Exemplo n.º 1
0
    def loss_boxes(self, outputs, targets, indices, num_boxes):
        """
        Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss
        targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]
        The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size.
        """
        # assert 'pred_boxes' in outputs
        idx = self._get_src_permutation_idx(indices)
        src_boxes = outputs["pred_boxes"][idx]
        target_boxes = torch.cat(
            [t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0)

        loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction="none")

        losses = {}
        losses["loss_bbox"] = loss_bbox.sum() / num_boxes

        # loss_giou = 1 - torch.diag(generalized_box_iou(box_cxcywh_to_xyxy(src_boxes),
        #                                                box_cxcywh_to_xyxy(target_boxes)))
        loss_giou = 1 - torch.diag(
            generalized_box_iou(
                box_convert(src_boxes, in_fmt="cxcywh", out_fmt="xyxy"),
                box_convert(target_boxes, in_fmt="cxcywh", out_fmt="xyxy")))
        losses["loss_giou"] = loss_giou.sum() / num_boxes
        return losses
Exemplo n.º 2
0
    def forward(self, outputs, targets):
        """Performs the matching
        Params:
            outputs: This is a dict that contains at least these entries:
                 "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits
                 "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates
            targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing:
                 "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth
                           objects in the target) containing the class labels
                 "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates
        Returns:
            A list of size batch_size, containing tuples of (index_i, index_j) where:
                - index_i is the indices of the selected predictions (in order)
                - index_j is the indices of the corresponding selected targets (in order)
            For each batch element, it holds:
                len(index_i) = len(index_j) = min(num_queries, num_target_boxes)
        """
        bs, num_queries = outputs["pred_logits"].shape[:2]

        # We flatten to compute the cost matrices in a batch
        out_prob = (outputs["pred_logits"].flatten(0, 1).softmax(-1)
                    )  # [batch_size * num_queries, num_classes]
        out_bbox = outputs["pred_boxes"].flatten(
            0, 1)  # [batch_size * num_queries, 4]

        # Also concat the target labels and boxes
        tgt_ids = torch.cat([v["labels"] for v in targets])
        tgt_bbox = torch.cat([v["boxes"] for v in targets])

        # Compute the classification cost. Contrary to the loss, we don't use the NLL,
        # but approximate it in 1 - proba[target class].
        # The 1 is a constant that doesn't change the matching, it can be ommitted.
        cost_class = -out_prob[:, tgt_ids]

        # Compute the L1 cost between boxes
        cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1)

        # Compute the giou cost betwen boxes
        # cost_giou = -generalized_box_iou(box_cxcywh_to_xyxy(out_bbox), box_cxcywh_to_xyxy(tgt_bbox))
        cost_giou = -generalized_box_iou(
            box_convert(out_bbox, in_fmt="cxcywh", out_fmt="xyxy"),
            box_convert(tgt_bbox, in_fmt="cxcywh", out_fmt="xyxy"))

        # Final cost matrix
        C = (self.cost_bbox * cost_bbox + self.cost_class * cost_class +
             self.cost_giou * cost_giou)
        C = C.view(bs, num_queries, -1).cpu()

        sizes = [len(v["boxes"]) for v in targets]
        indices = [
            linear_sum_assignment(c[i])
            for i, c in enumerate(C.split(sizes, -1))
        ]
        return [(
            torch.as_tensor(i, dtype=torch.int64),
            torch.as_tensor(j, dtype=torch.int64),
        ) for i, j in indices]
Exemplo n.º 3
0
def _evaluate_giou(target, pred):
    """
    Evaluate generalized intersection over union (gIOU) for target from dataset and output prediction
    from model.
    """

    if pred["boxes"].shape[0] == 0:
        # no box detected, 0 IOU
        return torch.tensor(0.0, device=pred["boxes"].device)
    return generalized_box_iou(target["boxes"], pred["boxes"]).diag().mean()
Exemplo n.º 4
0
    def test_gen_iou(self):
        # Test Generalized IoU
        boxes1 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)
        boxes2 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)

        # Expected gIoU matrix for these boxes
        expected = torch.tensor([[1.0, 0.25, -0.7778], [0.25, 1.0, -0.8611],
                                [-0.7778, -0.8611, 1.0]])

        out = ops.generalized_box_iou(boxes1, boxes2)

        # Check if all elements of tensor are as expected.
        assert out.size() == torch.Size([3, 3])
        tolerance = 1e-4
        assert ((out - expected).abs().max() < tolerance).item() is True
Exemplo n.º 5
0
 def gen_iou_check(box, expected, tolerance=1e-4):
     out = ops.generalized_box_iou(box, box)
     assert out.size() == expected.size()
     assert ((out - expected).abs().max() < tolerance).item()
Exemplo n.º 6
0
 def gen_iou_check(box, expected, tolerance=1e-4):
     out = ops.generalized_box_iou(box, box)
     torch.testing.assert_close(out, expected, rtol=0.0, check_dtype=False, atol=tolerance)
Exemplo n.º 7
0
 def forward(self, inputs: Tensor, target: Tensor) -> Tensor:
     return 1.0 - generalized_box_iou(inputs, target).diagonal()