Exemplo n.º 1
0
def _det_one((cowcs, fn, wcsfn, do_img, wise)):
    print 'Image', fn
    F = fitsio.FITS(fn)[0]
    imginf = F.get_info()
    hdr = F.read_header()
    H,W = imginf['dims']

    wcs = Sip(wcsfn)

    if wise:
        # HACK -- assume, incorrectly, single Gaussian ~diffraction limited
        psf_sigma = 0.873
    else:
        pixscale = wcs.pixel_scale()
        seeing = hdr['SEEING']
        print 'Seeing', seeing
        psf_sigma = seeing / pixscale / 2.35
    print 'Sigma:', psf_sigma
    psfnorm = 1./(2. * np.sqrt(np.pi) * psf_sigma)

    if False:
        # Compare PSF models with Peter's "SEEING" card
        # (units: arcsec FWHM)
        from tractor.psfex import *
        psffn = fn.replace('.p.w.fits', '.p.w.cat.psf')
        print 'PSF', psffn
        psfmod = PsfEx(psffn, W, H)
        psfim = psfmod.instantiateAt(W/2, H/2)
        print 'psfim', psfim.shape
        ph,pw = psfim.shape
        plt.clf()
        plt.plot(psfim[ph/2,:], 'r-')
        plt.plot(psfim[:,pw/2], 'b-')
        xx = np.arange(pw)
        cc = pw/2
        G = np.exp(-0.5 * (xx - cc)**2 / sig**2)
        plt.plot(G * sum(psfim[:,pw/2]) / sum(G), 'k-')
        ps.savefig()

    # Read full image and estimate noise
    img = F.read()
    print 'Image', img.shape

    if wise:
        ivfn = fn.replace('img-m.fits', 'invvar-m.fits.gz')
        iv = fitsio.read(ivfn)
        sig1 = 1./np.sqrt(np.median(iv))
        print 'Per-pixel noise estimate:', sig1
        mask = (iv == 0)
    else:
        # Estimate and subtract background
        bg = sky_subtract(img, 512, gradient=False)
        img -= bg
    
        diffs = img[:-5:10,:-5:10] - img[5::10,5::10]
        mad = np.median(np.abs(diffs).ravel())
        sig1 = 1.4826 * mad / np.sqrt(2.)
        print 'Per-pixel noise estimate:', sig1
        # Read bad pixel mask
        maskfn = fn.replace('.p.w.fits', '.p.w.bpm.fits')
        mask = fitsio.read(maskfn)

        # FIXME -- mask edge pixels -- some seem to be bad and unmasked
        mask[:2 ,:] = 1
        mask[-2:,:] = 1
        mask[:, :2] = 1
        mask[:,-2:] = 1

        # FIXME -- patch image?
        img[mask != 0] = 0.

        # Get image zeropoint
        for zpkey in ['MAG_ZP', 'UB1_ZP']:
            zp = hdr.get(zpkey, None)
            if zp is not None:
                break

        zpscale = NanoMaggies.zeropointToScale(zp)
        # Scale image to nanomaggies
        img /= zpscale
        sig1 /= zpscale

    # Produce detection map
    detmap = gaussian_filter(img, psf_sigma, mode='constant') / psfnorm**2
    detmap_sig1 = sig1 / psfnorm
    print 'Detection map sig1', detmap_sig1

    # Lanczos resample
    print 'Resampling...'
    L = 3
    try:
        lims = [detmap]
        if do_img:
            lims.append(img)
        Yo,Xo,Yi,Xi,rims = resample_with_wcs(cowcs, wcs, lims, L)
        rdetmap = rims[0]
    except OverlapError:
        return None
    print 'Resampled'

    detmap_iv = (mask[Yo,Xo] == 0) * 1./detmap_sig1**2

    if do_img:
        rimg = rims[1]
    else:
        rimg = None

    return Yo,Xo,rdetmap,detmap_iv,rimg
Exemplo n.º 2
0
    def get_tractor_image(self,
                          slc=None,
                          radecpoly=None,
                          gaussPsf=False,
                          pixPsf=False,
                          hybridPsf=False,
                          splinesky=False,
                          nanomaggies=True,
                          subsky=True,
                          tiny=10,
                          dq=True,
                          invvar=True,
                          pixels=True,
                          constant_invvar=False):
        '''
        Returns a tractor.Image ("tim") object for this image.
        
        Options describing a subimage to return:

        - *slc*: y,x slice objects
        - *radecpoly*: numpy array, shape (N,2), RA,Dec polygon describing
            bounding box to select.

        Options determining the PSF model to use:

        - *gaussPsf*: single circular Gaussian PSF based on header FWHM value.
        - *pixPsf*: pixelized PsfEx model.
        - *hybridPsf*: combo pixelized PsfEx + Gaussian approx.

        Options determining the sky model to use:
        
        - *splinesky*: median filter chunks of the image, then spline those.

        Options determining the units of the image:

        - *nanomaggies*: convert the image to be in units of NanoMaggies;
          *tim.zpscale* contains the scale value the image was divided by.

        - *subsky*: instantiate and subtract the initial sky model,
          leaving a constant zero sky model?

        '''
        get_dq = dq
        get_invvar = invvar

        band = self.band
        imh, imw = self.get_image_shape()
        wcs = self.get_wcs()
        x0, y0 = 0, 0
        x1 = x0 + imw
        y1 = y0 + imh

        # Clip to RA,Dec polygon?
        if slc is None and radecpoly is not None:
            from astrometry.util.miscutils import clip_polygon
            imgpoly = [(1, 1), (1, imh), (imw, imh), (imw, 1)]
            ok, tx, ty = wcs.radec2pixelxy(radecpoly[:-1, 0], radecpoly[:-1,
                                                                        1])
            tpoly = zip(tx, ty)
            clip = clip_polygon(imgpoly, tpoly)
            clip = np.array(clip)
            if len(clip) == 0:
                return None
            x0, y0 = np.floor(clip.min(axis=0)).astype(int)
            x1, y1 = np.ceil(clip.max(axis=0)).astype(int)
            slc = slice(y0, y1 + 1), slice(x0, x1 + 1)
            if y1 - y0 < tiny or x1 - x0 < tiny:
                print('Skipping tiny subimage')
                return None
        # Slice?
        if slc is not None:
            sy, sx = slc
            y0, y1 = sy.start, sy.stop
            x0, x1 = sx.start, sx.stop

        # Is part of this image bad?
        old_extent = (x0, x1, y0, y1)
        new_extent = self.get_good_image_slice((x0, x1, y0, y1),
                                               get_extent=True)
        if new_extent != old_extent:
            x0, x1, y0, y1 = new_extent
            print('Applying good subregion of CCD: slice is', x0, x1, y0, y1)
            if x0 >= x1 or y0 >= y1:
                return None
            slc = slice(y0, y1), slice(x0, x1)

        # Read image pixels
        if pixels:
            print('Reading image slice:', slc)
            img, imghdr = self.read_image(header=True, slice=slc)
            self.check_image_header(imghdr)
        else:
            img = np.zeros((imh, imw), np.float32)
            imghdr = self.read_image_header()
            if slc is not None:
                img = img[slc]
        assert (np.all(np.isfinite(img)))

        # Read inverse-variance (weight) map
        if get_invvar:
            invvar = self.read_invvar(slice=slc, clipThresh=0.)
        else:
            invvar = np.ones_like(img)
        assert (np.all(np.isfinite(invvar)))
        if np.all(invvar == 0.):
            print('Skipping zero-invvar image')
            return None
        # Negative invvars (from, eg, fpack decompression noise) cause havoc
        assert (np.all(invvar >= 0.))

        # Read data-quality (flags) map and zero out the invvars of masked pixels
        if get_dq:
            dq = self.read_dq(slice=slc)
            if dq is not None:
                invvar[dq != 0] = 0.
            if np.all(invvar == 0.):
                print('Skipping zero-invvar image (after DQ masking)')
                return None

        # header 'FWHM' is in pixels
        assert (self.fwhm > 0)
        psf_fwhm = self.fwhm
        psf_sigma = psf_fwhm / 2.35
        primhdr = self.read_image_primary_header()

        sky = self.read_sky_model(splinesky=splinesky,
                                  slc=slc,
                                  primhdr=primhdr,
                                  imghdr=imghdr)
        skysig1 = getattr(sky, 'sig1', None)

        midsky = 0.
        if subsky:
            print('Instantiating and subtracting sky model')
            from tractor.sky import ConstantSky
            skymod = np.zeros_like(img)
            sky.addTo(skymod)
            img -= skymod
            midsky = np.median(skymod)
            zsky = ConstantSky(0.)
            zsky.version = getattr(sky, 'version', '')
            zsky.plver = getattr(sky, 'plver', '')
            del skymod
            sky = zsky
            del zsky

        orig_zpscale = zpscale = NanoMaggies.zeropointToScale(self.ccdzpt)
        if nanomaggies:
            # Scale images to Nanomaggies
            img /= zpscale
            invvar = invvar * zpscale**2
            if not subsky:
                sky.scale(1. / zpscale)
            zpscale = 1.

        # Compute 'sig1', scalar typical per-pixel noise
        if get_invvar:
            sig1 = 1. / np.sqrt(np.median(invvar[invvar > 0]))
        elif skysig1 is not None:
            sig1 = skysig1
            if nanomaggies:
                # skysig1 is in the native units
                sig1 /= orig_zpscale
        else:
            # Estimate per-pixel noise via Blanton's 5-pixel MAD
            slice1 = (slice(0, -5, 10), slice(0, -5, 10))
            slice2 = (slice(5, None, 10), slice(5, None, 10))
            mad = np.median(np.abs(img[slice1] - img[slice2]).ravel())
            sig1 = 1.4826 * mad / np.sqrt(2.)
            print('sig1 estimate:', sig1)
            invvar *= (1. / sig1**2)
        assert (np.isfinite(sig1))

        if constant_invvar:
            print('Setting constant invvar', 1. / sig1**2)
            invvar[invvar > 0] = 1. / sig1**2

        if subsky:
            # Warn if the subtracted sky doesn't seem to work well
            # (can happen, eg, if sky calibration product is inconsistent with
            #  the data)
            imgmed = np.median(img[invvar > 0])
            if np.abs(imgmed) > sig1:
                print('WARNING: image median', imgmed, 'is more than 1 sigma',
                      'away from zero!')

        # tractor WCS object
        twcs = self.get_tractor_wcs(wcs,
                                    x0,
                                    y0,
                                    primhdr=primhdr,
                                    imghdr=imghdr)
        if hybridPsf:
            pixPsf = False
        psf = self.read_psf_model(x0,
                                  y0,
                                  gaussPsf=gaussPsf,
                                  pixPsf=pixPsf,
                                  hybridPsf=hybridPsf,
                                  psf_sigma=psf_sigma,
                                  cx=(x0 + x1) / 2.,
                                  cy=(y0 + y1) / 2.)

        tim = Image(img,
                    invvar=invvar,
                    wcs=twcs,
                    psf=psf,
                    photocal=LinearPhotoCal(zpscale, band=band),
                    sky=sky,
                    name=self.name + ' ' + band)
        assert (np.all(np.isfinite(tim.getInvError())))

        # PSF norm
        psfnorm = self.psf_norm(tim)

        # Galaxy-detection norm
        tim.band = band
        galnorm = self.galaxy_norm(tim)

        # CP (DECam) images include DATE-OBS and MJD-OBS, in UTC.
        import astropy.time
        mjd_tai = astropy.time.Time(self.mjdobs, format='mjd',
                                    scale='utc').tai.mjd
        tim.time = TAITime(None, mjd=mjd_tai)
        tim.slice = slc
        tim.zpscale = orig_zpscale
        tim.midsky = midsky
        tim.sig1 = sig1
        tim.psf_fwhm = psf_fwhm
        tim.psf_sigma = psf_sigma
        tim.propid = self.propid
        tim.psfnorm = psfnorm
        tim.galnorm = galnorm
        tim.sip_wcs = wcs
        tim.x0, tim.y0 = int(x0), int(y0)
        tim.imobj = self
        tim.primhdr = primhdr
        tim.hdr = imghdr
        tim.plver = primhdr.get('PLVER', '').strip()
        tim.skyver = (getattr(sky, 'version', ''), getattr(sky, 'plver', ''))
        tim.wcsver = (getattr(wcs, 'version', ''), getattr(wcs, 'plver', ''))
        tim.psfver = (getattr(psf, 'version', ''), getattr(psf, 'plver', ''))
        if get_dq:
            tim.dq = dq
        tim.dq_saturation_bits = self.dq_saturation_bits
        subh, subw = tim.shape
        tim.subwcs = tim.sip_wcs.get_subimage(tim.x0, tim.y0, subw, subh)
        return tim
Exemplo n.º 3
0
def _det_one((cowcs, fn, wcsfn, do_img, wise)):
    print('Image', fn)
    F = fitsio.FITS(fn)[0]
    imginf = F.get_info()
    hdr = F.read_header()
    H, W = imginf['dims']

    wcs = Sip(wcsfn)

    if wise:
        # HACK -- assume, incorrectly, single Gaussian ~diffraction limited
        psf_sigma = 0.873
    else:
        pixscale = wcs.pixel_scale()
        seeing = hdr['SEEING']
        print('Seeing', seeing)
        psf_sigma = seeing / pixscale / 2.35
    print('Sigma:', psf_sigma)
    psfnorm = 1. / (2. * np.sqrt(np.pi) * psf_sigma)

    if False:
        # Compare PSF models with Peter's "SEEING" card
        # (units: arcsec FWHM)
        from tractor.psfex import *
        psffn = fn.replace('.p.w.fits', '.p.w.cat.psf')
        print('PSF', psffn)
        psfmod = PsfEx(psffn, W, H)
        psfim = psfmod.instantiateAt(W / 2, H / 2)
        print('psfim', psfim.shape)
        ph, pw = psfim.shape
        plt.clf()
        plt.plot(psfim[ph / 2, :], 'r-')
        plt.plot(psfim[:, pw / 2], 'b-')
        xx = np.arange(pw)
        cc = pw / 2
        G = np.exp(-0.5 * (xx - cc)**2 / sig**2)
        plt.plot(G * sum(psfim[:, pw / 2]) / sum(G), 'k-')
        ps.savefig()

    # Read full image and estimate noise
    img = F.read()
    print('Image', img.shape)

    if wise:
        ivfn = fn.replace('img-m.fits', 'invvar-m.fits.gz')
        iv = fitsio.read(ivfn)
        sig1 = 1. / np.sqrt(np.median(iv))
        print('Per-pixel noise estimate:', sig1)
        mask = (iv == 0)
    else:
        # Estimate and subtract background
        bg = sky_subtract(img, 512, gradient=False)
        img -= bg

        diffs = img[:-5:10, :-5:10] - img[5::10, 5::10]
        mad = np.median(np.abs(diffs).ravel())
        sig1 = 1.4826 * mad / np.sqrt(2.)
        print('Per-pixel noise estimate:', sig1)
        # Read bad pixel mask
        maskfn = fn.replace('.p.w.fits', '.p.w.bpm.fits')
        mask = fitsio.read(maskfn)

        # FIXME -- mask edge pixels -- some seem to be bad and unmasked
        mask[:2, :] = 1
        mask[-2:, :] = 1
        mask[:, :2] = 1
        mask[:, -2:] = 1

        # FIXME -- patch image?
        img[mask != 0] = 0.

        # Get image zeropoint
        for zpkey in ['MAG_ZP', 'UB1_ZP']:
            zp = hdr.get(zpkey, None)
            if zp is not None:
                break

        zpscale = NanoMaggies.zeropointToScale(zp)
        # Scale image to nanomaggies
        img /= zpscale
        sig1 /= zpscale

    # Produce detection map
    detmap = gaussian_filter(img, psf_sigma, mode='constant') / psfnorm**2
    detmap_sig1 = sig1 / psfnorm
    print('Detection map sig1', detmap_sig1)

    # Lanczos resample
    print('Resampling...')
    L = 3
    try:
        lims = [detmap]
        if do_img:
            lims.append(img)
        Yo, Xo, Yi, Xi, rims = resample_with_wcs(cowcs, wcs, lims, L)
        rdetmap = rims[0]
    except OverlapError:
        return None
    print('Resampled')

    detmap_iv = (mask[Yo, Xo] == 0) * 1. / detmap_sig1**2

    if do_img:
        rimg = rims[1]
    else:
        rimg = None

    return Yo, Xo, rdetmap, detmap_iv, rimg
Exemplo n.º 4
0
    def get_tractor_image(self, slc=None, radecpoly=None,
                          gaussPsf=False, const2psf=False, pixPsf=False,
                          splinesky=False,
                          nanomaggies=True, subsky=True, tiny=5,
                          dq=True, invvar=True, pixels=True):
        '''
        Returns a tractor.Image ("tim") object for this image.
        
        Options describing a subimage to return:

        - *slc*: y,x slice objects
        - *radecpoly*: numpy array, shape (N,2), RA,Dec polygon describing bounding box to select.

        Options determining the PSF model to use:

        - *gaussPsf*: single circular Gaussian PSF based on header FWHM value.
        - *const2Psf*: 2-component general Gaussian fit to PsfEx model at image center.
        - *pixPsf*: pixelized PsfEx model at image center.

        Options determining the sky model to use:
        
        - *splinesky*: median filter chunks of the image, then spline those.

        Options determining the units of the image:

        - *nanomaggies*: convert the image to be in units of NanoMaggies;
          *tim.zpscale* contains the scale value the image was divided by.

        - *subsky*: instantiate and subtract the initial sky model,
          leaving a constant zero sky model?

        '''
        from astrometry.util.miscutils import clip_polygon

        get_dq = dq
        get_invvar = invvar
        
        band = self.band
        imh,imw = self.get_image_shape()

        wcs = self.get_wcs()
        x0,y0 = 0,0
        x1 = x0 + imw
        y1 = y0 + imh
        if slc is None and radecpoly is not None:
            imgpoly = [(1,1),(1,imh),(imw,imh),(imw,1)]
            ok,tx,ty = wcs.radec2pixelxy(radecpoly[:-1,0], radecpoly[:-1,1])
            tpoly = zip(tx,ty)
            clip = clip_polygon(imgpoly, tpoly)
            clip = np.array(clip)
            if len(clip) == 0:
                return None
            x0,y0 = np.floor(clip.min(axis=0)).astype(int)
            x1,y1 = np.ceil (clip.max(axis=0)).astype(int)
            slc = slice(y0,y1+1), slice(x0,x1+1)
            if y1 - y0 < tiny or x1 - x0 < tiny:
                print('Skipping tiny subimage')
                return None
        if slc is not None:
            sy,sx = slc
            y0,y1 = sy.start, sy.stop
            x0,x1 = sx.start, sx.stop

        old_extent = (x0,x1,y0,y1)
        new_extent = self.get_good_image_slice((x0,x1,y0,y1), get_extent=True)
        if new_extent != old_extent:
            x0,x1,y0,y1 = new_extent
            print('Applying good subregion of CCD: slice is', x0,x1,y0,y1)
            if x0 >= x1 or y0 >= y1:
                return None
            slc = slice(y0,y1), slice(x0,x1)

        if pixels:
            print('Reading image slice:', slc)
            img,imghdr = self.read_image(header=True, slice=slc)
            #print('SATURATE is', imghdr.get('SATURATE', None))
            #print('Max value in image is', img.max())
            # check consistency... something of a DR1 hangover
            e = imghdr['EXTNAME']
            assert(e.strip() == self.ccdname.strip())
        else:
            img = np.zeros((imh, imw))
            imghdr = dict()
            if slc is not None:
                img = img[slc]
            
        if get_invvar:
            invvar = self.read_invvar(slice=slc, clipThresh=0.)
        else:
            invvar = np.ones_like(img)
            
        if get_dq:
            dq = self.read_dq(slice=slc)
            invvar[dq != 0] = 0.
        if np.all(invvar == 0.):
            print('Skipping zero-invvar image')
            return None
        assert(np.all(np.isfinite(img)))
        assert(np.all(np.isfinite(invvar)))
        assert(not(np.all(invvar == 0.)))

        # header 'FWHM' is in pixels
        # imghdr['FWHM']
        psf_fwhm = self.fwhm 
        psf_sigma = psf_fwhm / 2.35
        primhdr = self.read_image_primary_header()

        sky = self.read_sky_model(splinesky=splinesky, slc=slc)
        midsky = 0.
        if subsky:
            print('Instantiating and subtracting sky model...')
            from tractor.sky import ConstantSky
            skymod = np.zeros_like(img)
            sky.addTo(skymod)
            img -= skymod
            midsky = np.median(skymod)
            zsky = ConstantSky(0.)
            zsky.version = sky.version
            zsky.plver = sky.plver
            del skymod
            del sky
            sky = zsky
            del zsky

        magzp = self.decals.get_zeropoint_for(self)
        orig_zpscale = zpscale = NanoMaggies.zeropointToScale(magzp)
        if nanomaggies:
            # Scale images to Nanomaggies
            img /= zpscale
            invvar *= zpscale**2
            if not subsky:
                sky.scale(1./zpscale)
            zpscale = 1.

        assert(np.sum(invvar > 0) > 0)
        if get_invvar:
            sig1 = 1./np.sqrt(np.median(invvar[invvar > 0]))
        else:
            # Estimate from the image?
            # # Estimate per-pixel noise via Blanton's 5-pixel MAD
            slice1 = (slice(0,-5,10),slice(0,-5,10))
            slice2 = (slice(5,None,10),slice(5,None,10))
            mad = np.median(np.abs(img[slice1] - img[slice2]).ravel())
            sig1 = 1.4826 * mad / np.sqrt(2.)
            print('sig1 estimate:', sig1)
            invvar *= (1. / sig1**2)
            
        assert(np.all(np.isfinite(img)))
        assert(np.all(np.isfinite(invvar)))
        assert(np.isfinite(sig1))

        if subsky:
            ##
            imgmed = np.median(img[invvar>0])
            if np.abs(imgmed) > sig1:
                print('WARNING: image median', imgmed, 'is more than 1 sigma away from zero!')
                # Boom!
                #assert(False)

        twcs = ConstantFitsWcs(wcs)
        if x0 or y0:
            twcs.setX0Y0(x0,y0)

        psf = self.read_psf_model(x0, y0, gaussPsf=gaussPsf, pixPsf=pixPsf,
                                  const2psf=const2psf, psf_sigma=psf_sigma,
                                  cx=(x0+x1)/2., cy=(y0+y1)/2.)

        tim = Image(img, invvar=invvar, wcs=twcs, psf=psf,
                    photocal=LinearPhotoCal(zpscale, band=band),
                    sky=sky, name=self.name + ' ' + band)
        assert(np.all(np.isfinite(tim.getInvError())))

        # PSF norm
        psfnorm = self.psf_norm(tim)
        print('PSF norm', psfnorm, 'vs Gaussian',
              1./(2. * np.sqrt(np.pi) * psf_sigma))

        # Galaxy-detection norm
        tim.band = band
        galnorm = self.galaxy_norm(tim)
        print('Galaxy norm:', galnorm)
        
        # CP (DECam) images include DATE-OBS and MJD-OBS, in UTC.
        import astropy.time
        #mjd_utc = mjd=primhdr.get('MJD-OBS', 0)
        mjd_tai = astropy.time.Time(primhdr['DATE-OBS']).tai.mjd
        tim.slice = slc
        tim.time = TAITime(None, mjd=mjd_tai)
        tim.zr = [-3. * sig1, 10. * sig1]
        tim.zpscale = orig_zpscale
        tim.midsky = midsky
        tim.sig1 = sig1
        tim.psf_fwhm = psf_fwhm
        tim.psf_sigma = psf_sigma
        tim.propid = self.propid
        tim.psfnorm = psfnorm
        tim.galnorm = galnorm
        tim.sip_wcs = wcs
        tim.x0,tim.y0 = int(x0),int(y0)
        tim.imobj = self
        tim.primhdr = primhdr
        tim.hdr = imghdr
        tim.plver = primhdr['PLVER'].strip()
        tim.skyver = (sky.version, sky.plver)
        tim.wcsver = (wcs.version, wcs.plver)
        tim.psfver = (psf.version, psf.plver)
        if get_dq:
            tim.dq = dq
        tim.dq_bits = CP_DQ_BITS
        tim.saturation = imghdr.get('SATURATE', None)
        tim.satval = tim.saturation or 0.
        if subsky:
            tim.satval -= midsky
        if nanomaggies:
            tim.satval /= orig_zpscale
        subh,subw = tim.shape
        tim.subwcs = tim.sip_wcs.get_subimage(tim.x0, tim.y0, subw, subh)
        mn,mx = tim.zr
        tim.ima = dict(interpolation='nearest', origin='lower', cmap='gray',
                       vmin=mn, vmax=mx)
        return tim
Exemplo n.º 5
0
    def get_tractor_image(self, decals, slc=None, radecpoly=None, mock_psf=False):
        '''
        slc: y,x slices
        '''
        band = self.band
        imh,imw = self.get_image_shape()
        wcs = self.read_wcs()
        x0,y0 = 0,0
        if slc is None and radecpoly is not None:
            imgpoly = [(1,1),(1,imh),(imw,imh),(imw,1)]
            ok,tx,ty = wcs.radec2pixelxy(radecpoly[:-1,0], radecpoly[:-1,1])
            tpoly = zip(tx,ty)
            clip = clip_polygon(imgpoly, tpoly)
            clip = np.array(clip)
            if len(clip) == 0:
                return None
            x0,y0 = np.floor(clip.min(axis=0)).astype(int)
            x1,y1 = np.ceil (clip.max(axis=0)).astype(int)
            slc = slice(y0,y1+1), slice(x0,x1+1)

            if y1 - y0 < 5 or x1 - x0 < 5:
                print 'Skipping tiny subimage'
                return None
        if slc is not None:
            sy,sx = slc
            y0,y1 = sy.start, sy.stop
            x0,x1 = sx.start, sx.stop
        
        print 'Reading image from', self.imgfn, 'HDU', self.hdu
        img,imghdr = self.read_image(header=True, slice=slc)
        print 'Reading invvar from', self.wtfn, 'HDU', self.hdu
        invvar = self.read_invvar(slice=slc, clip=True)

        print 'Invvar range:', invvar.min(), invvar.max()
        if np.all(invvar == 0.):
            print 'Skipping zero-invvar image'
            return None
        assert(np.all(np.isfinite(img)))
        assert(np.all(np.isfinite(invvar)))
        assert(not(np.all(invvar == 0.)))

        # header 'FWHM' is in pixels
        psf_fwhm = imghdr['FWHM']
        psf_sigma = psf_fwhm / 2.35
        primhdr = self.read_image_primary_header()

        magzp = decals.get_zeropoint_for(self)
        print 'magzp', magzp
        zpscale = NanoMaggies.zeropointToScale(magzp)
        print 'zpscale', zpscale

        sky = self.read_sky_model()
        midsky = sky.getConstant()
        img -= midsky
        sky.subtract(midsky)

        # Scale images to Nanomaggies
        img /= zpscale
        invvar *= zpscale**2
        orig_zpscale = zpscale
        zpscale = 1.
        assert(np.sum(invvar > 0) > 0)
        sig1 = 1./np.sqrt(np.median(invvar[invvar > 0]))
        assert(np.all(np.isfinite(img)))
        assert(np.all(np.isfinite(invvar)))
        assert(np.isfinite(sig1))

        twcs = ConstantFitsWcs(wcs)
        if x0 or y0:
            twcs.setX0Y0(x0,y0)

        if mock_psf:
            from tractor.basics import NCircularGaussianPSF
            psfex = None
            psf = NCircularGaussianPSF([1.5], [1.0])
            print 'WARNING: using mock PSF:', psf
        else:
            # read fit PsfEx model -- with ellipse representation
            psfex = PsfEx.fromFits(self.psffitellfn)
            print 'Read', psfex
            psf = psfex

        tim = Image(img, invvar=invvar, wcs=twcs, psf=psf,
                    photocal=LinearPhotoCal(zpscale, band=band),
                    sky=sky, name=self.name + ' ' + band)
        assert(np.all(np.isfinite(tim.getInvError())))
        tim.zr = [-3. * sig1, 10. * sig1]
        tim.midsky = midsky
        tim.sig1 = sig1
        tim.band = band
        tim.psf_fwhm = psf_fwhm
        tim.psf_sigma = psf_sigma
        tim.sip_wcs = wcs
        tim.x0,tim.y0 = int(x0),int(y0)
        tim.psfex = psfex
        tim.imobj = self
        mn,mx = tim.zr
        subh,subw = tim.shape
        tim.subwcs = tim.sip_wcs.get_subimage(tim.x0, tim.y0, subw, subh)
        tim.ima = dict(interpolation='nearest', origin='lower', cmap='gray',
                       vmin=mn, vmax=mx)
        return tim
Exemplo n.º 6
0
    def get_tractor_image(self,
                          slc=None,
                          radecpoly=None,
                          gaussPsf=False,
                          const2psf=False,
                          pixPsf=False,
                          splinesky=False,
                          nanomaggies=True,
                          subsky=True,
                          tiny=5,
                          dq=True,
                          invvar=True,
                          pixels=True):
        '''
        Returns a tractor.Image ("tim") object for this image.
        
        Options describing a subimage to return:

        - *slc*: y,x slice objects
        - *radecpoly*: numpy array, shape (N,2), RA,Dec polygon describing bounding box to select.

        Options determining the PSF model to use:

        - *gaussPsf*: single circular Gaussian PSF based on header FWHM value.
        - *const2Psf*: 2-component general Gaussian fit to PsfEx model at image center.
        - *pixPsf*: pixelized PsfEx model at image center.

        Options determining the sky model to use:
        
        - *splinesky*: median filter chunks of the image, then spline those.

        Options determining the units of the image:

        - *nanomaggies*: convert the image to be in units of NanoMaggies;
          *tim.zpscale* contains the scale value the image was divided by.

        - *subsky*: instantiate and subtract the initial sky model,
          leaving a constant zero sky model?

        '''
        from astrometry.util.miscutils import clip_polygon

        get_dq = dq
        get_invvar = invvar

        band = self.band
        imh, imw = self.get_image_shape()

        wcs = self.get_wcs()
        x0, y0 = 0, 0
        x1 = x0 + imw
        y1 = y0 + imh
        if slc is None and radecpoly is not None:
            imgpoly = [(1, 1), (1, imh), (imw, imh), (imw, 1)]
            ok, tx, ty = wcs.radec2pixelxy(radecpoly[:-1, 0], radecpoly[:-1,
                                                                        1])
            tpoly = zip(tx, ty)
            clip = clip_polygon(imgpoly, tpoly)
            clip = np.array(clip)
            if len(clip) == 0:
                return None
            x0, y0 = np.floor(clip.min(axis=0)).astype(int)
            x1, y1 = np.ceil(clip.max(axis=0)).astype(int)
            slc = slice(y0, y1 + 1), slice(x0, x1 + 1)
            if y1 - y0 < tiny or x1 - x0 < tiny:
                print('Skipping tiny subimage')
                return None
        if slc is not None:
            sy, sx = slc
            y0, y1 = sy.start, sy.stop
            x0, x1 = sx.start, sx.stop

        old_extent = (x0, x1, y0, y1)
        new_extent = self.get_good_image_slice((x0, x1, y0, y1),
                                               get_extent=True)
        if new_extent != old_extent:
            x0, x1, y0, y1 = new_extent
            print('Applying good subregion of CCD: slice is', x0, x1, y0, y1)
            if x0 >= x1 or y0 >= y1:
                return None
            slc = slice(y0, y1), slice(x0, x1)

        if pixels:
            print('Reading image slice:', slc)
            img, imghdr = self.read_image(header=True, slice=slc)
            #print('SATURATE is', imghdr.get('SATURATE', None))
            #print('Max value in image is', img.max())
            # check consistency... something of a DR1 hangover
            e = imghdr['EXTNAME']
            assert (e.strip() == self.ccdname.strip())
        else:
            img = np.zeros((imh, imw))
            imghdr = dict()
            if slc is not None:
                img = img[slc]

        if get_invvar:
            invvar = self.read_invvar(slice=slc, clipThresh=0.)
        else:
            invvar = np.ones_like(img)

        if get_dq:
            dq = self.read_dq(slice=slc)
            invvar[dq != 0] = 0.
        if np.all(invvar == 0.):
            print('Skipping zero-invvar image')
            return None
        assert (np.all(np.isfinite(img)))
        assert (np.all(np.isfinite(invvar)))
        assert (not (np.all(invvar == 0.)))

        # header 'FWHM' is in pixels
        # imghdr['FWHM']
        psf_fwhm = self.fwhm
        psf_sigma = psf_fwhm / 2.35
        primhdr = self.read_image_primary_header()

        sky = self.read_sky_model(splinesky=splinesky, slc=slc)
        midsky = 0.
        if subsky:
            print('Instantiating and subtracting sky model...')
            from tractor.sky import ConstantSky
            skymod = np.zeros_like(img)
            sky.addTo(skymod)
            img -= skymod
            midsky = np.median(skymod)
            zsky = ConstantSky(0.)
            zsky.version = sky.version
            zsky.plver = sky.plver
            del skymod
            del sky
            sky = zsky
            del zsky

        magzp = self.decals.get_zeropoint_for(self)
        orig_zpscale = zpscale = NanoMaggies.zeropointToScale(magzp)
        if nanomaggies:
            # Scale images to Nanomaggies
            img /= zpscale
            invvar *= zpscale**2
            if not subsky:
                sky.scale(1. / zpscale)
            zpscale = 1.

        assert (np.sum(invvar > 0) > 0)
        if get_invvar:
            sig1 = 1. / np.sqrt(np.median(invvar[invvar > 0]))
        else:
            # Estimate from the image?
            # # Estimate per-pixel noise via Blanton's 5-pixel MAD
            slice1 = (slice(0, -5, 10), slice(0, -5, 10))
            slice2 = (slice(5, None, 10), slice(5, None, 10))
            mad = np.median(np.abs(img[slice1] - img[slice2]).ravel())
            sig1 = 1.4826 * mad / np.sqrt(2.)
            print('sig1 estimate:', sig1)
            invvar *= (1. / sig1**2)

        assert (np.all(np.isfinite(img)))
        assert (np.all(np.isfinite(invvar)))
        assert (np.isfinite(sig1))

        if subsky:
            ##
            imgmed = np.median(img[invvar > 0])
            if np.abs(imgmed) > sig1:
                print('WARNING: image median', imgmed,
                      'is more than 1 sigma away from zero!')
                # Boom!
                #assert(False)

        twcs = ConstantFitsWcs(wcs)
        if x0 or y0:
            twcs.setX0Y0(x0, y0)

        psf = self.read_psf_model(x0,
                                  y0,
                                  gaussPsf=gaussPsf,
                                  pixPsf=pixPsf,
                                  const2psf=const2psf,
                                  psf_sigma=psf_sigma,
                                  cx=(x0 + x1) / 2.,
                                  cy=(y0 + y1) / 2.)

        tim = Image(img,
                    invvar=invvar,
                    wcs=twcs,
                    psf=psf,
                    photocal=LinearPhotoCal(zpscale, band=band),
                    sky=sky,
                    name=self.name + ' ' + band)
        assert (np.all(np.isfinite(tim.getInvError())))

        # PSF norm
        psfnorm = self.psf_norm(tim)
        print('PSF norm', psfnorm, 'vs Gaussian',
              1. / (2. * np.sqrt(np.pi) * psf_sigma))

        # Galaxy-detection norm
        tim.band = band
        galnorm = self.galaxy_norm(tim)
        print('Galaxy norm:', galnorm)

        # CP (DECam) images include DATE-OBS and MJD-OBS, in UTC.
        import astropy.time
        #mjd_utc = mjd=primhdr.get('MJD-OBS', 0)
        mjd_tai = astropy.time.Time(primhdr['DATE-OBS']).tai.mjd
        tim.slice = slc
        tim.time = TAITime(None, mjd=mjd_tai)
        tim.zr = [-3. * sig1, 10. * sig1]
        tim.zpscale = orig_zpscale
        tim.midsky = midsky
        tim.sig1 = sig1
        tim.psf_fwhm = psf_fwhm
        tim.psf_sigma = psf_sigma
        tim.propid = self.propid
        tim.psfnorm = psfnorm
        tim.galnorm = galnorm
        tim.sip_wcs = wcs
        tim.x0, tim.y0 = int(x0), int(y0)
        tim.imobj = self
        tim.primhdr = primhdr
        tim.hdr = imghdr
        tim.plver = primhdr['PLVER'].strip()
        tim.skyver = (sky.version, sky.plver)
        tim.wcsver = (wcs.version, wcs.plver)
        tim.psfver = (psf.version, psf.plver)
        if get_dq:
            tim.dq = dq
        tim.dq_bits = CP_DQ_BITS
        tim.saturation = imghdr.get('SATURATE', None)
        tim.satval = tim.saturation or 0.
        if subsky:
            tim.satval -= midsky
        if nanomaggies:
            tim.satval /= orig_zpscale
        subh, subw = tim.shape
        tim.subwcs = tim.sip_wcs.get_subimage(tim.x0, tim.y0, subw, subh)
        mn, mx = tim.zr
        tim.ima = dict(interpolation='nearest',
                       origin='lower',
                       cmap='gray',
                       vmin=mn,
                       vmax=mx)
        return tim