def __init__( self, track, res=1, buffer=10, prop=0.5, length=0, time=None, mode=MODE_PARALLEL, type=TYPE_SELECT, ): """TODO""" self.track = track self.time = time self.type = type self.prop = prop self.mode = mode self.length = length self.segments = [] for i in range(1, len(track), 1): pt1 = track[i].position.copy() pt2 = pt1.copy() dx = track[i].position.getX() - track[i - 1].position.getX() dy = track[i].position.getY() - track[i - 1].position.getY() R = (dx * dx + dy * dy)**(0.5) if R == 0: continue pt1.translate(+buffer * dy / R, -buffer * dx / R) pt2.translate(-buffer * dy / R, +buffer * dx / R) self.segments.append(Track([Obs(pt1), Obs(pt2)]))
def test_create_index(self): GPSTime.setReadFormat("4Y-2M-2D 2h:2m:2s") track = Track() p1 = Obs(ENUCoords(550, 320), GPSTime.readTimestamp('2020-01-01 10:00:00')) track.addObs(p1) p2 = Obs(ENUCoords(610, 325), GPSTime.readTimestamp('2020-01-01 10:08:00')) track.addObs(p2) p3 = Obs(ENUCoords(610, 330), GPSTime.readTimestamp('2020-01-01 10:17:00')) track.addObs(p3) p4 = Obs(ENUCoords(650, 330), GPSTime.readTimestamp('2020-01-01 10:21:00')) track.addObs(p4) p5 = Obs(ENUCoords(675, 340), GPSTime.readTimestamp('2020-01-01 10:25:00')) track.addObs(p5) #track.plot() #track.plotAsMarkers() TRACES = [] TRACES.append(track) collection = TrackCollection(TRACES) res = (25, 4) index = SpatialIndex(collection, res, 0.05, True) index.plot() # ===================================================================== self.assertEqual(index.request(0, 0), [0]) self.assertEqual(index.request(1, 0), [0]) self.assertEqual(index.request(0, 1), []) self.assertEqual(index.request(1, 1), [0]) self.assertEqual(index.request(2, 0), []) self.assertEqual(index.request(2, 1), [0])
def test_write_csv_path(self): GPSTime.setReadFormat("4Y-2M-2D 2h:2m:2s") track = Track() p1 = Obs(ENUCoords(0, 0), GPSTime.readTimestamp('2020-01-01 10:00:00')) track.addObs(p1) p2 = Obs(ENUCoords(0, 1), GPSTime.readTimestamp('2020-01-01 10:00:01')) track.addObs(p2) p3 = Obs(ENUCoords(1, 1), GPSTime.readTimestamp('2020-01-01 10:00:02')) track.addObs(p3) p4 = Obs(ENUCoords(1, 2), GPSTime.readTimestamp('2020-01-01 10:00:03')) track.addObs(p4) p5 = Obs(ENUCoords(2, 2), GPSTime.readTimestamp('2020-01-01 10:00:04')) track.addObs(p5) csvpath = os.path.join(self.resource_path, 'data/test/test_write_csv_path.wkt') FileWriter.writeToFile(track, csvpath) contents = open(csvpath).read() txt = "0.000,0.000,0.000,01/01/2020 10:00:00\n" txt += "0.000,1.000,0.000,01/01/2020 10:00:01\n" txt += "1.000,1.000,0.000,01/01/2020 10:00:02\n" txt += "1.000,2.000,0.000,01/01/2020 10:00:03\n" txt += "2.000,2.000,0.000,01/01/2020 10:00:04\n" self.assertEqual(contents.strip(), txt.strip())
def test_write_csv_2AF_desordre(self): GPSTime.setReadFormat("4Y-2M-2D 2h:2m:2s") track = Track() p1 = Obs(ENUCoords(0, 0), GPSTime.readTimestamp('2020-01-01 10:00:00')) track.addObs(p1) p2 = Obs(ENUCoords(0, 1), GPSTime.readTimestamp('2020-01-01 10:00:01')) track.addObs(p2) p3 = Obs(ENUCoords(1, 1), GPSTime.readTimestamp('2020-01-01 10:00:02')) track.addObs(p3) p4 = Obs(ENUCoords(1, 2), GPSTime.readTimestamp('2020-01-01 10:00:03')) track.addObs(p4) p5 = Obs(ENUCoords(2, 2), GPSTime.readTimestamp('2020-01-01 10:00:04')) track.addObs(p5) track.addAnalyticalFeature(Analytics.speed) track.compute_abscurv() csvpath = os.path.join(self.resource_path, 'data/test/test_write_csv_2AF_desordre.wkt') af_names = ['speed', 'abs_curv'] FileWriter.writeToFile(track, csvpath, id_E=3, id_N=2, id_U=0, id_T=1, h=1, separator=";", af_names=af_names) contents = open(csvpath).read() txt = "#srid: ENU\n" txt += "#U;time;N;E;speed;abs_curv\n" txt += "0.000;01/01/2020 10:00:00;0.000;0.000;1.0;0\n" txt += "0.000;01/01/2020 10:00:01;1.000;0.000;0.7071067811865476;1.0\n" txt += "0.000;01/01/2020 10:00:02;1.000;1.000;0.7071067811865476;2.0\n" txt += "0.000;01/01/2020 10:00:03;2.000;1.000;0.7071067811865476;3.0\n" txt += "0.000;01/01/2020 10:00:04;2.000;2.000;1.0;4.0\n" self.assertEqual(contents.strip(), txt.strip())
def setUp(self): self.track = Track() p1 = Obs(ENUCoords(0, 0), "2020-01-01 10:00:00") self.track.addObs(p1) p2 = Obs(ENUCoords(0, 1), "2020-01-01 10:00:01") self.track.addObs(p2) p3 = Obs(ENUCoords(1, 2), "2020-01-01 10:00:02") self.track.addObs(p3)
def __mapOnNetwork( track, network, obs_noise=50, transition_cost=10, search_radius=50, debug=False ): """TODO""" if debug: f1 = open("observation.dat", "a") f2 = open("transition.dat", "a") track.createAnalyticalFeature("obs_noise", obs_noise) verbose = True global STATES global net STATES = [] net = network to_run = range(len(track)) if verbose: print("Map-matching preparation...") to_run = progressbar.progressbar(to_run) for i in to_run: STATES.append([]) E = network.spatial_index.neighborhood(track[i].position, unit=1) for elem in E: eg = network.EDGES[network.getEdgeId(elem)].geom p, d, v = __projOnTrack(track[i].position, eg) if d < search_radius: STATES[-1].append( (p, elem, __distToNode(eg, p, v, 0), __distToNode(eg, p, v, 1)) ) if debug: wkt = Track([Obs(track[i].position), Obs(p)]).toWKT() f1.write(str(i) + ' "' + wkt + '" ' + str(d) + "\n") model = Dynamics.HMM() model.setStates(__states) model.setTransitionModel(__tst_log) model.setObservationModel(__obs_log) model.estimate( track, obs=["x", "y"], mode=Dynamics.MODE_OBS_AS_2D_POSITIONS, verbose=verbose * Dynamics.MODE_VERBOSE_PROGRESS, ) for k in progressbar.progressbar(range(len(track))): X = [track[k].position.getX(), track["hmm_inference", k][0].getX()] Y = [track[k].position.getY(), track["hmm_inference", k][0].getY()] plt.plot(X, Y, "g-") track[k].position.setX(track["hmm_inference", k][0].getX()) track[k].position.setY(track["hmm_inference", k][0].getY())
def run_routing_backward(self, target: Union[int, Node]) -> Union[Track, None]: """Computes shortest path between the source node used in forward step :func:`run_routing_forward` and any target node. If target node has not been reached during forward search, a None object is returned by the function. :param target: A target node :return: A track between the source node specified in :func:`run_routing_forward` and a target node. The track contains topologic and non-topologic vertices. If the node target has not been reached during forward step, None object is output """ target = self.__correctInputNode(target) node = self.NODES[target] track = Track() track.addObs(Obs(node.coord)) if node.antecedent == "": return None while (node.poids != 0) and (node.antecedent != ""): e = self.EDGES[node.antecedent_edge] edge_geom = e.geom.copy() if e.source != node: edge_geom = edge_geom.reverse() track = track + (edge_geom > 1) node = node.antecedent return track
def test_write_csv_minim(self): GPSTime.setReadFormat("4Y-2M-2D 2h:2m:2s") track = Track() p1 = Obs(ENUCoords(0, 0), GPSTime.readTimestamp('2020-01-01 10:00:00')) track.addObs(p1) p2 = Obs(ENUCoords(0, 1), GPSTime.readTimestamp('2020-01-01 10:00:01')) track.addObs(p2) csvpath = os.path.join(self.resource_path, 'data/test/test_write_csv_minim.wkt') FileWriter.writeToFile(track, csvpath, id_E=0,id_N=1,id_U=2,id_T=3,h=1, separator=";") contents = open(csvpath).read() txt = "#srid: ENU\n" txt += "#E;N;U;time\n" txt += "0.000;0.000;0.000;01/01/2020 10:00:00\n" txt += "0.000;1.000;0.000;01/01/2020 10:00:01\n" self.assertEqual(contents.strip(), txt.strip())
def findStopsLocal(track, speed=1, duration=10): track = track.copy() stops = Track() # track.segmentation("speed", "#mark", speed) track.operate(Operator.Operator.DIFFERENTIATOR, "#mark") track.operate(Operator.Operator.RECTIFIER, "#mark") TRACES = split(track, "#mark") TMP_MEAN_X = [] TMP_MEAN_Y = [] TMP_MEAN_Z = [] TMP_STD_X = [] TMP_STD_Y = [] TMP_STD_Z = [] TMP_DURATION = [] TMP_NBPOINTS = [] TMP_SIGMA_X = [] TMP_SIGMA_Y = [] TMP_SIGMA_Z = [] for i in range(0, len(TRACES), 2): if TRACES[i].duration() < duration: continue stops.addObs( Obs(TRACES[i].getCentroid().copy(), TRACES[i].getFirstObs().timestamp.copy())) TMP_SIGMA_X.append(TRACES[i].operate(Operator.Operator.AVERAGER, "x")) TMP_SIGMA_Y.append(TRACES[i].operate(Operator.Operator.AVERAGER, "y")) TMP_SIGMA_Z.append(TRACES[i].operate(Operator.Operator.AVERAGER, "z")) TMP_SIGMA_X.append(TRACES[i].operate(Operator.Operator.STDDEV, "x")) TMP_SIGMA_Y.append(TRACES[i].operate(Operator.Operator.STDDEV, "y")) TMP_SIGMA_Z.append(TRACES[i].operate(Operator.Operator.STDDEV, "z")) TMP_NBPOINTS.append(TRACES[i].size()) TMP_DURATION.append(TRACES[i].duration()) if stops.size() == 0: return stops # stops.createAnalyticalFeature("radius", TMP_RADIUS) stops.createAnalyticalFeature("mean_x", TMP_MEAN_X) stops.createAnalyticalFeature("mean_y", TMP_MEAN_Y) stops.createAnalyticalFeature("mean_z", TMP_MEAN_Z) stops.createAnalyticalFeature("sigma_x", TMP_STD_X) stops.createAnalyticalFeature("sigma_y", TMP_STD_Y) stops.createAnalyticalFeature("sigma_z", TMP_STD_Z) stops.createAnalyticalFeature("duration", TMP_DURATION) stops.createAnalyticalFeature("nb_points", TMP_NBPOINTS) stops.operate(Operator.Operator.QUAD_ADDER, "sigma_x", "sigma_y", "rmse") return stops
def test_create_index_collection2(self): GPSTime.setReadFormat("4Y-2M-2D 2h:2m:2s") track = Track() p1 = Obs(ENUCoords(0, 0), GPSTime.readTimestamp('2020-01-01 10:00:00')) track.addObs(p1) p2 = Obs(ENUCoords(3.1, 3), GPSTime.readTimestamp('2020-01-01 10:08:00')) track.addObs(p2) p3 = Obs(ENUCoords(3.1, 4.5), GPSTime.readTimestamp('2020-01-01 10:17:00')) track.addObs(p3) p4 = Obs(ENUCoords(4.5, 4.5), GPSTime.readTimestamp('2020-01-01 10:21:00')) track.addObs(p4) p5 = Obs(ENUCoords(6, 5.5), GPSTime.readTimestamp('2020-01-01 10:21:00')) track.addObs(p5) p6 = Obs(ENUCoords(7, 4.5), GPSTime.readTimestamp('2020-01-01 10:21:00')) track.addObs(p6) p7 = Obs(ENUCoords(11, 5.5), GPSTime.readTimestamp('2020-01-01 10:21:00')) track.addObs(p7) p8 = Obs(ENUCoords(13, 10), GPSTime.readTimestamp('2020-01-01 10:25:00')) track.addObs(p8) #track.plot() #track.plotAsMarkers() TRACES = [] TRACES.append(track) collection = TrackCollection(TRACES) index = SpatialIndex(collection, (2, 2)) index.plot() # ===================================================================== # ===================================================================== self.assertEqual(index.request(0, 0), [0]) self.assertEqual(index.request(1, 0), [0]) self.assertEqual(index.request(0, 1), []) self.assertEqual(index.request(1, 1), [0]) self.assertEqual(index.request(2, 0), []) self.assertEqual(index.request(2, 1), []) self.assertEqual(index.request(1, 2), [0]) self.assertEqual(index.request(2, 2), [0]) self.assertEqual(index.request(3, 2), [0]) self.assertEqual(index.request(3, 3), []) self.assertEqual(index.request(4, 2), [0]) self.assertEqual(index.request(4, 3), []) self.assertEqual(index.request(4, 4), []) self.assertEqual(index.request(5, 2), [0]) self.assertEqual(index.request(5, 3), [0]) self.assertEqual(index.request(5, 4), [])
def wktLineStringToObs(wkt, srid): """ Une polyligne de n points est modélisée par une Track (timestamp = 1970/01/01 00 :00 :00) Cas LINESTRING() """ # Creation d'une liste vide TAB_OBS = list() # Separation de la chaine coords_string = wkt.split("(") coords_string = coords_string[1] coords_string = coords_string.split(")")[0] coords = coords_string.split(",") for i in range(0, len(coords)): sl = coords[i].strip().split(" ") x = float(sl[0]) y = float(sl[1]) if len(sl) == 3: z = float(sl[2]) else: z = 0.0 if not srid.upper() in [ "ENUCOORDS", "ENU", "GEOCOORDS", "GEO", "ECEFCOORDS", "ECEF", ]: print("Error: unknown coordinate type [" + str(srid) + "]") exit() if srid.upper() in ["ENUCOORDS", "ENU"]: point = ENUCoords(x, y, z) if srid.upper() in ["GEOCOORDS", "GEO"]: point = GeoCoords(x, y, z) if srid.upper() in ["ECEFCOORDS", "ECEF"]: point = ECEFCoords(x, y, z) TAB_OBS.append(Obs(point, GPSTime())) return TAB_OBS
def setUp(self): GPSTime.setReadFormat("4Y-2M-2D 2h:2m:2s") self.track = Track() p1 = Obs(ENUCoords(0, 0), GPSTime.readTimestamp('2020-01-01 10:00:00')) self.track.addObs(p1) p2 = Obs(ENUCoords(0, 1), GPSTime.readTimestamp('2020-01-01 10:00:01')) self.track.addObs(p2) p3 = Obs(ENUCoords(1, 1), GPSTime.readTimestamp('2020-01-01 10:00:02')) self.track.addObs(p3) p4 = Obs(ENUCoords(1, 2), GPSTime.readTimestamp('2020-01-01 10:00:03')) self.track.addObs(p4) p5 = Obs(ENUCoords(2, 2), GPSTime.readTimestamp('2020-01-01 10:00:04')) self.track.addObs(p5) p6 = Obs(ENUCoords(2, 3), GPSTime.readTimestamp('2020-01-01 10:00:06')) self.track.addObs(p6) p7 = Obs(ENUCoords(3, 3), GPSTime.readTimestamp('2020-01-01 10:00:08')) self.track.addObs(p7) p8 = Obs(ENUCoords(3, 4), GPSTime.readTimestamp('2020-01-01 10:00:10')) self.track.addObs(p8) p9 = Obs(ENUCoords(4, 4), GPSTime.readTimestamp('2020-01-01 10:00:12')) self.track.addObs(p9)
def readFromGpx(path, srid="GEO"): """ Reads (multiple) tracks in .gpx file """ tracks = TrackCollection() format_old = GPSTime.getReadFormat() GPSTime.setReadFormat("4Y-2M-2D 2h:2m:2s") doc = minidom.parse(path) trks = doc.getElementsByTagName("trk") for trk in trks: trace = t.Track() trkpts = trk.getElementsByTagName("trkpt") for trkpt in trkpts: lon = float(trkpt.attributes["lon"].value) lat = float(trkpt.attributes["lat"].value) hgt = utils.NAN eles = trkpt.getElementsByTagName("ele") if eles.length > 0: hgt = float(eles[0].firstChild.data) time = "" times = trkpt.getElementsByTagName("time") if times.length > 0: time = GPSTime(times[0].firstChild.data) else: time = GPSTime() point = Obs(utils.makeCoords(lon, lat, hgt, srid), time) trace.addObs(point) tracks.addTrack(trace) # pourquoi ? # --> pour remettre le format comme il etait avant la lectre :) GPSTime.setReadFormat(format_old) collection = TrackCollection(tracks) return collection
def tabCoordsLineStringToObs(coords, srid): """TODO""" # Creation d'une liste vide TAB_OBS = list() for i in range(0, len(coords)): sl = coords[i] x = float(sl[0]) y = float(sl[1]) if len(sl) == 3: z = float(sl[2]) else: z = 0.0 if not srid.upper() in [ "ENUCOORDS", "ENU", "GEOCOORDS", "GEO", "ECEFCOORDS", "ECEF", ]: print("Error: unknown coordinate type [" + str(srid) + "]") exit() if srid.upper() in ["ENUCOORDS", "ENU"]: point = ENUCoords(x, y, z) if srid.upper() in ["GEOCOORDS", "GEO"]: point = GeoCoords(x, y, z) if srid.upper() in ["ECEFCOORDS", "ECEF"]: point = ECEFCoords(x, y, z) TAB_OBS.append(Obs(point, GPSTime())) return TAB_OBS
def findStopsGlobal(track, diameter=20, duration=60, downsampling=1, verbose=True): """Find stop points in a track based on two parameters: Maximal size of a stop (as the diameter of enclosing circle, in ground units) and minimal time duration (in seconds) Use downsampling parameter > 1 to speed up the process""" # If down-sampling is required if downsampling > 1: track = track.copy() track **= track.size() / downsampling # --------------------------------------------------------------------------- # Computes cost matrix as : # Cij = 0 if size of enclosing circle of pi, pi+1, ... pj-1 is > diameter # Cij = 0 if time duration between pi and p-1 is < duration # Cij = (j-i)**2 = square of the number of points of segment otherwise # --------------------------------------------------------------------------- C = np.zeros((track.size(), track.size())) RANGE = range(track.size() - 2) if verbose: print("Minimal enclosing circles computation:") RANGE = progressbar.progressbar(RANGE) for i in RANGE: for j in range(i + 1, track.size() - 1): if track[i].distance2DTo(track[j - 1]) > diameter: C[i, j] = 0 break if track[j - 1].timestamp - track[i].timestamp <= duration: C[i, j] = 0 continue C[i, j] = 2 * minCircle(track.extract(i, j - 1))[1] C[i, j] = (C[i, j] < diameter) * (j - i)**2 C = C + np.transpose(C) # --------------------------------------------------------------------------- # Computes optimal partition with dynamic programing # --------------------------------------------------------------------------- segmentation = optimalPartition(C, MODE_SEGMENTATION_MAXIMIZE, verbose) stops = Track() TMP_RADIUS = [] TMP_MEAN_X = [] TMP_MEAN_Y = [] TMP_MEAN_Z = [] TMP_IDSTART = [] TMP_IDEND = [] TMP_STD_X = [] TMP_STD_Y = [] TMP_STD_Z = [] TMP_DURATION = [] TMP_NBPOINTS = [] for i in range(len(segmentation) - 1): portion = track.extract(segmentation[i], segmentation[i + 1] - 1) C = minCircle(portion) if (C[1] > diameter / 2) or (portion.duration() < duration): continue stops.addObs(Obs(C[0], portion.getFirstObs().timestamp)) TMP_RADIUS.append(C[1]) TMP_MEAN_X.append(portion.operate(Operator.Operator.AVERAGER, "x")) TMP_MEAN_Y.append(portion.operate(Operator.Operator.AVERAGER, "y")) TMP_MEAN_Z.append(portion.operate(Operator.Operator.AVERAGER, "z")) TMP_STD_X.append(portion.operate(Operator.Operator.STDDEV, "x")) TMP_STD_Y.append(portion.operate(Operator.Operator.STDDEV, "y")) TMP_STD_Z.append(portion.operate(Operator.Operator.STDDEV, "z")) TMP_IDSTART.append(segmentation[i] * downsampling) TMP_IDEND.append((segmentation[i + 1] - 1) * downsampling) TMP_NBPOINTS.append(segmentation[i + 1] - segmentation[i]) TMP_DURATION.append(portion.duration()) if stops.size() == 0: return stops stops.createAnalyticalFeature("radius", TMP_RADIUS) stops.createAnalyticalFeature("mean_x", TMP_MEAN_X) stops.createAnalyticalFeature("mean_y", TMP_MEAN_Y) stops.createAnalyticalFeature("mean_z", TMP_MEAN_Z) stops.createAnalyticalFeature("id_ini", TMP_IDSTART) stops.createAnalyticalFeature("id_end", TMP_IDEND) stops.createAnalyticalFeature("sigma_x", TMP_STD_X) stops.createAnalyticalFeature("sigma_y", TMP_STD_Y) stops.createAnalyticalFeature("sigma_z", TMP_STD_Z) stops.createAnalyticalFeature("duration", TMP_DURATION) stops.createAnalyticalFeature("nb_points", TMP_NBPOINTS) stops.operate(Operator.Operator.QUAD_ADDER, "sigma_x", "sigma_y", "rmse") stops.base = track.base return stops
def setUp(self): #---------------------------------------------------------------------- # 4 sommets sur axes du cercle trigonométrique GPSTime.setReadFormat("4Y-2M-2D 2h:2m:2s") self.trace1 = Track() c1 = ENUCoords(1, 0, 0) p1 = Obs(c1, GPSTime.readTimestamp("2018-01-01 10:00:00")) self.trace1.addObs(p1) c2 = ENUCoords(0, 1, 0) p2 = Obs(c2, GPSTime.readTimestamp("2018-01-01 10:00:12")) self.trace1.addObs(p2) c3 = ENUCoords(-1, 0, 0) p3 = Obs(c3, GPSTime.readTimestamp("2018-01-01 10:00:40")) self.trace1.addObs(p3) c4 = ENUCoords(0, -1, 0) p4 = Obs(c4, GPSTime.readTimestamp("2018-01-01 10:01:50")) self.trace1.addObs(p4) self.trace1.addObs(p1) # --------------------------------------------------------------------- # Un escalier self.trace2 = Track() pm3 = Obs(ENUCoords(-2, -1), GPSTime.readTimestamp('2020-01-01 09:59:44')) self.trace2.addObs(pm3) pm2 = Obs(ENUCoords(-1, -1), GPSTime.readTimestamp('2020-01-01 09:59:48')) self.trace2.addObs(pm2) pm1 = Obs(ENUCoords(-1, 0), GPSTime.readTimestamp('2020-01-01 09:59:55')) self.trace2.addObs(pm1) p1 = Obs(ENUCoords(0, 0), GPSTime.readTimestamp('2020-01-01 10:00:00')) self.trace2.addObs(p1) p2 = Obs(ENUCoords(0, 2), GPSTime.readTimestamp('2020-01-01 10:00:01')) self.trace2.addObs(p2) p3 = Obs(ENUCoords(1, 2), GPSTime.readTimestamp('2020-01-01 10:00:02')) self.trace2.addObs(p3) p4 = Obs(ENUCoords(1, 5), GPSTime.readTimestamp('2020-01-01 10:00:03')) self.trace2.addObs(p4) p5 = Obs(ENUCoords(2, 5), GPSTime.readTimestamp('2020-01-01 10:00:04')) self.trace2.addObs(p5) p6 = Obs(ENUCoords(2, 9), GPSTime.readTimestamp('2020-01-01 10:00:06')) self.trace2.addObs(p6) p7 = Obs(ENUCoords(3, 9), GPSTime.readTimestamp('2020-01-01 10:00:08')) self.trace2.addObs(p7) p8 = Obs(ENUCoords(3, 14), GPSTime.readTimestamp('2020-01-01 10:00:10')) self.trace2.addObs(p8) p9 = Obs(ENUCoords(4, 14), GPSTime.readTimestamp('2020-01-01 10:00:12')) self.trace2.addObs(p9) p10 = Obs(ENUCoords(4, 20), GPSTime.readTimestamp('2020-01-01 10:00:15')) self.trace2.addObs(p10) # --------------------------------------------------------------------- # self.trace3 = Track() p1 = Obs(ENUCoords(0, 0), GPSTime.readTimestamp('2020-01-01 10:00:00')) self.trace3.addObs(p1) p2 = Obs(ENUCoords(1.5, 0.5), GPSTime.readTimestamp('2020-01-01 10:00:00')) self.trace3.addObs(p2) p3 = Obs(ENUCoords(2, 2), GPSTime.readTimestamp('2020-01-01 10:00:00')) self.trace3.addObs(p3) p4 = Obs(ENUCoords(3.75, 0.6), GPSTime.readTimestamp('2020-01-01 10:00:00')) self.trace3.addObs(p4) p5 = Obs(ENUCoords(5, 0.5), GPSTime.readTimestamp('2020-01-01 10:00:00')) self.trace3.addObs(p5) p6 = Obs(ENUCoords(3.55, -0.5), GPSTime.readTimestamp('2020-01-01 10:00:00')) self.trace3.addObs(p6) p7 = Obs(ENUCoords(1.8, -1.2), GPSTime.readTimestamp('2020-01-01 10:00:00')) self.trace3.addObs(p7) p8 = Obs(ENUCoords(1, -3), GPSTime.readTimestamp('2020-01-01 10:00:00')) self.trace3.addObs(p8)
def noise(track, sigma=[1], kernel=[Kernel.DiracKernel()], distribution=DISTRIBUTION_NORMAL, mode='linear', force=False): """Track noising with Cholesky factorization of gaussian process covariance matrix: .. math:: h(x2-x1)=\\exp-\\left(\\frac{x2-x1}{scope}\\right)^2 If :math:`X` is a gaussian white noise, :math:`Cov(LX) = L^t*L` => if :math:`L` is a Cholesky factorization of a semi-postive-definite matrix :math:`S`, :math:`then Cov(LX) = L^T*L = S` and :math:`Y=LX`` has :math:`S` as covariance matrix. :param track: the track to be smoothed (input track is not modified) :param sigma: noise amplitude(s) (in observation coordinate units) :param kernel: noise autocovariance function(s) :param mode: 'linear' (default), 'circular' or 'euclidian' :param force: force definite-positive matrix with removal of negative eigen values""" sigma = utils.listify(sigma) kernel = utils.listify(kernel) if len(sigma) != len(kernel): sys.exit( "Error: amplitude and kernel arrays must have same size in 'noise' function" ) N = track.size() track.compute_abscurv() noised_track = track.copy() for n in range(len(sigma)): SIGMA_S = utils.makeCovarianceMatrixFromKernel(kernel[n], track, force=force, mode=mode) SIGMA_S += np.identity(N) * 1e-12 SIGMA_S *= sigma[n]**2 / SIGMA_S[0, 0] # Cholesky decomposition L = np.linalg.cholesky(SIGMA_S) # Noise simulation if distribution == DISTRIBUTION_NORMAL: Xx = np.random.normal(0.0, 1.0, N) Xy = np.random.normal(0.0, 1.0, N) Xz = np.random.normal(0.0, 1.0, N) if distribution == DISTRIBUTION_UNIFORM: Xx = np.random.uniform(-1.73205, 1.73205, N) Xy = np.random.uniform(-1.73205, 1.73205, N) Xz = np.random.uniform(-1.73205, 1.73205, N) if distribution == DISTRIBUTION_LAPLACE: Xx = np.random.laplace(0.0, 0.5, N) Xy = np.random.laplace(0.0, 0.5, N) Xz = np.random.laplace(0.0, 0.5, N) Yx = np.matmul(L, Xx) Yy = np.matmul(L, Xy) Yz = np.matmul(L, Xz) # Building noised track for i in range(N): pt = noised_track.getObs(i).position pt.setX(pt.getX() + Yx[i]) pt.setY(pt.getY() + Yy[i]) pt.setZ(pt.getZ() + Yz[i]) obs = Obs(pt, track.getObs(i).timestamp) if mode == 'circular': noised_track.loop() return noised_track
def test_create_index_collection1(self): GPSTime.setReadFormat("4Y-2M-2D 2h:2m:2s") track = Track() p1 = Obs(ENUCoords(0, 0), GPSTime.readTimestamp('2020-01-01 10:00:00')) track.addObs(p1) p2 = Obs(ENUCoords(2.5, 3), GPSTime.readTimestamp('2020-01-01 10:08:00')) track.addObs(p2) p3 = Obs(ENUCoords(2.5, 5), GPSTime.readTimestamp('2020-01-01 10:17:00')) track.addObs(p3) p4 = Obs(ENUCoords(7, 5), GPSTime.readTimestamp('2020-01-01 10:21:00')) track.addObs(p4) p5 = Obs(ENUCoords(10, 10), GPSTime.readTimestamp('2020-01-01 10:25:00')) track.addObs(p5) #track.plot() #track.plotAsMarkers() TRACES = [] TRACES.append(track) collection = TrackCollection(TRACES) index = SpatialIndex(collection, (2, 2)) index.plot() # ===================================================================== # ===================================================================== self.assertEqual(index.request(0, 0), [0]) self.assertEqual(index.request(1, 0), []) self.assertEqual(index.request(0, 1), [0]) self.assertEqual(index.request(1, 1), [0]) self.assertEqual(index.request(2, 0), []) self.assertEqual(index.request(2, 1), []) self.assertEqual(index.request(1, 2), [0]) self.assertEqual(index.request(2, 2), [0]) self.assertEqual(index.request(3, 2), [0]) self.assertEqual(index.request(3, 3), [0]) self.assertEqual(index.request(4, 3), [0]) self.assertEqual(index.request(4, 4), [0]) # # ===================================================================== self.assertEqual(index.request(ENUCoords(0, 0)), [0]) self.assertEqual(index.request(ENUCoords(2.5, 3)), [0]) self.assertEqual(index.request(ENUCoords(2.5, 5)), [0]) self.assertEqual(index.request(ENUCoords(7, 5)), [0]) self.assertEqual(index.request(ENUCoords(10, 10)), [0]) self.assertEqual(index.request(ENUCoords(0.5, 2.5)), [0]) self.assertEqual(index.request(ENUCoords(4.2, 5.8)), [0]) # # ===================================================================== self.assertEqual(index.request([ENUCoords(2.1, 0.5), ENUCoords(1.1, 1.1)]), [0]) self.assertEqual(index.request([ENUCoords(2.1, 0.5), ENUCoords(7.1, 3.5)]), []) self.assertEqual(index.request([ENUCoords(5.8, 5.8), ENUCoords(2.1, 1.1)]), [0]) # # ===================================================================== self.assertEqual(index.request(track), [0]) track2 = Track() p6 = Obs(ENUCoords(2.2, 0), GPSTime.readTimestamp('2020-01-01 10:00:00')) track2.addObs(p6) p7 = Obs(ENUCoords(2.2, 3.8), GPSTime.readTimestamp('2020-01-01 10:08:00')) track2.addObs(p7) p8 = Obs(ENUCoords(6.5, 3.8), GPSTime.readTimestamp('2020-01-01 10:08:00')) track2.addObs(p8) self.assertEqual(index.request(track2), [0]) track3 = Track() p9 = Obs(ENUCoords(6.5, 3.8), GPSTime.readTimestamp('2020-01-01 10:00:00')) track3.addObs(p9) p10 = Obs(ENUCoords(6.5, 7), GPSTime.readTimestamp('2020-01-01 10:08:00')) track3.addObs(p10) p11 = Obs(ENUCoords(10, 7), GPSTime.readTimestamp('2020-01-01 10:08:00')) track3.addObs(p11) self.assertEqual(index.request(track3), [0]) # # ===================================================================== # # ===================================================================== self.assertCountEqual(index.neighborhood(0, 4, 0), []) self.assertCountEqual(index.neighborhood(0, 4, 1), []) self.assertCountEqual(index.neighborhood(0, 4, 2), [0]) self.assertCountEqual(index.neighborhood(0, 4, 3), [0]) self.assertCountEqual(index.neighborhood(3, 0, 0), []) self.assertCountEqual(index.neighborhood(3, 0, 1), []) self.assertCountEqual(index.neighborhood(3, 0, 2), [0]) self.assertCountEqual(index.neighborhood(3, 0, 3), [0]) self.assertCountEqual(index.neighborhood(2, 2, 0), [0]) self.assertCountEqual(index.neighborhood(2, 2, 1), [0]) self.assertCountEqual(index.neighborhood(2, 2, 2), [0]) #self.assertCountEqual(index.neighborhood(2, 2, 3), [0]) # # UNIT = -1 self.assertCountEqual(index.neighborhood(2, 1, -1), [0]) self.assertCountEqual(index.neighborhood(2, 0, -1), [0]) self.assertCountEqual(index.neighborhood(0, 1, -1), [0]) self.assertCountEqual(index.neighborhood(1, 1, -1), [0]) self.assertCountEqual(index.neighborhood(0, 4, -1), [0]) self.assertCountEqual(index.neighborhood(3, 4, -1), [0]) self.assertCountEqual(index.neighborhood(4, 4, -1), [0]) self.assertCountEqual(index.neighborhood(2, 4, -1), [0]) # # ===================================================================== self.assertCountEqual(index.neighborhood(ENUCoords(0, 0.1)), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(2.5, 3)), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(2.5, 5)), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(7, 5)), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(10, 10)), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(6.5, 3.8), None, 0), []) self.assertCountEqual(index.neighborhood(ENUCoords(6.5, 3.8), None, 1), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(6.5, 3.8), None, 2), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(6.5, 3.8), None, 3), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(2.2, 3.8), None, 0), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(2.2, 3.8), None, 1), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(2.2, 3.8), None, 2), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(2.2, 3.8), None, 3), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(9.9, 7), None, 0), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(9.9, 7), None, 1), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(9.9, 7), None, 2), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(9.9, 7), None, 3), [0]) # # UNIT = -1 self.assertCountEqual(index.neighborhood(ENUCoords(0, 0), None, -1), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(2.5, 3), None, -1), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(2.5, 5), None, -1), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(7, 5), None, -1), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(10, 10), None, -1), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(6.5, 3.8), None, -1), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(2.2, 3.8), None, -1), [0]) self.assertCountEqual(index.neighborhood(ENUCoords(9.9, 7), None, -1), [0]) # # ===================================================================== self.assertEqual(index.neighborhood([ENUCoords(2.1, 0.5), ENUCoords(0.1, 2.1)], None, 0), [0]) self.assertEqual(index.neighborhood([ENUCoords(2.1, 0.5), ENUCoords(0.1, 2.1)], None, 1), [0]) self.assertEqual(index.neighborhood([ENUCoords(2.1, 0.5), ENUCoords(0.1, 2.1)], None, 2), [0]) self.assertEqual(index.neighborhood([ENUCoords(2.1, 0.5), ENUCoords(0.1, 2.1)], None, -1), [0]) self.assertEqual(index.neighborhood([ENUCoords(2.1, 0.5), ENUCoords(7.1, 3.5)]), []) self.assertEqual(index.neighborhood([ENUCoords(2.1, 0.5), ENUCoords(7.1, 3.5)], None, 2), [0]) self.assertEqual(index.neighborhood([ENUCoords(2.1, 0.5), ENUCoords(7.1, 3.5)], None, -1), [0]) self.assertEqual(index.neighborhood([ENUCoords(5.8, 5.8), ENUCoords(2.1, 1.1)]), [0]) self.assertEqual(index.neighborhood([ENUCoords(5.8, 5.8), ENUCoords(2.1, 1.1)], None, 1), [0]) self.assertEqual(index.neighborhood([ENUCoords(5.8, 5.8), ENUCoords(2.1, 1.1)], None, 2), [0]) self.assertEqual(index.neighborhood([ENUCoords(5.8, 5.8), ENUCoords(2.1, 1.1)], None, -1), [0]) # # ===================================================================== self.assertEqual(index.neighborhood(track), [0]) self.assertEqual(index.neighborhood(track, None, 1), [0]) self.assertEqual(index.neighborhood(track, None, 3), [0]) self.assertEqual(index.neighborhood(track, None, -1), [0]) self.assertEqual(index.neighborhood(track2), [0]) self.assertEqual(index.neighborhood(track2, None, 0), [0]) self.assertEqual(index.neighborhood(track2, None, 1), [0]) self.assertEqual(index.neighborhood(track2, None, 3), [0]) self.assertEqual(index.neighborhood(track2, None, -1), [0]) self.assertEqual(index.neighborhood(track3), [0]) self.assertEqual(index.neighborhood(track3, None, 0), [0]) self.assertEqual(index.neighborhood(track3, None, 1), [0]) self.assertEqual(index.neighborhood(track3, None, 2), [0]) self.assertEqual(index.neighborhood(track3, None, 3), [0]) self.assertEqual(index.neighborhood(track3, None, -1), [0])
def test_selection_track_constraint(self): GPSTime.setReadFormat("4Y-2M-2D 2h:2m:2s") chemin = os.path.join(self.resource_path, './data/trace1.dat') trace = FileReader.readFromFile(chemin, 2, 3, -1, 4, separator=",") trace.plot() # ===================================================================== trace1 = Track() c1 = trace.getObs(1350).position c0 = ENUCoords(c1.getX() + 5000, c1.getY()) c2 = ENUCoords(c1.getX() - 5000, c1.getY()) p1 = Obs(c0, GPSTime.readTimestamp("2018-07-31 14:00:00")) p2 = Obs(c1, GPSTime.readTimestamp("2018-07-31 14:01:00")) p3 = Obs(c2, GPSTime.readTimestamp("2018-07-31 14:02:00")) trace1.addObs(p1) trace1.addObs(p2) trace1.addObs(p3) plt.plot(trace1.getX(), trace1.getY(), 'r-') plt.show() c3 = TrackConstraint(trace1, mode=MODE_PARALLEL) s = Selector([c3]) selector = GlobalSelector([s]) isSelection = selector.contains(trace) self.assertFalse(isSelection) c4 = TrackConstraint(trace1, mode=MODE_CROSSES) s = Selector([c4]) selector = GlobalSelector([s]) isSelection = selector.contains(trace) self.assertTrue(isSelection) # ===================================================================== trace1 = Track() c0 = ENUCoords( trace.getObs(1349).position.getX(), trace.getObs(1349).position.getY()) c1 = ENUCoords( trace.getObs(1350).position.getX(), trace.getObs(1350).position.getY()) c2 = ENUCoords( trace.getObs(1351).position.getX(), trace.getObs(1351).position.getY()) p1 = Obs(c0, GPSTime.readTimestamp("2018-07-31 14:00:00")) p2 = Obs(c1, GPSTime.readTimestamp("2018-07-31 14:01:00")) p3 = Obs(c2, GPSTime.readTimestamp("2018-07-31 14:02:00")) trace1.addObs(p1) trace1.addObs(p2) trace1.addObs(p3) trace.plot() plt.plot(trace1.getX(), trace1.getY(), 'r-') plt.show() c3 = TrackConstraint(trace1, mode=MODE_PARALLEL) s = Selector([c3]) selector = GlobalSelector([s]) isSelection = selector.contains(trace) self.assertTrue(isSelection) c4 = TrackConstraint(trace1, mode=MODE_CROSSES) s = Selector([c4]) selector = GlobalSelector([s]) isSelection = selector.contains(trace) self.assertTrue(isSelection)
def __init__(self, pt1, pt2, time=None, type=TYPE_SELECT): """TODO""" self.gate = Track([Obs(pt1), Obs(pt2)]) self.time = time self.type = type
def example3(): start = GeoCoords(2.4320023, 48.84298, 100).toECEFCoords() print(start) path = "data/psr.dat" track = Track() for i in range(47): track.addObs(Obs(ECEFCoords(0, 0, 0))) track.createAnalyticalFeature("m0", [0] * 47) track.createAnalyticalFeature("sx0", [0] * 47) track.createAnalyticalFeature("sy0", [0] * 47) track.createAnalyticalFeature("sz0", [0] * 47) track.createAnalyticalFeature("m1", [0] * 47) track.createAnalyticalFeature("sx1", [0] * 47) track.createAnalyticalFeature("sy1", [0] * 47) track.createAnalyticalFeature("sz1", [0] * 47) track.createAnalyticalFeature("m2", [0] * 47) track.createAnalyticalFeature("sx2", [0] * 47) track.createAnalyticalFeature("sy2", [0] * 47) track.createAnalyticalFeature("sz2", [0] * 47) track.createAnalyticalFeature("m3", [0] * 47) track.createAnalyticalFeature("sx3", [0] * 47) track.createAnalyticalFeature("sy3", [0] * 47) track.createAnalyticalFeature("sz3", [0] * 47) track.createAnalyticalFeature("m4", [0] * 47) track.createAnalyticalFeature("sx4", [0] * 47) track.createAnalyticalFeature("sy4", [0] * 47) track.createAnalyticalFeature("sz4", [0] * 47) with open(path) as fp: line = True for i in range(47): for j in range(5): line = fp.readline() vals = line[:-2].split(",") track.setObsAnalyticalFeature("sx" + str(j), i, float(vals[1])) track.setObsAnalyticalFeature("sy" + str(j), i, float(vals[2])) track.setObsAnalyticalFeature("sz" + str(j), i, float(vals[3])) track.setObsAnalyticalFeature("m" + str(j), i, float(vals[4])) line = fp.readline() def F(x): plan = ECEFCoords(x[0, 0], x[1, 0], x[2, 0]).toENUCoords(start) plan.E += x[5, 0] * math.sin(x[4, 0]) plan.N += x[5, 0] * math.cos(x[4, 0]) xyz = plan.toECEFCoords(start) return np.array([[xyz.X], [xyz.Y], [xyz.Z], [x[3, 0] + x[6, 0]], [x[4, 0]], [x[5, 0]], [x[6, 0]]]) def H(x, k, track): return np.array([ [((x[0, 0] - track["sx0", k])**2 + (x[1, 0] - track["sy0", k])**2 + (x[2, 0] - track["sz0", k])**2)**0.5 + x[3, 0]], [((x[0, 0] - track["sx1", k])**2 + (x[1, 0] - track["sy1", k])**2 + (x[2, 0] - track["sz1", k])**2)**0.5 + x[3, 0]], [((x[0, 0] - track["sx2", k])**2 + (x[1, 0] - track["sy2", k])**2 + (x[2, 0] - track["sz2", k])**2)**0.5 + x[3, 0]], [((x[0, 0] - track["sx3", k])**2 + (x[1, 0] - track["sy3", k])**2 + (x[2, 0] - track["sz3", k])**2)**0.5 + x[3, 0]], [((x[0, 0] - track["sx4", k])**2 + (x[1, 0] - track["sy4", k])**2 + (x[2, 0] - track["sz4", k])**2)**0.5 + x[3, 0]] ]) Q = 1e0 * np.eye(7, 7) Q[3, 3] = 0 Q[4, 4] = 1e-10 Q[5, 5] = 1e-1 Q[6, 6] = 1e-1 R = 1e1 * np.eye(5, 5) X0 = np.array([[start.getX()], [start.getY()], [start.getZ()], [0], [0], [0], [0]]) P0 = 1e5 * np.eye(7, 7) P0[3, 3] = 1e6 P0[4, 4] = 1e1 P0[5, 5] = 1e1 P0[6, 6] = 1e3 UKF = Kalman(spreading=1) UKF.setTransition(F, Q) UKF.setObservation(H, R) UKF.setInitState(X0, P0) UKF.summary() UKF.estimate(track, ["m0", "m1", "m2", "m3", "m4"], mode=Dynamics.MODE_STATES_AS_3D_POSITIONS) track.toGeoCoords() track.plot('r-') plt.show() KmlWriter.writeToKml(track, path="couplage.kml", type="LINE")
def example4(): start = GeoCoords(2.4320023, 48.84298, 100).toECEFCoords() path = "data/psr_all.dat" track = Track() Nepochs = 534 for i in range(Nepochs): track.addObs(Obs(ECEFCoords(0, 0, 0))) track.createAnalyticalFeature("m0", [0] * Nepochs) track.createAnalyticalFeature("sx0", [0] * Nepochs) track.createAnalyticalFeature("sy0", [0] * Nepochs) track.createAnalyticalFeature("sz0", [0] * Nepochs) track.createAnalyticalFeature("m1", [0] * Nepochs) track.createAnalyticalFeature("sx1", [0] * Nepochs) track.createAnalyticalFeature("sy1", [0] * Nepochs) track.createAnalyticalFeature("sz1", [0] * Nepochs) track.createAnalyticalFeature("m2", [0] * Nepochs) track.createAnalyticalFeature("sx2", [0] * Nepochs) track.createAnalyticalFeature("sy2", [0] * Nepochs) track.createAnalyticalFeature("sz2", [0] * Nepochs) track.createAnalyticalFeature("m3", [0] * Nepochs) track.createAnalyticalFeature("sx3", [0] * Nepochs) track.createAnalyticalFeature("sy3", [0] * Nepochs) track.createAnalyticalFeature("sz3", [0] * Nepochs) track.createAnalyticalFeature("m4", [0] * Nepochs) track.createAnalyticalFeature("sx4", [0] * Nepochs) track.createAnalyticalFeature("sy4", [0] * Nepochs) track.createAnalyticalFeature("sz4", [0] * Nepochs) track.createAnalyticalFeature("m5", [0] * Nepochs) track.createAnalyticalFeature("sx5", [0] * Nepochs) track.createAnalyticalFeature("sy5", [0] * Nepochs) track.createAnalyticalFeature("sz5", [0] * Nepochs) with open(path) as fp: line = True for i in range(Nepochs): for j in range(6): line = fp.readline() vals = line[:-1].split(",") track.setObsAnalyticalFeature("sx" + str(j), i, float(vals[1])) track.setObsAnalyticalFeature("sy" + str(j), i, float(vals[2])) track.setObsAnalyticalFeature("sz" + str(j), i, float(vals[3])) track.setObsAnalyticalFeature("m" + str(j), i, float(vals[4])) line = fp.readline() track = track % [False, True] def F(x): return np.array([[x[0, 0]], [x[1, 0]], [x[2, 0]], [x[3, 0] + x[4, 0]], [x[4, 0]]]) def H(x, k, track): return np.array([ [((x[0, 0] - track["sx0", k])**2 + (x[1, 0] - track["sy0", k])**2 + (x[2, 0] - track["sz0", k])**2)**0.5 + x[3, 0]], [((x[0, 0] - track["sx1", k])**2 + (x[1, 0] - track["sy1", k])**2 + (x[2, 0] - track["sz1", k])**2)**0.5 + x[3, 0]], [((x[0, 0] - track["sx2", k])**2 + (x[1, 0] - track["sy2", k])**2 + (x[2, 0] - track["sz2", k])**2)**0.5 + x[3, 0]], [((x[0, 0] - track["sx3", k])**2 + (x[1, 0] - track["sy3", k])**2 + (x[2, 0] - track["sz3", k])**2)**0.5 + x[3, 0]], [((x[0, 0] - track["sx4", k])**2 + (x[1, 0] - track["sy4", k])**2 + (x[2, 0] - track["sz4", k])**2)**0.5 + x[3, 0]], [((x[0, 0] - track["sx5", k])**2 + (x[1, 0] - track["sy5", k])**2 + (x[2, 0] - track["sz5", k])**2)**0.5 + x[3, 0]] ]) Q = 1e0 * np.eye(5, 5) Q[3, 3] = 0 Q[4, 4] = 1e0 def R(k): P = 1e1 * np.eye(6, 6) if (k >= 70) and (k < 267): for i in range(3, 6): P[i, i] = 1e16 return P for k in range(70, 267): for i in range(3, 6): track.setObsAnalyticalFeature("m" + str(i), k, 20000000) X0 = np.array([[start.X], [start.Y], [start.Z], [0], [0]]) P0 = 1e5 * np.eye(5, 5) P0[3, 3] = 1e8 P0[4, 4] = 1e6 UKF = Kalman(spreading=1) UKF.setTransition(F, Q) UKF.setObservation(H, R) UKF.setInitState(X0, P0) UKF.summary() UKF.estimate(track, ["m0", "m1", "m2", "m3", "m4", "m5"], mode=Dynamics.MODE_STATES_AS_3D_POSITIONS) track.toGeoCoords() KmlWriter.writeToKml(track, path="couplage.kml", type="POINT", c1=[0, 1, 0, 1]) track.plot('r+') plt.show()
def intersection(track1, track2, withTime=-1): if not (track1.getSRID() == track2.getSRID()): print("Error: tracks must have same SRID to compute intersections") exit() I = Track() TMP_I = [] TMP_J = [] TMP_TPS2 = [] for i in range(len(track1) - 1): x11 = track1[i].position.getX() y11 = track1[i].position.getY() x12 = track1[i + 1].position.getX() y12 = track1[i + 1].position.getY() seg1 = [x11, y11, x12, y12] for j in range(len(track2) - 1): x21 = track2[j].position.getX() y21 = track2[j].position.getY() x22 = track2[j + 1].position.getX() y22 = track2[j + 1].position.getY() seg2 = [x21, y21, x22, y22] if isSegmentIntersects(seg1, seg2): P1 = cartesienne(seg1) P2 = cartesienne(seg2) A = np.zeros((2, 2)) B = np.zeros((2, 1)) A[0, 0] = P1[0] A[0, 1] = P1[1] B[0, 0] = -P1[2] A[1, 0] = P2[0] A[1, 1] = P2[1] B[1, 0] = -P2[2] X = np.linalg.solve(A, B) x = X[0, 0] y = X[1, 0] p = Utils.makeCoords(x, y, 0, track1.getSRID()) # Linear interpolation on track 1 w1 = p.distance2DTo(track1[i].position) w2 = p.distance2DTo(track1[i + 1].position) p.setZ((w1 * track1[i + 1].position.getZ() + w2 * track1[i].position.getZ()) / (w1 + w2)) t1 = track1[i].timestamp.toAbsTime() t2 = track1[i].timestamp.toAbsTime() ta = (w1 * t2 + w2 * t1) / (w1 + w2) # Linear interpolation on track 2 w1 = p.distance2DTo(track2[j].position) w2 = p.distance2DTo(track2[j + 1].position) t1 = track2[i].timestamp.toAbsTime() t2 = track2[i].timestamp.toAbsTime() tb = (w1 * t2 + w2 * t1) / (w1 + w2) # Add intersection if (withTime == -1) or (abs(tb - ta) < withTime): I.addObs(Obs(p, GPSTime.readUnixTime(ta))) TMP_TPS2.append(GPSTime.readUnixTime(tb)) TMP_I.append(i) TMP_J.append(j) if I.size() > 0: I.createAnalyticalFeature("timestamp2", TMP_TPS2) I.createAnalyticalFeature("id1", TMP_I) I.createAnalyticalFeature("id2", TMP_J) return I
def findStopsGlobalForRTK(track, std_max=2e-2, duration=5, downsampling=1, verbose=True): """Find stop points in a track based on maximal size of a stop and minimal time duration Two parameters: - Maximal size of a stop (as the standard deviation per axis, in ground units) - Minimal time duration (in seconds) Use downsampling parameter > 1 to speed up the process. Default is set for precise RTK GNSS survey (2 cm for 5 sec) """ # If down-sampling is required if downsampling > 1: track = track.copy() track **= track.size() / downsampling # --------------------------------------------------------------------------- # Computes cost matrix as : # Cij = 0 if sqrt(0.33*(std_x^2 + std_y^2 + std_Z^2)) > std_max # Cij = 0 if time duration between pi and p-1 is < duration # Cij = (j-i)**2 = square of the number of points of segment otherwise # --------------------------------------------------------------------------- C = np.zeros((track.size(), track.size())) RANGE = range(track.size() - 2) if verbose: print("Minimal enclosing circles computation:") RANGE = progressbar.progressbar(RANGE) for i in RANGE: for j in range(i + 1, track.size() - 1): if track[i].distanceTo(track[j - 1]) > 3 * std_max: C[i, j] = 0 break if track[j - 1].timestamp - track[i].timestamp <= duration: C[i, j] = 0 continue portion = track.extract(i, j - 1) varx = portion.operate(Operator.Operator.VARIANCE, "x") vary = portion.operate(Operator.Operator.VARIANCE, "y") varz = portion.operate(Operator.Operator.VARIANCE, "z") C[i, j] = math.sqrt(varx + vary + varz) C[i, j] = (C[i, j] < std_max) * (j - i)**2 C = C + np.transpose(C) # --------------------------------------------------------------------------- # Computes optimal partition with dynamic programing # --------------------------------------------------------------------------- segmentation = optimalPartition(C, MODE_SEGMENTATION_MAXIMIZE, verbose) stops = Track() TMP_RADIUS = [] TMP_MEAN_X = [] TMP_MEAN_Y = [] TMP_MEAN_Z = [] TMP_IDSTART = [] TMP_IDEND = [] TMP_STD_X = [] TMP_STD_Y = [] TMP_STD_Z = [] TMP_DURATION = [] TMP_NBPOINTS = [] for i in range(len(segmentation) - 1): portion = track.extract(segmentation[i], segmentation[i + 1] - 1) radius = C[segmentation[i], segmentation[i + 1]] if radius == 0: continue xm = portion.operate(Operator.Operator.AVERAGER, "x") ym = portion.operate(Operator.Operator.AVERAGER, "y") zm = portion.operate(Operator.Operator.AVERAGER, "z") xv = portion.operate(Operator.Operator.VARIANCE, "x") yv = portion.operate(Operator.Operator.VARIANCE, "y") zv = portion.operate(Operator.Operator.VARIANCE, "z") pt = portion[0].position.copy() pt.setX(xm) pt.setY(ym) pt.setZ(zm) stops.addObs(Obs(pt, portion[0].timestamp)) TMP_RADIUS.append(math.sqrt(xv + yv + zv)) TMP_MEAN_X.append(xm) TMP_MEAN_Y.append(ym) TMP_MEAN_Z.append(zm) TMP_STD_X.append(xv**0.5) TMP_STD_Y.append(yv**0.5) TMP_STD_Z.append(zv**0.5) TMP_IDSTART.append(segmentation[i] * downsampling) TMP_IDEND.append((segmentation[i + 1] - 1) * downsampling) TMP_NBPOINTS.append(segmentation[i + 1] - segmentation[i]) TMP_DURATION.append(portion.duration()) if stops.size() == 0: return stops stops.createAnalyticalFeature("radius", TMP_RADIUS) stops.createAnalyticalFeature("mean_x", TMP_MEAN_X) stops.createAnalyticalFeature("mean_y", TMP_MEAN_Y) stops.createAnalyticalFeature("mean_z", TMP_MEAN_Z) stops.createAnalyticalFeature("id_ini", TMP_IDSTART) stops.createAnalyticalFeature("id_end", TMP_IDEND) stops.createAnalyticalFeature("sigma_x", TMP_STD_X) stops.createAnalyticalFeature("sigma_y", TMP_STD_Y) stops.createAnalyticalFeature("sigma_z", TMP_STD_Z) stops.createAnalyticalFeature("duration", TMP_DURATION) stops.createAnalyticalFeature("nb_points", TMP_NBPOINTS) stops.operate(Operator.Operator.QUAD_ADDER, "sigma_x", "sigma_y", "rmse") stops.base = track.base return stops