Exemplo n.º 1
0
    def create_one_3D_file():
        '''
        Create one big file which contains all 3D Images (not slices).
        '''

        class HP:
            DATASET = "HCP"
            RESOLUTION = "1.25mm"
            FEATURES_FILENAME = "270g_125mm_peaks"
            LABELS_TYPE = np.int16
            DATASET_FOLDER = "HCP"

        data_all = []
        seg_all = []

        print("\n\nProcessing Data...")
        for s in get_all_subjects():
            print("processing data subject {}".format(s))
            data = nib.load(join(C.HOME, HP.DATASET_FOLDER, s, HP.FEATURES_FILENAME + ".nii.gz")).get_data()
            data = np.nan_to_num(data)
            data = DatasetUtils.scale_input_to_unet_shape(data, HP.DATASET, HP.RESOLUTION)
        data_all.append(np.array(data))
        np.save("data.npy", data_all)
        del data_all  # free memory

        print("\n\nProcessing Segs...")
        for s in get_all_subjects():
            print("processing seg subject {}".format(s))
            seg = ImgUtils.create_multilabel_mask(HP, s, labels_type=HP.LABELS_TYPE)
            if HP.RESOLUTION == "2.5mm":
                seg = ImgUtils.resize_first_three_dims(seg, order=0, zoom=0.5)
            seg = DatasetUtils.scale_input_to_unet_shape(seg, HP.DATASET, HP.RESOLUTION)
        seg_all.append(np.array(seg))
        print("SEG TYPE: {}".format(seg_all.dtype))
        np.save("seg.npy", seg_all)
Exemplo n.º 2
0
    def _create_prob_slices_file(HP, subjects, filename, bundle, shuffle=True):

        mask_dir = join(C.HOME, HP.DATASET_FOLDER)

        input_dir = HP.MULTI_PARENT_PATH

        combined_slices = []
        mask_slices = []

        for s in subjects:
            print("processing subject {}".format(s))

            probs_x = nib.load(join(input_dir, "UNet_x_" + str(HP.CV_FOLD), "probmaps", s + "_probmap.nii.gz")).get_data()
            probs_y = nib.load(join(input_dir, "UNet_y_" + str(HP.CV_FOLD), "probmaps", s + "_probmap.nii.gz")).get_data()
            probs_z = nib.load(join(input_dir, "UNet_z_" + str(HP.CV_FOLD), "probmaps", s + "_probmap.nii.gz")).get_data()
            # probs_x = DatasetUtils.scale_input_to_unet_shape(probs_x, HP.DATASET, HP.RESOLUTION)
            # probs_y = DatasetUtils.scale_input_to_unet_shape(probs_y, HP.DATASET, HP.RESOLUTION)
            # probs_z = DatasetUtils.scale_input_to_unet_shape(probs_z, HP.DATASET, HP.RESOLUTION)
            combined = np.stack((probs_x, probs_y, probs_z), axis=4)  # (73, 87, 73, 18, 3)  #not working alone: one dim too much for UNet -> reshape
            combined = np.reshape(combined, (combined.shape[0], combined.shape[1], combined.shape[2],
                                             combined.shape[3] * combined.shape[4]))    # (73, 87, 73, 3*18)

            # print("combined shape after", combined.shape)

            mask_data = ImgUtils.create_multilabel_mask(HP, s, labels_type=HP.LABELS_TYPE)
            if HP.DATASET == "HCP_2mm":
                #use "HCP" because for mask we need downscaling
                mask_data = DatasetUtils.scale_input_to_unet_shape(mask_data, "HCP", HP.RESOLUTION)
            elif HP.DATASET == "HCP_2.5mm":
                # use "HCP" because for mask we need downscaling
                mask_data = DatasetUtils.scale_input_to_unet_shape(mask_data, "HCP", HP.RESOLUTION)
            else:
                # Mask has same resolution as probmaps -> we can use same resizing
                mask_data = DatasetUtils.scale_input_to_unet_shape(mask_data, HP.DATASET, HP.RESOLUTION)

            # Save as Img
            img = nib.Nifti1Image(combined, ImgUtils.get_dwi_affine(HP.DATASET, HP.RESOLUTION))
            nib.save(img, join(HP.EXP_PATH, "combined", s + "_combinded_probmap.nii.gz"))


            combined = DatasetUtils.scale_input_to_unet_shape(combined, HP.DATASET, HP.RESOLUTION)
            assert (combined.shape[2] == mask_data.shape[2])

            #Save as Slices
            for z in range(combined.shape[2]):
                combined_slices.append(combined[:, :, z, :])
                mask_slices.append(mask_data[:, :, z, :])

        if shuffle:
            combined_slices, mask_slices = sk_shuffle(combined_slices, mask_slices, random_state=9)

        if HP.TRAIN:
            np.save(filename + "_data.npy", combined_slices)
            np.save(filename + "_seg.npy", mask_slices)
Exemplo n.º 3
0
    def create_one_3D_file():
        '''
        Create one big file which contains all 3D Images (not slices).
        '''
        class HP:
            DATASET = "HCP"
            RESOLUTION = "1.25mm"
            FEATURES_FILENAME = "270g_125mm_peaks"
            LABELS_TYPE = np.int16
            DATASET_FOLDER = "HCP"

        data_all = []
        seg_all = []

        print("\n\nProcessing Data...")
        for s in get_all_subjects():
            print("processing data subject {}".format(s))
            data = nib.load(
                join(C.HOME, HP.DATASET_FOLDER, s,
                     HP.FEATURES_FILENAME + ".nii.gz")).get_data()
            data = np.nan_to_num(data)
            data = DatasetUtils.scale_input_to_unet_shape(
                data, HP.DATASET, HP.RESOLUTION)
        data_all.append(np.array(data))
        np.save("data.npy", data_all)
        del data_all  # free memory

        print("\n\nProcessing Segs...")
        for s in get_all_subjects():
            print("processing seg subject {}".format(s))
            seg = ImgUtils.create_multilabel_mask(HP,
                                                  s,
                                                  labels_type=HP.LABELS_TYPE)
            if HP.RESOLUTION == "2.5mm":
                seg = ImgUtils.resize_first_three_dims(seg, order=0, zoom=0.5)
            seg = DatasetUtils.scale_input_to_unet_shape(
                seg, HP.DATASET, HP.RESOLUTION)
        seg_all.append(np.array(seg))
        print("SEG TYPE: {}".format(seg_all.dtype))
        np.save("seg.npy", seg_all)
Exemplo n.º 4
0
    def _create_slices_file(HP, subjects, filename, slice, shuffle=True):
        data_dir = join(C.HOME, HP.DATASET_FOLDER)

        dwi_slices = []
        mask_slices = []

        print("\n\nProcessing Data...")
        for s in subjects:
            print("processing dwi subject {}".format(s))

            dwi = nib.load(join(data_dir, s, HP.FEATURES_FILENAME + ".nii.gz"))
            dwi_data = dwi.get_data()
            dwi_data = np.nan_to_num(dwi_data)
            dwi_data = DatasetUtils.scale_input_to_unet_shape(dwi_data, HP.DATASET, HP.RESOLUTION)

            # if slice == "x":
            #     for z in range(dwi_data.shape[0]):
            #         dwi_slices.append(dwi_data[z, :, :, :])
            #
            # if slice == "y":
            #     for z in range(dwi_data.shape[1]):
            #         dwi_slices.append(dwi_data[:, z, :, :])
            #
            # if slice == "z":
            #     for z in range(dwi_data.shape[2]):
            #         dwi_slices.append(dwi_data[:, :, z, :])

            #Use slices from all directions in one dataset
            for z in range(dwi_data.shape[0]):
                dwi_slices.append(dwi_data[z, :, :, :])
            for z in range(dwi_data.shape[1]):
                dwi_slices.append(dwi_data[:, z, :, :])
            for z in range(dwi_data.shape[2]):
                dwi_slices.append(dwi_data[:, :, z, :])

        dwi_slices = np.array(dwi_slices)
        random_idxs = None
        if shuffle:
            random_idxs = np.random.choice(len(dwi_slices), len(dwi_slices))
            dwi_slices = dwi_slices[random_idxs]

        np.save(filename + "_data.npy", dwi_slices)
        del dwi_slices  #free memory


        print("\n\nProcessing Segs...")
        for s in subjects:
            print("processing seg subject {}".format(s))

            mask_data = ImgUtils.create_multilabel_mask(HP, s, labels_type=HP.LABELS_TYPE)
            if HP.RESOLUTION == "2.5mm":
                mask_data = ImgUtils.resize_first_three_dims(mask_data, order=0, zoom=0.5)
            mask_data = DatasetUtils.scale_input_to_unet_shape(mask_data, HP.DATASET, HP.RESOLUTION)

            # if slice == "x":
            #     for z in range(dwi_data.shape[0]):
            #         mask_slices.append(mask_data[z, :, :, :])
            #
            # if slice == "y":
            #     for z in range(dwi_data.shape[1]):
            #         mask_slices.append(mask_data[:, z, :, :])
            #
            # if slice == "z":
            #     for z in range(dwi_data.shape[2]):
            #         mask_slices.append(mask_data[:, :, z, :])

            # Use slices from all directions in one dataset
            for z in range(dwi_data.shape[0]):
                mask_slices.append(mask_data[z, :, :, :])
            for z in range(dwi_data.shape[1]):
                mask_slices.append(mask_data[:, z, :, :])
            for z in range(dwi_data.shape[2]):
                mask_slices.append(mask_data[:, :, z, :])

        mask_slices = np.array(mask_slices)
        print("SEG TYPE: {}".format(mask_slices.dtype))
        if shuffle:
            mask_slices = mask_slices[random_idxs]

        np.save(filename + "_seg.npy", mask_slices)
Exemplo n.º 5
0
    def _create_slices_file(HP, subjects, filename, slice, shuffle=True):
        data_dir = join(C.HOME, HP.DATASET_FOLDER)

        dwi_slices = []
        mask_slices = []

        print("\n\nProcessing Data...")
        for s in subjects:
            print("processing dwi subject {}".format(s))

            dwi = nib.load(join(data_dir, s, HP.FEATURES_FILENAME + ".nii.gz"))
            dwi_data = dwi.get_data()
            dwi_data = np.nan_to_num(dwi_data)
            dwi_data = DatasetUtils.scale_input_to_unet_shape(
                dwi_data, HP.DATASET, HP.RESOLUTION)

            # if slice == "x":
            #     for z in range(dwi_data.shape[0]):
            #         dwi_slices.append(dwi_data[z, :, :, :])
            #
            # if slice == "y":
            #     for z in range(dwi_data.shape[1]):
            #         dwi_slices.append(dwi_data[:, z, :, :])
            #
            # if slice == "z":
            #     for z in range(dwi_data.shape[2]):
            #         dwi_slices.append(dwi_data[:, :, z, :])

            #Use slices from all directions in one dataset
            for z in range(dwi_data.shape[0]):
                dwi_slices.append(dwi_data[z, :, :, :])
            for z in range(dwi_data.shape[1]):
                dwi_slices.append(dwi_data[:, z, :, :])
            for z in range(dwi_data.shape[2]):
                dwi_slices.append(dwi_data[:, :, z, :])

        dwi_slices = np.array(dwi_slices)
        random_idxs = None
        if shuffle:
            random_idxs = np.random.choice(len(dwi_slices), len(dwi_slices))
            dwi_slices = dwi_slices[random_idxs]

        np.save(filename + "_data.npy", dwi_slices)
        del dwi_slices  #free memory

        print("\n\nProcessing Segs...")
        for s in subjects:
            print("processing seg subject {}".format(s))

            mask_data = ImgUtils.create_multilabel_mask(
                HP, s, labels_type=HP.LABELS_TYPE)
            if HP.RESOLUTION == "2.5mm":
                mask_data = ImgUtils.resize_first_three_dims(mask_data,
                                                             order=0,
                                                             zoom=0.5)
            mask_data = DatasetUtils.scale_input_to_unet_shape(
                mask_data, HP.DATASET, HP.RESOLUTION)

            # if slice == "x":
            #     for z in range(dwi_data.shape[0]):
            #         mask_slices.append(mask_data[z, :, :, :])
            #
            # if slice == "y":
            #     for z in range(dwi_data.shape[1]):
            #         mask_slices.append(mask_data[:, z, :, :])
            #
            # if slice == "z":
            #     for z in range(dwi_data.shape[2]):
            #         mask_slices.append(mask_data[:, :, z, :])

            # Use slices from all directions in one dataset
            for z in range(dwi_data.shape[0]):
                mask_slices.append(mask_data[z, :, :, :])
            for z in range(dwi_data.shape[1]):
                mask_slices.append(mask_data[:, z, :, :])
            for z in range(dwi_data.shape[2]):
                mask_slices.append(mask_data[:, :, z, :])

        mask_slices = np.array(mask_slices)
        print("SEG TYPE: {}".format(mask_slices.dtype))
        if shuffle:
            mask_slices = mask_slices[random_idxs]

        np.save(filename + "_seg.npy", mask_slices)
Exemplo n.º 6
0
    def _create_prob_slices_file(HP, subjects, filename, bundle, shuffle=True):

        mask_dir = join(C.HOME, HP.DATASET_FOLDER)

        input_dir = HP.MULTI_PARENT_PATH

        combined_slices = []
        mask_slices = []

        for s in subjects:
            print("processing subject {}".format(s))

            probs_x = nib.load(
                join(input_dir, "UNet_x_" + str(HP.CV_FOLD), "probmaps",
                     s + "_probmap.nii.gz")).get_data()
            probs_y = nib.load(
                join(input_dir, "UNet_y_" + str(HP.CV_FOLD), "probmaps",
                     s + "_probmap.nii.gz")).get_data()
            probs_z = nib.load(
                join(input_dir, "UNet_z_" + str(HP.CV_FOLD), "probmaps",
                     s + "_probmap.nii.gz")).get_data()
            # probs_x = DatasetUtils.scale_input_to_unet_shape(probs_x, HP.DATASET, HP.RESOLUTION)
            # probs_y = DatasetUtils.scale_input_to_unet_shape(probs_y, HP.DATASET, HP.RESOLUTION)
            # probs_z = DatasetUtils.scale_input_to_unet_shape(probs_z, HP.DATASET, HP.RESOLUTION)
            combined = np.stack(
                (probs_x, probs_y, probs_z), axis=4
            )  # (73, 87, 73, 18, 3)  #not working alone: one dim too much for UNet -> reshape
            combined = np.reshape(
                combined,
                (combined.shape[0], combined.shape[1], combined.shape[2],
                 combined.shape[3] * combined.shape[4]))  # (73, 87, 73, 3*18)

            # print("combined shape after", combined.shape)

            mask_data = ImgUtils.create_multilabel_mask(
                HP, s, labels_type=HP.LABELS_TYPE)
            if HP.DATASET == "HCP_2mm":
                #use "HCP" because for mask we need downscaling
                mask_data = DatasetUtils.scale_input_to_unet_shape(
                    mask_data, "HCP", HP.RESOLUTION)
            elif HP.DATASET == "HCP_2.5mm":
                # use "HCP" because for mask we need downscaling
                mask_data = DatasetUtils.scale_input_to_unet_shape(
                    mask_data, "HCP", HP.RESOLUTION)
            else:
                # Mask has same resolution as probmaps -> we can use same resizing
                mask_data = DatasetUtils.scale_input_to_unet_shape(
                    mask_data, HP.DATASET, HP.RESOLUTION)

            # Save as Img
            img = nib.Nifti1Image(
                combined, ImgUtils.get_dwi_affine(HP.DATASET, HP.RESOLUTION))
            nib.save(
                img,
                join(HP.EXP_PATH, "combined", s + "_combinded_probmap.nii.gz"))

            combined = DatasetUtils.scale_input_to_unet_shape(
                combined, HP.DATASET, HP.RESOLUTION)
            assert (combined.shape[2] == mask_data.shape[2])

            #Save as Slices
            for z in range(combined.shape[2]):
                combined_slices.append(combined[:, :, z, :])
                mask_slices.append(mask_data[:, :, z, :])

        if shuffle:
            combined_slices, mask_slices = sk_shuffle(combined_slices,
                                                      mask_slices,
                                                      random_state=9)

        if HP.TRAIN:
            np.save(filename + "_data.npy", combined_slices)
            np.save(filename + "_seg.npy", mask_slices)