.pth'):
    frames, audio, info = read_video(video_path, 61, 65, pts_unit="sec")

    scale_labels = transforms.Compose([
        transforms.ToPILImage(),
        transforms.Resize((frames.shape[1], frames.shape[2]),
                          interpolation=Image.NEAREST),
        transforms.ToTensor()
    ])

    labels = label_images(frames, cp)
    new_frames = []
    for frame_inx in tqdm.tqdm(
            list(range(frames.shape[0])),
            desc="generating segmented frames with background"):
        scaled_label = scale_labels(labels[frame_inx].type(
            torch.uint8)).squeeze(0)
        scaled_label = torch.stack([scaled_label, scaled_label, scaled_label],
                                   dim=2)

        blurred_img = torch.from_numpy(
            cv2.blur(frames[frame_inx].numpy(), (15, 15)))

        new_frames.append(
            torch.where(scaled_label > 0, frames[frame_inx], blurred_img))

    new_frames = torch.stack(new_frames)

    write_video(
        os.path.join(respth, "blurred_background" +
                     os.path.basename(video_path)) + ".mp4", new_frames,
        round(info["video_fps"]))
Exemplo n.º 10
0
    def __getitem__(self, idx):
        sample = {}
        row = self.clip_metadata_df.iloc[idx]
        filename, fps = row['filename'], row['fps']

        filename, fps, clip_t_start, is_last_clip = row['filename'], row[
            'fps'], row['clip-t-start'], row['is-last-clip']

        # compute clip_t_start and clip_t_end
        clip_length_in_sec = self.clip_length / self.frame_rate
        clip_t_end = clip_t_start + clip_length_in_sec

        # get a tensor [clip_length, H, W, C] of the video frames between clip_t_start and clip_t_end seconds
        vframes, _, _ = read_video(filename=filename,
                                   start_pts=clip_t_start,
                                   end_pts=clip_t_end,
                                   pts_unit='sec')
        idxs = EvalVideoDataset._resample_video_idx(self.clip_length, fps,
                                                    self.frame_rate)
        vframes = vframes[
            idxs][:self.
                  clip_length]  # [:self.clip_length] for removing extra frames if isinstance(idxs, slice)
        if vframes.shape[0] != self.clip_length:
            raise RuntimeError(
                f'<EvalVideoDataset>: got clip of length {vframes.shape[0]} != {self.clip_length}.'
                f'filename={filename}, clip_t_start={clip_t_start}, clip_t_end={clip_t_end}, '
                f'fps={fps}')

        sample['clip'] = self.transforms(vframes)
        sample['filename'] = filename
        sample['is-last-clip'] = is_last_clip

        return sample
Exemplo n.º 11
0
def load_rgbf(args,is_cropped,path):
    render_size = args.inference_size
    
    rgb_frames,_,_ = read_video(path,pts_unit='sec')
    rgb_frames= rgb_frames.to(torch.float32)
    # Step 1 crop the images
    frame_size = rgb_frames[0].shape
    if (render_size[0] < 0) or (render_size[1] < 0) or (frame_size[0]%64) or (frame_size[1]%64):
        render_size[0] = ( (frame_size[0])//64 ) * 64
        render_size[1] = ( (frame_size[1])//64 ) * 64
   
    cropped_frames = []
    for rgb_frame in rgb_frames:
        image_size = rgb_frame.shape[:2]
        if is_cropped:
            cropper = StaticRandomCrop(image_size, crop_size)
        else:
            cropper = StaticCenterCrop(image_size, render_size)
        frame  = cropper.crop(rgb_frame)
        cropped_frames.append(frame)

    rgb_frames = cropped_frames

    # Step 2 load the flow images 
    flow_frames = flow_from_frames(args,rgb_frames)
    frames = []    
    # Step 3 create the rgbf images 
    
    for (index, flow_img) in enumerate(flow_frames):
        flow_img = flow_img.cpu().numpy()  
        mcm = MCM(flow_img)
        rgb_img = rgb_frames[index]
        rgbf = RGBF(rgb_img,  mcm)
        frames.append(rgbf)
    return frames
Exemplo n.º 12
0
def bug_due_to_unit_in_audio_align():
    fname = osp.expanduser('~/tv_host.mp4')
    vframes, aframes, info = read_video(fname,
                                        start_pts=0,
                                        end_pts=1,
                                        pts_unit='sec')
    return vframes
Exemplo n.º 13
0
    def _get_video_frame(self, video_year, video_ID, frame_id):
        p = self._get_video_path(video_year, video_ID)
        # videos are all at 25 fps, so to get rought seconds cound we divide that
        s_entry = (frame_id - 1) / 25
        video, _, _ = IO.read_video(p, s_entry, s_entry + 0.5, pts_unit="sec")

        return F.to_pil_image(video[0, ...].permute(2, 0, 1))
Exemplo n.º 14
0
def vgpt(invid):
    try:
        os.remove("output.mp4")
    except FileNotFoundError:
        pass
    clip = VideoFileClip(invid)
    rate = clip.fps
    sequence_length = int(clip.fps * clip.duration)
    pts = read_video_timestamps(invid, pts_unit='sec')[0]
    video = read_video(invid,
                       pts_unit='sec',
                       start_pts=pts[0],
                       end_pts=pts[sequence_length - 1])[0]
    video = preprocess(video, resolution,
                       sequence_length).unsqueeze(0).to(device)

    with torch.no_grad():
        encodings = vqvae.encode(video)
        video_recon = vqvae.decode(encodings)
        video_recon = torch.clamp(video_recon, -0.5, 0.5)

    videos = video_recon[0].permute(1, 2, 3, 0)  # CTHW -> THWC
    videos = ((videos + 0.5) * 255).cpu().numpy().astype('uint8')
    imageio.mimwrite('output.mp4', videos, fps=int(rate))
    return './output.mp4'
Exemplo n.º 15
0
    def __init__(self,
                 video_path,
                 start_time=0,
                 end_time=None,
                 stride=None,
                 transforms=None):
        """
		Args:
			video_path: path to the video file
			start_time (seconds): the start time to read the video
			end_time (seconds): the end time to read the video
			stride (seconds): time interval between frames
			transforms (torchvision.transforms): transform to apply to each frame
		"""
        assert path.exists(video_path), f'wrong video path'
        self.video_path = video_path
        self.start_time = start_time
        self.end_time = end_time
        self.stride = stride
        self.transforms = transforms
        self.video_frames, _, self.info = read_video(filename=video_path,
                                                     start_pts=self.start_time,
                                                     end_pts=self.end_time,
                                                     pts_unit='sec')
        self.frame_stride = int(stride * self.info['video_fps'])
        self.video_frames = self.video_frames[
            list(range(0, self.video_frames.shape[0], self.frame_stride)), ...]
Exemplo n.º 16
0
    def test_read_video_pts_unit_sec(self):
        with temp_video(10, 300, 300, 5, lossless=True) as (f_name, data):
            lv, _, info = io.read_video(f_name, pts_unit='sec')

            assert_equal(data, lv)
            assert info["video_fps"] == 5
            assert info == {"video_fps": 5}
Exemplo n.º 17
0
    def get_clip(self, idx):
        """
        Gets a subclip from a list of videos.

        Arguments:
            idx (int): index of the subclip. Must be between 0 and num_clips().

        Returns:
            video (Tensor)
            audio (Tensor)
            info (Dict)
            video_idx (int): index of the video in `video_paths`
        """
        if idx >= self.num_clips():
            raise IndexError("Index {} out of range "
                             "({} number of clips)".format(
                                 idx, self.num_clips()))
        video_idx, clip_idx = self.get_clip_location(idx)
        video_path = self.video_paths[video_idx]
        clip_pts = self.clips[video_idx][clip_idx]
        start_pts = clip_pts[0].item()
        end_pts = clip_pts[-1].item()
        video, audio, info = read_video(video_path, start_pts, end_pts)
        if self.frame_rate is not None:
            resampling_idx = self.resampling_idxs[video_idx][clip_idx]
            if isinstance(resampling_idx, torch.Tensor):
                resampling_idx = resampling_idx - resampling_idx[0]
            video = video[resampling_idx]
            info["video_fps"] = self.frame_rate
        assert len(video) == self.num_frames, "{} x {}".format(
            video.shape, self.num_frames)
        return video, audio, info, video_idx
Exemplo n.º 18
0
    def test_read_partial_video(self, start, offset):
        with temp_video(10, 300, 300, 5, lossless=True) as (f_name, data):
            pts, _ = io.read_video_timestamps(f_name)

            lv, _, _ = io.read_video(f_name, pts[start],
                                     pts[start + offset - 1])
            s_data = data[start:(start + offset)]
            assert len(lv) == offset
            assert_equal(s_data, lv)

            if get_video_backend() == "pyav":
                # for "video_reader" backend, we don't decode the closest early frame
                # when the given start pts is not matching any frame pts
                lv, _, _ = io.read_video(f_name, pts[4] + 1, pts[7])
                assert len(lv) == 4
                assert_equal(data[4:8], lv)
Exemplo n.º 19
0
    def __getitem__(self, idx):
        """
        obtain the image (read and transform)
        :param idx: index of the file required
        :return: img => image array
        """
        rand = np.random.RandomState()
        video = self.files[idx]
        target = self.get_class(video)
        video, audio, info = io.read_video(video)

        video_duration = video.shape[0] // info['video_fps']

        # Less than one second video
        if video_duration == 0:
            return self.preprocess_video(video), self.preprocess_audio(audio, info['audio_fps']), target
        else:
            second_idx = rand.randint(0, video_duration - 1)
            second_idx_vid = int(second_idx * info['video_fps'])
            second_idx_aud = int(second_idx * info['audio_fps'])

            video = video[second_idx_vid:second_idx_vid + int(info['video_fps'])]
            audio = audio[:, second_idx_aud:second_idx_aud + int(info['audio_fps'])]

            return self.preprocess_video(video), self.preprocess_audio(audio, info['audio_fps']), target
Exemplo n.º 20
0
    def test_read_video_pts_unit_sec(self):
        with temp_video(10, 300, 300, 5, lossless=True) as (f_name, data):
            lv, _, info = io.read_video(f_name, pts_unit='sec')

            self.assertTrue(data.equal(lv))
            self.assertEqual(info["video_fps"], 5)
            self.assertEqual(info, {"video_fps": 5})
Exemplo n.º 21
0
    def __init__(self,
                 args,
                 is_cropped,
                 path='/path/to/frames/only/folder',
                 replicates=1):
        self.args = args
        self.is_cropped = is_cropped
        self.crop_size = args.crop_size
        self.render_size = args.inference_size
        self.replicates = replicates

        self.frames = []
        frames, _, _ = read_video(path, pts_unit='sec')
        frames = frames.to(torch.float32)
        for i in range(len(frames) - 1):
            im1 = frames[i]
            im2 = frames[i + 1]
            self.frames += [[im1, im2]]

        self.size = len(self.frames)
        self.frame_size = self.frames[0][0].shape

        if (self.render_size[0] < 0) or (self.render_size[1] < 0) or (
                self.frame_size[0] % 64) or (self.frame_size[1] % 64):
            self.render_size[0] = ((self.frame_size[0]) // 64) * 64
            self.render_size[1] = ((self.frame_size[1]) // 64) * 64

        args.inference_size = self.render_size
Exemplo n.º 22
0
    def test_read_partial_video(self):
        with temp_video(10, 300, 300, 5, lossless=True) as (f_name, data):
            pts, _ = io.read_video_timestamps(f_name)
            for start in range(5):
                for l in range(1, 4):
                    lv, _, _ = io.read_video(f_name, pts[start], pts[start + l - 1])
                    s_data = data[start:(start + l)]
                    self.assertEqual(len(lv), l)
                    self.assertTrue(s_data.equal(lv))

            if get_video_backend() == "pyav":
                # for "video_reader" backend, we don't decode the closest early frame
                # when the given start pts is not matching any frame pts
                lv, _, _ = io.read_video(f_name, pts[4] + 1, pts[7])
                self.assertEqual(len(lv), 4)
                self.assertTrue(data[4:8].equal(lv))
Exemplo n.º 23
0
    def batch_iter(self, batch_size):
        for dir_name in os.listdir(self._data_task_dir):
            fp = self._data_task_dir / dir_name / "recording.mp4"
            vframes, _, _ = read_video(fp.as_posix(), pts_unit="sec")

            for batch in torch.split(vframes, batch_size):
                if batch.size(0) == batch_size:
                    yield batch
Exemplo n.º 24
0
 def __init__(self, args, path='/path/to/frames/only/folder'):
     self.args = args
     self.render_size = args.inference_size
     self.frames, _, _ = read_video(path, pts_unit='sec')
     self.frames = self.frames.to(torch.float32)
     self.size = len(self.frames)
     self.frame_size = self.frames[0][0].shape
     args.inference_size = self.render_size
Exemplo n.º 25
0
    def get_clip(self, idx):
        """
        Gets a subclip from a list of videos.

        Arguments:
            idx (int): index of the subclip. Must be between 0 and num_clips().

        Returns:
            video (Tensor)
            audio (Tensor)
            info (Dict)
            video_idx (int): index of the video in `video_paths`
        """
        if idx >= self.num_clips():
            raise IndexError("Index {} out of range "
                             "({} number of clips)".format(
                                 idx, self.num_clips()))
        video_path = self.video_paths[idx]
        clip_pts = self.clips[idx]

        from torchvision import get_video_backend

        backend = get_video_backend()

        if backend == "pyav":
            # check for invalid options
            if self._video_width != 0:
                raise ValueError(
                    "pyav backend doesn't support _video_width != 0")
            if self._video_height != 0:
                raise ValueError(
                    "pyav backend doesn't support _video_height != 0")
            if self._video_min_dimension != 0:
                raise ValueError(
                    "pyav backend doesn't support _video_min_dimension != 0")
            if self._video_max_dimension != 0:
                raise ValueError(
                    "pyav backend doesn't support _video_max_dimension != 0")
            if self._audio_samples != 0:
                raise ValueError(
                    "pyav backend doesn't support _audio_samples != 0")

        if backend == "pyav":
            assert len(clip_pts) > 0
            start_pts = clip_pts[0].item()
            end_pts = clip_pts[-1].item()
            video, audio, info = read_video(video_path, start_pts, end_pts)
        else:
            raise NotImplementedError(f"backend {backend} is not implemented.")

        resampling_idx = self.resampling_idxs[idx]
        if isinstance(resampling_idx, torch.Tensor):
            resampling_idx = resampling_idx - resampling_idx[0]
        video = video[resampling_idx]
        info["video_fps"] = self.frame_rate
        assert len(video) == self.num_frames, "{} x {}".format(
            video.shape, self.num_frames)
        return video, audio, info
Exemplo n.º 26
0
    def test_read_partial_video_pts_unit_sec(self):
        with temp_video(10, 300, 300, 5, lossless=True) as (f_name, data):
            pts, _ = io.read_video_timestamps(f_name, pts_unit='sec')

            for start in range(5):
                for l in range(1, 4):
                    lv, _, _ = io.read_video(f_name, pts[start], pts[start + l - 1], pts_unit='sec')
                    s_data = data[start:(start + l)]
                    self.assertEqual(len(lv), l)
                    self.assertTrue(s_data.equal(lv))

            container = av.open(f_name)
            stream = container.streams[0]
            lv, _, _ = io.read_video(f_name,
                                     int(pts[4] * (1.0 / stream.time_base) + 1) * stream.time_base, pts[7],
                                     pts_unit='sec')
            self.assertEqual(len(lv), 4)
            self.assertTrue(data[4:8].equal(lv))
Exemplo n.º 27
0
    def read_frame(self, timestamp = None):
        """Reads the next frame or from timestamp.

        If no timestamp is provided this method just returns the next frame from
        the video. This is significantly (up to 10x) faster if the `video_loader` 
        backend is available. If a timestamp is provided we first have to seek
        to the right position and then load the frame.
        
        Args:
            timestamp: Specific timestamp of frame in seconds or None (default: None)

        Returns:
            A PIL Image

        """
        if timestamp is not None:
            self.current_timestamp_idx = self.timestamps.index(timestamp)
        else:
            # no timestamp provided -> set current timestamp index to next frame
            if self.current_timestamp_idx < len(self.timestamps):
                self.current_timestamp_idx += 1

        if self.reader:
            if timestamp is not None:
                # Calling seek is slow. If we read next frame we can skip it!
                if self.timestamps.index(timestamp) != self.last_timestamp_idx + 1:
                    self.reader.seek(timestamp)

            # make sure we have the tensor in correct shape (we want H x W x C)
            frame = next(self.reader)['data'].permute(1,2,0)
            self.last_timestamp_idx = self.current_timestamp_idx

        else: # fallback on pyav
            if timestamp is None:
                # read next frame if no timestamp is provided
                timestamp = self.timestamps[self.current_timestamp_idx]
            frame, _, _ = io.read_video(self.path,
                                        start_pts=timestamp,
                                        end_pts=timestamp,
                                        pts_unit=self.pts_unit)    
            self.last_timestamp_idx = self.timestamps.index(timestamp)    
        
        
        if len(frame.shape) < 3:
            raise ValueError('Unexpected error during loading of frame')

        # sometimes torchvision returns multiple frames for one timestamp (bug?)
        if len(frame.shape) > 3 and frame.shape[0] > 1:
            frame = frame[0]

        # make sure we return a H x W x C tensor and not (1 x H x W x C)
        if len(frame.shape) == 4:
            frame = frame.squeeze()

        # convert to PIL image
        image = Image.fromarray(frame.numpy())
        return image
Exemplo n.º 28
0
 def test_read_video_corrupted_file(self):
     with tempfile.NamedTemporaryFile(suffix='.mp4') as f:
         f.write(b'This is not an mpg4 file')
         video, audio, info = io.read_video(f.name)
         self.assertIsInstance(video, torch.Tensor)
         self.assertIsInstance(audio, torch.Tensor)
         self.assertEqual(video.numel(), 0)
         self.assertEqual(audio.numel(), 0)
         self.assertEqual(info, {})
Exemplo n.º 29
0
 def test_read_video_corrupted_file(self):
     with tempfile.NamedTemporaryFile(suffix='.mp4') as f:
         f.write(b'This is not an mpg4 file')
         video, audio, info = io.read_video(f.name)
         assert isinstance(video, torch.Tensor)
         assert isinstance(audio, torch.Tensor)
         assert video.numel() == 0
         assert audio.numel() == 0
         assert info == {}
Exemplo n.º 30
0
def _read_video(filename, start_pts=0, end_pts=None):
    if _video_backend == "pyav":
        return io.read_video(filename, start_pts, end_pts)
    else:
        if end_pts is None:
            end_pts = -1
        return io._read_video_from_file(
            filename,
            video_pts_range=(start_pts, end_pts),
        )