def impactOfEta(outdir): N = 8 D = 4096 a = 10 l = 0 r = 10 e = 0 X = [4, 8, 16, 32, 64, 128] tpcY = [] tideY = [] tpc5Y = [] for d in X: nw, nr, nq, loss, ts = runTPCModel(N, D, d, a, l, r, 100, 0) tpcY.append(ts) nw, nr, nq, loss, ts = runTideModel(N, D, d, a, l, r, e) tideY.append(ts) nw, nr, nq, loss, ts = runTPCModel(N, D, d, a, l, r, 1, 0.5) tpc5Y.append(ts) fig = plt.figure() axes = fig.add_subplot(111) ltpc = axes.plot(X, tpcY, '-ob') ltide = axes.plot(X, tideY, '-+r') ltpc5 = axes.plot(X, tpc5Y, '-*g') axes.set_xlabel('Number of Data Item') axes.set_ylabel('Average Txn Service Time') fig.legend((ltpc, ltide, ltpc5), ('tpc', 'tide', 'tpc5')) fig.savefig('%s/impact_of_eta.pdf' % outdir)
def impactOfEta(outdir): N = 8 D = 4096 a = 10 l = 0 r = 10 e = 0 X = [4, 8, 16, 32, 64, 128] tpcY = [] tideY = [] tpc5Y = [] for d in X: nw, nr, nq, loss, ts = runTPCModel(N, D, d, a, l, r, 100, 0) tpcY.append(ts) nw, nr, nq, loss, ts = runTideModel(N, D, d, a, l, r, e) tideY.append(ts) nw, nr, nq, loss, ts = runTPCModel(N, D, d, a, l, r, 1, 0.5) tpc5Y.append(ts) fig = plt.figure() axes = fig.add_subplot(111) ltpc = axes.plot(X, tpcY, '-ob') ltide = axes.plot(X, tideY, '-+r') ltpc5 = axes.plot(X, tpc5Y, '-*g') axes.set_xlabel('Number of Data Item') axes.set_ylabel('Average Txn Service Time') fig.legend((ltpc, ltide, ltpc5), ('tpc', 'tide', 'tpc5')) fig.savefig('%s/impact_of_eta.pdf'%outdir)
def impactOfMaxNumTxns(outdir): D = 4096 d = 32 a = 100 l = 80 r = 10 b = 100 eta = 0 e = 20 X = [2, 4, 8, 16, 32, 64] tpcY = [] tideY = [] for N in X: nw, nr, nq, loss, ts = runTPCModel(N, D, d, a, l, r, b, eta) tpcY.append(ts) nw, nr, nq, loss, ts = runTideModel(N, D, d, a, l, r, e) tideY.append(ts) fig = plt.figure() axes = fig.add_subplot(111) ltpc = axes.plot(X, tpcY, '-ob') ltide = axes.plot(X, tideY, '-+r') axes.set_xlabel('Max Number of Txns') axes.set_ylabel('Average Txn Service Time') fig.legend((ltpc, ltide), ('tpc', 'tide')) fig.savefig('%s/impact_of_max_num_txns.pdf' % outdir)
def impactOfExecTime(outdir): N = 64 D = 4096 d = 32 a = 100 l = 10 b = 100 eta = 0 e = 20 X = [10, 20, 30, 40, 50] tpcY = [] tideY = [] for r in X: nw, nr, nq, loss, ts = runTPCModel(N, D, d, a, l, r, b, eta) tpcY.append(ts) nw, nr, nq, loss, ts = runTideModel(N, D, d, a, l, r, e) tideY.append(ts) fig = plt.figure() axes = fig.add_subplot(111) ltpc = axes.plot(X, tpcY, '-ob') ltide = axes.plot(X, tideY, '-+r') axes.set_xlabel('Average Txn Execution Time') axes.set_ylabel('Average Txn Service Time') fig.legend((ltpc, ltide), ('tpc', 'tide')) fig.savefig('%s/impact_of_exec_time.pdf' % outdir)
def impactOfLambda(outdir): N = 64 D = 4096 d = 32 l = 80 r = 10 b = 100 eta = 0 e = 20 X = [20, 40, 60, 80, 100] tpcY = [] tideY = [] for a in X: nw, nr, nq, loss, ts = runTPCModel(N, D, d, a, l, r, b, eta) tpcY.append(ts) nw, nr, nq, loss, ts = runTideModel(N, D, d, a, l, r, e) tideY.append(ts) fig = plt.figure() axes = fig.add_subplot(111) ltpc = axes.plot(X, tpcY, '-ob') ltide = axes.plot(X, tideY, '-+r') axes.set_xlabel('Average Txn Arrive Interval') axes.set_ylabel('Average Txn Service Time') fig.legend((ltpc, ltide), ('tpc', 'tide')) fig.savefig('%s/impact_of_lambda.pdf' % outdir)
def impactOfMaxNumTxns(outdir): D = 4096 d = 32 a = 100 l = 80 r = 10 b = 100 eta = 0 e = 20 X = [2, 4, 8, 16, 32, 64] tpcY = [] tideY = [] for N in X: nw, nr, nq, loss, ts = runTPCModel(N, D, d, a, l, r, b, eta) tpcY.append(ts) nw, nr, nq, loss, ts = runTideModel(N, D, d, a, l, r, e) tideY.append(ts) fig = plt.figure() axes = fig.add_subplot(111) ltpc = axes.plot(X, tpcY, '-ob') ltide = axes.plot(X, tideY, '-+r') axes.set_xlabel('Max Number of Txns') axes.set_ylabel('Average Txn Service Time') fig.legend((ltpc, ltide), ('tpc', 'tide')) fig.savefig('%s/impact_of_max_num_txns.pdf'%outdir)
def impactOfExecTime(outdir): N = 64 D = 4096 d = 32 a = 100 l = 10 b = 100 eta = 0 e = 20 X = [10, 20, 30, 40, 50] tpcY = [] tideY = [] for r in X: nw, nr, nq, loss, ts = runTPCModel(N, D, d, a, l, r, b, eta) tpcY.append(ts) nw, nr, nq, loss, ts = runTideModel(N, D, d, a, l, r, e) tideY.append(ts) fig = plt.figure() axes = fig.add_subplot(111) ltpc = axes.plot(X, tpcY, '-ob') ltide = axes.plot(X, tideY, '-+r') axes.set_xlabel('Average Txn Execution Time') axes.set_ylabel('Average Txn Service Time') fig.legend((ltpc, ltide), ('tpc', 'tide')) fig.savefig('%s/impact_of_exec_time.pdf'%outdir)
def impactOfLambda(outdir): N = 64 D = 4096 d = 32 l = 80 r = 10 b = 100 eta = 0 e = 20 X = [20, 40, 60, 80, 100] tpcY = [] tideY = [] for a in X: nw, nr, nq, loss, ts = runTPCModel(N, D, d, a, l, r, b, eta) tpcY.append(ts) nw, nr, nq, loss, ts = runTideModel(N, D, d, a, l, r, e) tideY.append(ts) fig = plt.figure() axes = fig.add_subplot(111) ltpc = axes.plot(X, tpcY, '-ob') ltide = axes.plot(X, tideY, '-+r') axes.set_xlabel('Average Txn Arrive Interval') axes.set_ylabel('Average Txn Service Time') fig.legend((ltpc, ltide), ('tpc', 'tide')) fig.savefig('%s/impact_of_lambda.pdf'%outdir)